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Summary. The technique for accelerating the convergence of the algebraic multigrid
method is proposed.
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INTRODUCTION

The rate of convergence of the algebraic multigrid method is strongly dependent
on the choice of the so-called transfer operators. Necessary condition for achieving
high rate of convergence is that the prolongation operator p contains in its range
only vectors z for which Az &~ 0. Such vectors are called smooth. The algorithm
described in this paper is based on: we will use any prolongation operator p and
non smooth vectors from its range will be suppressed by left multiplication by the
iteration operator of Jacobi method. The basic form of transfer operators can be
obtained by using the so-called unknowns aggregation (see [1}, [3]). The convergence
analysis is carried out only for the case of a symmetric and positive definite matrix,
but the algorithm can be used in the non-symmetric case as well.
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1. NOTATION

Let us consider finite dimensional real spaces H!, H2, where n = dim(H!), m =
dim(H?), m < n. Let the space H' be equipped with an inner product (-,-); and
the associated norm || - ||; = (-, ).%, i = 1,2. In most applications H*, i = 1,2 will be
Euclidean spaces.

We are interested in numerical solution # € H! of the problem

(1.1) Au=f

where f € H',u € H! and A: H! — H! is alinear, symmetric and positive operator.
The problem (1.1) has a unique solution for any f € H.

Let p: H2 — H! be a linear injective operator called a prolongation. Adjoint
operators relative to the inner products (-,-),, (-, ), will be denoted by *.

Let us define the restriction operator r: H! — H? by

(1.2) r=p°,
i.e.
(1.3) (z,py), = (rz,y), foranyze€ HYye H?

For the technical details of the construction of r, p see [3].
Let us set

(1.4) 2A = rAp.

It is easy to see that 24 is a linear, symmetric and positive operator. Hence we can
define other inner products

(1.5) () =(A ),
(1.6) (2)2=(4),
and the associated norms by

(L.7) L= GOF,
(1.8) | =94
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2. STANDARD TWO-LEVEL ALGORITHM

Let
(21 ¢(): H' = H'
be an iterative method for the solution of (1.1) satisfying the condition
(2.2) p(a) = 4.

For any integer v > 0 we define
(23) () = o(e" V()
and for v = 0 we set
(24) pO() = I.

where I' is the identity operator on H!.
Further, we will suppose that ¢(z) can be written in the form

(2.5) o(z) = Mz + N,

where M, N: H! — H! are linear operators and the condition
(2.6) I'=NA+M

is valid. Let us note that (2.6) implies (2.2).

Let v € H' be an arbitrary vector, v; > 0,2 < 0 given integers. One iteration
(u* — u't?) of the standard two-level algorithm is defined as follows:

(2.7a) i:=p(d'), aeH,
(2.7b) v? = CA) r(di - f), v'e H?
(2.7¢) i:=u—pv?, deH,

(2.7d) u'tl = o(q), uitle H.
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3. CONVERGENCE OF THE ALGORITHM (2.7)

Let £ € H!. Let us define the error of z by

(3.1) e(z)=z—1

and the defect of z by

(3.2) d(z) = Az - f.
Let us note that

(3.3) d(z) = Ae(z).

Lemma 3.1. Let v, =0,
(3.4) T = Ker(rA), S =Im(p).

Then the following error estimate is valid:
i+1 Mv2
sl O 177 Y
le(v)l: " zervip Mzh
Proof. It is easy to see that S, T are A-orthogonal subspaces of H!, i.e. the
equality
(3.6) T=8'={zeH': (z,y)) =0 for any y € S}

(3.5)

holds. Therefore for any z € H! there exist unique two vectors zs € S, z7 € T such
- that

3.7 z=z5+z7.

According to (2.7), (3.1) - (3.3) we have

(3.8) e(u) = [I' — p(rAp)~'rAle(u’)

and '

(3.9) e(u't!) = MV 2¢(i).

Since rAzp = 0 and zs = pw for some w € H?, we have

(3.10) [I' = p(rAp)~'rA)z = [I' — p(rAp)~'rA](zs + zT) = zT.
Of course, flzrfli < lzli. Hence we may write

(3.11) e(@) €T,

3.12) Re(@ i < Be(u)ls- .

(3.5) follows from (3.9), (3.11) and (3.12). 0O
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4. MODIFICATION
Let us consider the iterative method (2.1) in the form
(4.1) p(z) = (I' —wD ' A)z +wD™'f, we(0,1), z€ H'
where d denotes the diagonal part of A. Therefore we have

(4.2) M=1I"-wDA,
(4.3) N =wD".

In the sequel we will suppose that
(4.4) Ker(M) = {0}.
Let us define a new prolongation p by
(4.5) p= Mp.
Since p is injective and Ker(M) = 0, p is injective as well. Let us set
(4.6) F=p".
Further, we will consider the algorithm (2.7) with operators 7, p instead of r, p and
with a matrix 24 = #Ap instead of 24 defined by (1.4).
Let
(4.8) T = Ker(74), S =Im(p).
Lemma 4.1. The equality
(4.9) M*A =AM

1s valid.

Proof. According to (4.1) we have

M*A=(I' —wD ' A A= (I' —wAD " )A = A(I' —wD™'A) = AM.
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Lemma 4.2. The equality

(4.10) FA=rAM
holds.
Proof. The proof follows immediately from Lemma 4.1. 0

Lemma 4.3.

(4.11) e(i) e T,
(4.12) Me() € T.

Proof. The relation (4.11) follows immediately from (3.4), (3.11) and (4.8).
We have

7Ae(it) = 0.
According to Lemma 4.2 we obtain
(4.13) rAMe(i) = 0,
which is nothing but (4.12). O

Lemma 4.4. The inequality

holds for all z € H!.

Proof.
IMz)? = (AMz,Mz), = (M*AMz,z), .

Due to Lemma 4.1 we have

(M*AMz,z), = <AM2::,1:>1 = (M%z,z), < |M2z| l=h:-

Lemma 4.5. The following inequalities hold:

(4.15) sup Mg su lell,
zeT\{0} B B zer\{0} Nzl
2
2
(4.16) sup —I—M—z!ls sup IMz], .
zeT\{0} 'z'l z€T\{0} Izll
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Proof. ad (4.15): Since Ker(M) = {0}, every z € T can be written in the form
(4.17) z=My

for some y € T' (see Lemma 4.2, Lemma 4.3). Therefore we can write

M M?
IMzb __ IM

4.18 sup = .
( ) zeT\{0} =l vef\{0} Myl

According to Lemma 4.4 we get

IM2.'/I1 S Myl

4.19 >
(4.19) IMyll: vl

for any y € 7\{0}.
Combining (4.18), (4.19) we obtain (4.15).

M2
ad (4.16): We write l—l—:i in the form
Zi
) L LT I}
' (EI D Mzl Bzl
However,

IMal, _ IM7sl,
ERNT7E?

(see Lemma 4.4)

and therefore

2
(4.21) M=l ('Alzz")
Bzl \ IMzl,
(4.16) follows immediately from (4.21). O

Theorem 1. Let ¢(-) be given by (4.1), v1 = vo = 2. Then the following error
estimate holds for the algtorithm (2.7) with operators +, p, ?A instead of r, p, 2A.

. 4
t+1
(4.22) Ms sup Mzl .
e(u)l zeT\{0} Nzl

Proof. Let us set
(4.23) Q =1I'— p(+Ap)~'FA.
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For every € H! there exist unique two vectors zg, 7 such that
(4.24) r=1z;+ g,

where x4 € T, T € S. We know that

(4.25) Qz = z4.
Hence
(4.26) Qr = A%z = T

It is easy to see that

(427) e(u"+1) — M2QM2C(ui) - M2Q2M2e(ui)
and
(4.28) e(u*)l < sup IM7Qa, sup oMzl

ser\oy  Nzh  zewn\toy Mzl

Since ||zfl; > lz;ll: and Qz € T we have

20 2
(4.29) sup IM7Qz1, < 1M 1"1.
sennioy B2l 7 Lenioy Heh

From (4.16), (4.29) we obtain immediately

. 2
2
(4.30) sup M < ( sup IIM'TI'I) .

sea\{o) lzh ser\{o} Nzl

Now we want to show that

Ao 2
(4.31) sup oM z]s < ( sup —'lel) .

cea\{oy Nzl sem\{o} lzll

We have
(4.32) QM?%z = Mz — p(7 Ap)~'FAM?z.

Since p(FAp)~'FAM?z € S = Im(p) and QM?z € T', we have

He(u')lls-

IQM2z||? = (M2x — p(7AP)~'#FAM?z, M*z — p(7Ap)~'FAM x),

= (M?z — p(+Ap)~'FAM 2z, M%z),
= (A[M’z — p(7Ap)~'FAM>z], M’z),
= ((M*)’A[M*z — p(+Ap)~'FAM*z),z), .
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According to Lemma 4.1 we obtain
((M*A[M?z — p(FAP) " FAM x), z), = (AM?[M’z — p(+ Ap)™'+AM*z], z),
- <AM2QM213,:£>1 = (M2QM?z,z),
< IM2QM3z|; - =,

M2z N
< sp B por e,
NG
Therefore
) M2
(4.33) 1OM%] < sp B2l gy

-erv(oy Mzl

(4.31) follows from (4.33) and (4.16). Using (4.28), (4.30) and (4.31) we get (4.22).

a

Lemma 4.6. Let us suppose D > 0 and let us set
(4.34) I-lip = (D),
Let C; < 0 be such that for each z € T there exists w € H? for which
(4.35) Izl > Cillz — pwllp.
Further let C3 > 0 be a constant satisfying
(4.36) §D~' Azl < Cl| D™ Azl
and C2w < 2. Then
(4.37) . L C2(2 - Cw).

zet\(0) Bel}
Proof. For the proof see [3], Lemma 7.4. (m]

Theorem 2. Let us suppose that all assumptions of Theorem | and Lemma 4.6
hold. Then the following error estimate is valid:

fe(u 2 212
4.38 T B -2 -wCd)
( ) Ie(u')ll [ 1 ( 2)]
Proof. The proof follows immediately fromn Theorem | and Lemma 4.6. O
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Souhrn

ZRYCHLEN{ KONVERGENCE DVOJUROVNOVEHO ALGORITMU
POMOCI ZHLAZEN[ OPERATORU PRECHODU

PETR VANEK
V ¢lanku je navriena technika pro zrychleni konvergence algebraického multigridu.
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