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Summary. In this part we weaken the sufficient condition to obtain the stresses contin-
uous and bounded in the threedimensional case, and we treat a certain coupled system.
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0. INTRODUCTION

The goal of this part of the series of papers is to improve the results of [2] for a
threedimensional bounded domain 2 and to give some results also for a certain cou-
pled case, where the solution of the Lamé system is included into the heat equation,
too. Understanding under the “spatial isotropy” or the “spatial anisotropy” of the
heating regime 7' the same or the different regularity of T in both space variables,
respectively, we remove in Sec. 1, devoted to the isotropic case, the gap between
the result for the linear heat equation with Q being a strip (Thm. 3 of [1]) and the
general nonlinear case (Thm. 1 of [2]). In Sec. 2 we find a less restrictive condition
for the “regular space direction” provided T is noncontinuous both in time and in
the other space direction. T is still supposed to be non-decreasing in time or (in a
more general setting) having a bounded variation in time uniformly with respect to
z € 0. In Sec. 3 we extend our results to a certain coupled thermoelastic system
with div v in the heat equation and the Lamé system including the acceleration and

a viscosity term.
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In Secs. 1 and 2 we still consider the heat equation in the form

1) ﬂo%%zAu on Q=(0,7T) x Q,
—g—:— =g(T)—g(u) onS=(0,T) x9N, u(0,)=0on
and the Lamé system e.g. in its homogeneous and isotropic version
2) (1-20)Av+Vdivu=(2+4+20)Vy(u) onQ, t€(0,7),

1- 2(7)(-3—5— + ((v, Viv);i)) + 20vdive = (2 4+ 20)y(u)yr on 09, t € (0,7T),

but the results concerning a sufficiently smooth 9 are valid also for the linear non-
homogeneous and anisotropic Lamé system. Our aim is to find sufficient conditions
ensuring that all components of the stress tensor

3
@ E(u) 0v;  Ov; 3. v
e NP _ b J L. E .
= (2+20)(1 - 20) ((l 20) (6.'::]- + 6:!:,-) 6']2Uk=1 6rk) » Hi=133,

are continuous and bounded on Q. Here § denotes the Kronecker symbol.

1. A SHARPER RESULT FOR THE QUASI-COUPLED THREEDIMENSIONAL CASE WITH
THE “SPATIALLY ISOTROPIC” HEATING REGIMES

In this section we shall suppose the above described behaviour of T in time and,
moreover, g(T') € L2(0,T; H*()), @ = 1 + n with 0 < 5 arbitrarily small. We shall
prove

Theorem 1. Let Q C R3 be a bounded domain with a C%M—smooth boundary
for some n > 0, let g from (1) be Cy-smooth and non-decreasing on Ry = (0, 4+00),
let g(0) = 0. Let v from (2) be Cy-smooth, let E from (3) be continuous. Let the
heating regime T be non-negative with T(0) = 0 and let it satisfy all the above stated
requirements. Then the corresponding stress tensor belongs to Co(Q;R®).

Remark . Asin (22) of [2], to obtain g(T) € L2(0,7; H'*"(Q)), n € (0.1),
for nonlinear g, we need T € Lo(0,7; H2t7(Q)) or VT € L2(0,T; Cy(£2)).

Proof of Thm. 1. From Sec. 1 of [2] we know that u € H"*(Q), Vu €
H3~¢(0,T; L2(2; R®)). Extending the function u onto R* (e.g. by the local method
described in [2], taken from [3], Chapter 1), we prove for the Fourier transform 4 of
this extended u and for some constant ¢ > 0 independent of @

(4) ,
r

mﬁlﬁl“‘lakc(|r1%-f|s|2+r2)|m?e Li(RY), £o(e) O for &\, 0.
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The reason of the following formal procedure lies in the possibility of approximating
our u e.g. by a solution of (1) with a more regular T obtained e.g. by the time
mollification of the original T. Then we obtain % in some better space for u/sq €
L4(R2) to have sense. The following procedure will be carried out for such a solution,
all the estimates will be uniform with respect to this approximation and by the limit
procedure we obtain the required estimate for the original u, too. We put u_, — u
into the variational formulation of (1) (see e.g. (34) of [1]; here we include A into g).
Here ¢ is a shift in the time argument. For this regular u it is not difficult to prove
that the term

s
. 2 —14¢
®) [5 lli—s u“H"-x%-'u(O,T;Lz(an))m de,

€ > 0 arbitrarily small, § > 0 arbitrary,

can be estimated by means of the norm on the left hand side of (4), cf. e.g. [5]. On
the left hand side of the resulting variational inequality we estimate in fact the terms

6
(6) Bo /_6/Q(u_, — )27 2 d s dadt
6
¥ %/.5 /n(v(u" — u))¥(z, to)|¢] 1 "2%dsdz, to € (0, T),

on the right hand side we have the boundary terms which will be estimated as follows:

5
@) ,/_6 /S(g(u_,) —g(u))(t-, —w)||” ~**dededt

)
<c(/ )71 e —
-5

de
H™T570(0,7; La(92))

[
' 2 —1—-4a—¢
- ¢ de
+<§u§)g /_5”“ ¢l e 07, L)1 b

€,€o arbitrarily small,

with B = supT, ¢ > 0 a constant independent of u. Using the extension and
s

renormation technique described in Lemma 1 of [1] and [5], we estimate for a <
the second term on the right hand side of (7) by ||u]|.,(g) via (4). Repeating the

same procedure for ¢(7T), we must restrict ourselves to a < 355 = %(% - 13—6) Thus

we have estimated ||14||H§2,_,((j'7,;,‘2(n)) for every € € (0,35). As the estimation

does not. depend on the above mentioned approximation of T, the relation u €

N H3575(0.7; Ly(R)) holds also for our original T due to the weak convergence.
>0
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But now we can take |r|2+7%~¢ instead of 72 on the right hand side of (4) and repeat

the procedure with the exponent '1% — 3 ¢y instead of fle — g at the term (14 72).

64
By such an iterative procedure we finally obtain
(8) we [V H#5(0,7T; La(R))
£>0

and we remark that we need only T € H%‘E(S) in the whole procedure.
By virtue of (8), using the extension ;;3 onto R* again, we can prove by the Holder
inequality applied to the H 3 =€ 2=¢-norm of u that @ € () L2(0,7; H35-<(Q)) (this
0
is valid even for T € () H27¢(S)). For our more regsjlar T, however, the result
together with the int.er:)i)(l]at,ion theorem for the elliptic equations (cf. [3], Chapter 1

and [1], Prop. 4) yields u € (] L2(0,7; H2*%-<(Q)). Iterating this procedure, we

e>0
400
prove finally that u € () La(0,7; H3~127¢()), because oL =245 ()"
>0 n=0

Now, using the Hélder inequality |7|33 —0()|¢|1+e < ¢(|7|E < +|€]¥ ), reR!, € €
R3, with £9(¢) \, 0 for € \, 0 (¢ > 0 is a suitable constant independent of 7, £ and
small € > 0), we prove formally w € [} H=277¢(0,T; L2(8R)) and thus by the above
£>0
described time-regularization procedure & € ) H%“E(O,T; L2(€2)). But then, using
>0

this result, we obtain by the above described space-regularization procedure u €
M L2(0,7; Hi=755<(Q)) and u € ﬂ Lo(0,T; H3= 765 —5(Q)).
>0

To prove the theorem, we use both the regularization procedures simultaneously.
We have proved that u € (] H¥7#17¢3-%37¢(Q) and we can suppose 0 < 24, <

e>0

PJa < 28 < ;—0 in the first step of the simultaneous procedure (the time regu-

larization). Using the inequality of the Holder type (with ¢; a positive constant
independent of 7, € and small ¢ > 0)

(9) |T|2d‘_£°(£)|ﬂl+€ < Cl(‘T|%_2ﬁl_€ + 'Els_zp,_g)Y
TER', £ €R® <o() \ O for €\ 0
, 4-20, (5 4B + 82 — 23,3 50 25
th dij= ——+—=[--p =l-—— - 1 — ] — —
Y= T8, (4 /’> TR v AR YT

we prove u € H'=#A+1(0, T, Lq(()Q)) for some 7 > 0 and thus by the above de-
scribed procedure we prove u € Hi~3%1(0,7; Ly(2)). The second step (the space
regularization) exploits this result and the Holder inequality again. Using the corre-
sponding extension of u and its Fourier transform, we prove

W€ () La(0,T; H25(Q))

e>0
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with

12— 254, (5 I 108+ 242 =548 1 316, 1 2
dy= — L (T ) = = — - > o= P > = — .

60 — 255, \ 2 2 12 - 53 2 475 2 3
Using the interpolation theorem, we prove u € Ly(0,7; H3~3#2(Q)). Thus we take
%[,Bl,ﬂg] as a new couple and repeat the whole procedure. Using such an iteration

process we finally obtain

(10) we [VHi=9379(Q).

With the help of the local tangential regularization described in [2] Sec. 1, we

immediately prove the local tangential regularity of the order 2 + 17— ¢, = > 0

3_

arbitrarily small. Theorem 1 of [1] yields w € () Co(0,T; HZ2 "
>0

for a vector «v indicates the existence of such local coordinates

343 343y _¢
stsu—e 5+35n &(Q))’

where the symbol H.
(being sufficiently smoothly equivalent to the original ones) for every point z € 0%,
that in a neighbourhood of z (denoted U;) u/qnu, € H*(2NU;) with respect to the
local coordinates. Confront the description of the localization technique in [2], Sec. 1.
(Of course, for € Q u is much more regular in some neighbourhood of z.) Via the
local coordinate method we can now prove the same assertion for all components of
the stress tensor and via the imbedding theorem (cf. Prop. 2 of [2]) we complete the

proof. a

2. THE “SPATIALLY ANISOTROPIC” CASE
In this section we shall suppose again T € (0, B) on S, T(0) = 0 and

(n g(T) € ﬂ H%_E'%_E'%M(S') for some 7 > 0.

loc
e>0

where the first superscript corresponds to the time and the other to the space vari-
ables. The index loc denotes that for every x € 92 we are able, after a suitable
shift of the origin and sufficiently smooth straightening of the boundary, to find local

coordinates such that g(T) € () H3=5(0.T; Ly(Vy)) N () La(0,T; HZ=5+1(V,))
>0 >0
on a neighbourhood V, C {0} x R®. Of course, the transformation of the coordinates

must be sufficiently smooth (we suppose it to be at least of the class Csy, with
7 from (11)). In such a coordinate system we shall suppose z; to be the normal
coordinate, zo the tangential coordinate in which T is possibly discontinuous and

x3 the tangential coordinate in which T is regular. We shall suppose g € ((0, B),
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v € C344(0, B). 8Q must be globally of the class C%Jr,', but along the zz-variable it
must be of the class C344.
From the preceding section and [2], Sec. 1, we know that u € (| H#~27¢(Q) N
e>0

N Hii=e3 ’"f(b). Using the last result, we can improve the result of Prop. 5 of
e>0
11

[1]. In fact, in the crucial estimate (45) there we can take 2a — % < 13 Le
a < %—} and prove Vu € () H%<(0,T; Ly(;R3).  With this result we can

>0
improve the auxiliary formal estimate for /s (which in fact represents the ex-

istence of the corresponding fractional derivative in time and will be only used
together with the limit procedure like in Sec. 1—see (4) and what follows). By
means of the Holder inequality for the Fourier transform of the extended u we

prove & € (| H™2i7¢(0,7; L2(9R)). Let us suppose in general that we have proved
e>0

we (| Hi"3%7(0,T; Ly(Q)) and Vu € () H¥ 5% (0, T; L(R; R?)) for some
e>0 e>0
k (in fact we have proved it for £k = 3). With the help of the Holder inequal-

ity [¢]1+e|r|2m 37T o) ¢ o(|r|3TEFET T 4 |7| 3T S FIT46]?) which s valid for
r € R!, ¢ € R3, with a suitable constant ¢ > 0 (independent of 7, £ and small ¢ > 0)
and with g \, 0 for € \, 0, we prove u € [ H‘éEl*'"E(O,’T; L2(09)). In the estima-

€>0
tion similar to that in the proof of Prop. 5 of [1] we can now take 2o — % < 1- 51,;
31 —c
ie. a < 3 - 450 and prove Vu € EOQH‘ 3 PR (0,T; LZ(Q,R"))‘ Simultane-

ously in our estimate (7) made for g(T) instead of g(u) we can take 2a < l - .},71;,

— 15 and prove # € ) Hi™ 57~ (0, 7; L2(R2)). Using this 1terat1ve
e>0

e a< g

procedure we can finally prove

(12) we (VHI" 2 5(Q)N (| H'"957%(S), Vue [ Hi™*(0,T; Ly(Q;R?)).

>0 e>0 >0

The Holder inequality || +|€]5=<0(€) < ¢(|7|27¢)€|2 + |€]*~¢), which is valid for
7 € R, £ € R3, a constant ¢ > 0 (independent of 7, & and small ¢ > 0) and with
€o(€) \\ 0 for € \, 0, combined with (12) and Thm.1 of [1] yields

(13) u€ [) Co(0,T; Hi™*()).

>0

We remark that the time regularity of u as in (12) is valid even for

Te (VH(0,T; La(R)).

e>0
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In fact, starting with the inequality analogous to (4) in Sec. 1 and the iterative
procedure described there we prove

i€ [V H 71750, T; La()) 0 () H™575(0,T; La(09)).
e>0 e>0
By the corresponding Holder inequality we have Vu € [ Hi=17¢(0,T; Ly(%; R3))

e>0
and the above described iterative procedure yields the time regularity as in (12).

Now, we shall proceed in the tangential regularization as in [2], Sec. 1, but
only in the “regular” variable z3. In the rest of the section we shall denote by
the regularization step a (the a-regularization step) the proof of the fact u €
ﬂ giTormere 1+OI(Q), a > 1. From (20) of [2] we know that for a regulariza-

loc

Llon step « € (I, %) the use of the fractional derivative norm of an order less than 1
for g(u), g(T) is sufficient. For such a we can avoid the estimation like (16) of [2]
and the proof of

--—s 2—¢ 2—-5,——5 1_€y%_ 2—¢
(14) we [ HE® @ N[ Ho 7°75S)
e>0 e>0

5
22
Lemma 1 of [1]) such norms for 3%}9(“)' Using the Holder inequality like in (16) of

[2] and (14), we obtain from the imbedding theorem (Prop. 2 of [2])

is practically straightforward. For the same reason for a € (2, %) we need (using

2 1 11 1 13 + 5a
(15) <1+3+2+a) (5 2p)+2+ <I=r<m—
! 1+2+——1— + < <l:>a'<§+7a

2p 3 2+4a 24+a 6 6

and put a = 0. Thus we make the regularization step for « < 2+ 4d’, a’ = ‘%.
Having performed the regularization step o = %+7} corresponding to (11) we have
proved

(16) u€ () Col0, T; HEZo37m317e ()
>0

due to (12) and (13). All components of the corresponding stress tensor are in the
same space. Using Prop. 2 of [2] we have proved the following theorem.

Theorem 2. Let Q be a bounded domain in R3, let g(T) satisfy (11) and let all
the other suppositions concerning 00, g, v, T stated at the beginning of the section
be satisfied. Then the corresponding stress tensor belongs to Co(Q;R®).

Remark 1. In general, to obtain g(7') in the required space in (11) for a non-
linear g it is sufficient e.g. T € () HZ~3~%+1(S) or T of the class Cu,, along

the variable z3. €>0
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2. In general, if g(T) € (| Hi"9®~9227¢(S) a, € (0,%), then we need ay >
€>0

31(%;—::-:7 to prove the assertion of Theorem 2. (The proof of such an assertion re-
quires, naturally, the use of a longer regularization procedure with respect to the
regular space variable—the third or even fourth derivatives of the composed func-
tion emerging from the nonlinear boundary terins must be estimated. To do it, a
suitably more regular g is needed.)

3. Of course, the method of this section can be combined with the results valid
for nonsmoothnesses of the boundary of the type of edges and for supports, at least
if these edges or the boundary of the contact part of 9Q are sufficiently smooth. As
the calculation is quite cumbersome we avoid the details.

4. With the help of the procedures of this section we can prove for T €

N H%“‘v"(S), a € (0, %) that u and all components of the corresponding stress
>0

tensor belong to () Co(0,7T; H%*'%"_‘(Q)), which for dimQ = 2 improves quantita-
e>0
tively the result of Thms.4 and 5 of [1] (and yields the (% +  —¢)-Holder continuity

of the components of the stress tensor in the space variables for each ¢ € (0, é)ﬁ—their
(5 —¢€)-Holder continuity follows from (12)). The result for the case of the coefficient
f independent of u is a straightforward consequence of the above mentioned proce-
dures. If # depends on u in the way supposed in Thms. 4 and 5 of [1], the proof of
the better time regularity of u done in Sec. 1 remains practically without changes:

the additional term

—1-2aq ) 6“ 6u_, au
[ [ e - s g (%55 - 5

Ou_ Ouy 2
< |- 1-2aq ou-s _ edtds
<M -/"ZVI /ﬂ( T 81) dadtd

2 un 2
+ | sup & 1"/ 1'1'2““/(11 —uw)?( =) dzdtde
(sup ) ot | 1l [ (5)

(0,B)

)dzdtd/

(with g = « in (6), (7) and 7, sufficiently small) will be further estimated in such
a way that we use the Hélder continuity of u in time whose exponent is a; — 1 — ¢,
where « is the fractional derivative (in the Sobolev sense) of Vu whose existence
was proved, and ¢ > 0 is arbitrarily small. E.g. for « = 0 the relation Vu €
n H57¢(0,T; L(Q2;R?)) immediately implies that @ € N H275(0,T; Ly()).

e>0 e>0
Now the proof of the time regularity as in (12) works in the same way as above

and the end of the proof is the same as for # independent of u.

5. The above mentioned results promise regular stresses also for the case when the
heating regime is a sufficiently regular distribution. The study of such a situation
is a little bit beyond the framework of our research and for our nonlinear model

282



requires a different approach. It does not seem, however, that such a regularity can
be obtained if T is of the Dirac type.

3. A COUPLED VISCOELASTIC CASE WITH NONLINEAR BOUNDARY VALUE
CONDITION IN THE HEAT EQUATION

In this section we shall study the regularity of stresses for a coupled model sup-
posing again the noncontinuity of the heating regime. The model employed is not
much realistic from the physical point of view. Its treatment and the results derived,
being close to the quasi-coupled case, indicate the arising difficulties when more re-
alistic models are to be treated. For the sake of simplicity we restrict ourselves to a

bounded domain 2 in R? with a C3-smooth boundary. Our system is

(17) . L
Bou = Au+ 6o divo
v=(1=20)00v+ (1 —20)Av+ Vdivy — (2+ 20)yVu
Ou

5 = 910 —9(v)

} onQ=(0,7)xQ,

(1- 20‘1)5@- + (1 —20) (gii + ((v, V,-v),-)) + 2ovdive = (2 + 20)yuv
v ov
on S=(0,7) x 0Q,
u(0,-) =0, 9(0,) =0, »(0,")=0 on Q.

We suppose o, 01, 7, 6o, E to be positive constants and we preserve the suppositions
concerning g from Theorem 1. Moreover we suppose that g is bounded from below
and its growth at infinity is polynomially bounded.

In the model we must include the term %&T(%; + g—:{-) into the stress tensor,
whose boundedness and continuity is the goal of our investigation (cf. (3)). Therefore

we should prove the boundedness and continuity both of Vv and of V.

Taking the usual variational formulation of (17) for a test function w = [wg, w] =
[wo, [wl, w?]]: @ — R3, we obtain with the help of the Green formula

(18) /Houwg + (Vu, Vwg) + (1 = 201)(Vo, V) + (1 = 20)(Vv, Vwy)
Q

+ dive divw; + vwdzdt +/y(u)wo dadt
s

= /(‘2 + 20)yu divw; — 8 div vwodadt + /g(T)wgdxdt.
S
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Putting wp = u, w; = ¥ into (18) we immediately obtain the energy estimate

(19) IVollZ,(qme) + 19113 . 0. 7L cmay) + IVolll o, 7.L.00me)

+lull 0.7 Loy + 1Vl (a.m2) < const

applying the Gronwall lemma as usual. From (19) we prove the existence and unique-
ness of the solution of (18) via the usual Galerkin method and Gronwall-lemma type
argument.

Now we employ the time-shift method for extended u,v as in [1], Sec. 3 (u,v =0
on ((—o00,0) U (47,400)) x Q, f = f(T,-) on (7,2T) x Q for f = u,v etc.). For
T € Ly(0,T; H¥(8Q)) N () H3~<(0,T; Ly(89)), @ > 0 we can prove in the same

e>0

way

(20) 1V9l 1o (0.7:22(0m0)) + IVl 0,7, L, w2y < const,
ay € (0, §) arbitrary.

We put, moreover, w; = 0, wo = u. Then for every t; € (0,7) we obtain the
inequality

(21) / Bouldzdt + %/IVu(z,to)lzdz =- / g(u)u dzdt + /g(T)tl dzdt
t aQ

Q1o St Sty

+ / 8o divou dxdt,
Qg
where Qq, = (0,t0) x Q, S;, = (0,t0) x 0.

With the additional supposition that g(y) > ¢ for a constant ¢ < 0 and every y €
R!, the first integral on the right hand side of (21) can be estimated by —&(mesdS2 +
[l Loo(0,7;L2(02))), for the third integral we use the obvious Schwartz inequality with

a sufficiently small > 0 at [ w?dzdt. The second integral on the right hand side of
Q(g

. . \ .
(21) will be estimated by fl_o”g(T)”H%"(o,T;LQ(ﬂ)) + ""“u“H’%*'(o,T;L,(m)

arbitrarily small 7o > 0. Using the extension method for u onto R® and the Holder
inequality

with an

(22) / |71 €] *< afPdédt < e / (|7 + |71~ [e ) af>dé e

R3. R?
which holds with a suitable constant ¢; > 0 and for 8; arbitrarily close to % fore >0
arbitrarily small, we estimate ||ﬂ|]H_%+,(0’T;L2m)) by c2(||Vullgreio, 7. Lor2)) +
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”a”Lz(Q)) for a constant ¢z > 0. (The reason of this formal procedure is the same as
in Sec. 1—cf. (4) and what follows.) Thus we prove % € L2(Q) without an a priori
knowledge of u € Lo (Q).

Putting wy = 0, w; = ¢ and using the integration by parts in the time variable for
the term [wudiv ¥ dzdt, we can easily see that ¥ € L»(Q,R?). Using the monotonic-

Q
ity of g, it is not difficult to prove by the method of local coordinates,athe straight-
ening of the boundary and the shift method that u € LQ(O,T;H1’7+°(Q)),1) €

loc
Ly(0, T; H22 (@ R?)) for T € L2(0,7; H*(Q)) and a € (0,1). The first
variable in the anisotropic spaces employed is supposed to be normal, the second
the tangential one. This result together with the up-to-now proved time regular-
ity of u and the fact that div o € L2(Q) yields u € () H27¢(0,7; H3¢(8R)) N
e>0

N L2(0, T; H'~¢(8)), which can be imbedded in L,(S) for every p € (1, +00) (we
>0

use e.g. Theorem 1 of [1]). Thus for g with polynomially bounded growth at infinity

we can prove g(u) € L2(S). The interpolation technique employed just in [1] (the
proof of Prop. 4) gives u € L3(0,7; H%(Q)). Like in Prop. 5 of [1] we can now prove
Vu € H3t1(0, T; Ly(;R?)) with some n > 0 and like in Theorem 4 of [1] (com-
bined with Prop. 2 of [2]) we conclude that u € H 37 (0,7; H'+"2(Q)) with n; > 0,
72 > 0 and therefore u € Co(Q). Then we can apply the described technique again.

We prove in fact u € Ly(0, 7; H3*%(Q)), and Vu € Hives ~¢(0,T; L2(Q2; R?))
>0
for an arbitrary a € (0, %) in the same way as in [1], Sec. 3.

Like in [1], Sec. 2 we are now able to prove that le}% + CZ% € L2 10c(Q) for
some functions C;, Co dependent on the space variable only and bounded below by
a positive constant, because all the other terms of the transformed Lamé system
belong to that space as well. Here and in the rest of the section we employ the
notation z, for the normal space variable, z; for the tangential one and the index
loc has the same sense as in the preceding sections. Denoting by €, the intersection
of a certain neighbourhood of the straightened part of 9Q with Q, we have proved

T 2 2 2
0%v 0% 0%v 1
(23) C>/0 a, Cfé‘E“'C%mdl)dt"‘/ﬂn Cl(.‘t)Cz(I)m(l‘, T)dl‘, CER s

and thus v,v € () L2(0, T; H,";'f"‘(Q)). Now we differentiate the Lamé system of
e>0
(17) in the time variable and put w; = v. Thus we obtain, using the Korn inequality,
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that for some constants k, k1 > 0,0 < ¢ < -k&.

(24) sup /(i}(x,t))2d3 + k/ |Vi|*dzdt < (24 20')7/1'4div v dzdt
te(0,T)
Q Q Q

carion [

Q

and therefore Vi € La(Q;R*). Together with the preceding results, we have proved
that the “right hand side” divv of the heat equation in (17) belongs to H(Q).

Hence like in the preceding sections we can prove u € [ Hi~92-¢(Q), Vu €
e>0

N Hi"51=¢(Q;R?),u € ﬂ H%~3-¢(Q)—the space regularity of % is a conse-
e>0

quence of the relations i € n H%¢(0,T; L3(Q)), Vu € ﬂ H%=¢(0, T; L2(2;R?))

and can be proved in the usual way via the Fourier transformatlon and the Holder
inequality. The relation Vi € () Hi-e4- ¢(Q;R?) can be proved via the shift tech-

u? + € k1| V)|?dzdt

™ | -

nique in time and in the tang:ntlal space variable used to the time-differentiated
Lamé system, whereas for the normal space variable we use the interpolation tech-
nique together with the up-to-now proved results for V.

Extending all components of V4 onto R? as usual, the shift method yields that they

belong to n Ly(0,T; H22¢(Q)) while ;;}, 325 belong to n L2(0,T; Ly(0, ny;
H"‘(V,,l))) for every set (0,m1) x V,, C Q, such that {0} x V,,l C Q, NN, V,, is
an open interval in R!. Usmg the Lamé system and the supposed smoothness of 992,
we prove the same fact for . Thus for ¥;; = g—;”% (in its extension), i,j = 1, 2, &g,
&: the dual variables to z,,, :c,, respectively, we have proved

(25) /l'j’ijlz(l + 7137+ [EaP1*0 + ITIPIE1 7+ J6|* ™) déndéedr < +oo,

RS
i,j=1,2, €€ (0, %) arbitrary.

From (25) it is not difficult to find indices a1, a3, a3 all greater than 1 such that
@) [P+ (1) + 6l + 60%) dendeidr < oo,
.3
and using Thm. 1 of [1] we prove ¥;; € Co(R?), i,j = 1, 2. Thus we have proved
Theorem 3. Under the above mentioned suppositions concerning 2, 2, g, T

and all the constants, the unique solution of (17) yields all the components of the
stress tensor bounded and continuous on Q.

Remark 1. The quantitative results declared in Remark 4 of the preceding
section can be proved for this model, too.
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2. We fixed the temperature in the “coupling term” in the heat equation of (17)
as the constant §; and we have not supposed the heat equation to contain the term
corresponding to the viscosity in the Lamé system. A problem including the terms
which we have not considered is studied e.g. in [7]. It is not possible to put wo = u
into the variational inequality to the heat equation and it is not known how to solve
such a problem for dimQ > 1. If we avoided the viscosity term in Lamé system,
we would face some analogous difficulties with the energy estimations, because for
wo = u we were not able to estimate the boundary term arising after the use of the
Green formula in the heat equation. With wo = 1 (cf. [7]) it seems to be hardly
possible to obtain a sufficient energy estimate to start the proof of the regularity.
Therefore it could be more promising to employ a class of coupled models including
suitable nonlinearities helping in the energy estimations. A certain type of such
models is studied in [4], [6].

CONCLUSION

The results, the theorems in this part of the series of papers were formulated
for the heat equation and the Lamé system with constant coefficients. In fact, this
is only a technical supposition simplifying estimations and could be avoided. The
assertion holds also for the preceding parts with the exception of Sec. 4 of [1] and
Sec. 2 of [2]. The methods of proofs admit also some nonzero right hand sides in the
systemn and nonzero initial conditions, if these input data satisfy some compatibility
conditions.

The author hopes that the model investigated in the first two parts and in Secs.1
and 2 of this part of the series of papers neglecting the coupling and acceleration
terms should be satisfactory for the technical practice of heating regimes in furnaces
at least in the cases, where no phase transition needs to be considered and that the
series gives a comprehensive answer to the question when the thermoelastic system
is a sufficient description of real processes in furnaces from the point of view of the
stresses.
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Souhrn

REGULARITA RESEN{ TERMOELASTICKEHO SYSTEMU
S NESPOJITYMI REZIMY OHREVU. CAST III

Jiti JARUSEK

V této ¢&isti zeslabujeme postacujici podminky pro omezenost a spojitost napéti pro
trojrozmérnou ilohu a zkoumame jisty “zkuplovany” systém.
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