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Summary. We present algorithms for the determination of polynomials orthogonal with
respect to a positive weight function multiplied by a polynomial with simple roots inside
the interval of integration. We apply these algorithms to search for and calculate all pos-
sible sequences of imbedded quadratures of maximal polynomial order of precision for the
generalized Laguerre and Hermite weight functions.
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1. INTRODUCTION

In adaptive quadrature algorithms and elsewhere it is often desirable to use se-
quences of quadrature formulae {Q1(f), @2(f), ...} which are such that the knots of
Q:(f) are a subset of the knots of Q;4+1(f), 1 =1, 2, .... These sequences of imbedded
quadratures are usually required to have high polynomial order of precision.

We are thus concerned with sequences {Q;(f)}i-; of interpolatory quadrature
formulae which are such that @, (f) has knots {vﬁl)}f‘=1 and exact polynomial order

of precision 2k;, Q2(f) has knots {v](-l)}fél U {vgz)};-“:l and polynomial order of

precision at least 2k,+k; and in general Q,(f) has knots |J {v}‘)}fj__l and polynomial
i=1

order of precision at least k, + i k;. Consequently Q;41(f) is determined from Q;(f)

i=1
as a Gauss quadrature with prescribed knots.
More precisely, let w(t) be a real valued weight function on some (finite, semi-
infinite or infinite) real interval (a,b) such that

b
(1.1) I(f) = / F(t)w(t) dt
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exists for any polynomial f(t). The quadrature formula

n nj; m M,

(1.2) Q(f) ::chjz’f(i_l)(l'j)"‘ZZDjif(i—l)(vj)

j=1i=1 j=11i=1

using fixed (prescribed) distinct knots vy, v, ..., vy, of multiplicities m1, my, ..
My, is said to be Gaussian if the weights (Cj; and Dj;) and the free (Gauss) knots z;,
zg, ..., T,, of multiplicities ny, na, ..., n, are chosen so that I(f) = Q(f) whenever
f is a polynomial of degree N + n — 1 or less. Here

(1.3) N = an+ij
j=1 j=1

is the number of weights in the quadrature.
Determination of the weights in (1.2) amounts to solving a system of linear alge-
braic equations while simple Gauss knots are characterized as the zeros of a poly-

m
nomial orthogonal with respect to the weight function w(t) [] (t — v;)™/. In fact, in

this paper we restrict our attention to the case of simple prescribed and Gauss knots
v; and z; i.e. nj = m; = 1 (see [2] and the references there for more on quadratures
of the type (1.2) without these restrictions).

When simple knots are prescribed inside the interval of integration the existence
and the properties of the required quadratures depend on polynomials orthogonal
with respect to a weight function which changes sign inside the interval. For some
degrees such polynomials may not exist or may have seros which are multiple, outside
(a, b) or even complex. Consequently the resulting qua(i'raﬁhres may not exist or may
have knots and weights which render them useless. '

In [5] Kronrod computed, for the case of the constant weight function, quadratures
using 2n + 1 simple knots of which n are the zerps of the nth degree Legendre
polynomial and the other n + 1 are Gaussian (n < 40). Patterson [7] later extended
these quadratures by adding free knots to quadratures which have the Kronrod knots
prescribed. In both [7] and [5] the quadratures were computed by determining the
required polynomials from the moments of the weight function and then solving for
their roots. Patterson improved Kronrod’s method of determining the polynomials
by expressing them as linear combinations of Legendre polynomials. Piessens and
Branders [8] used Chebyshev rather than Legendre polynomials to further stabilize
the process. In [3] Kahaner et al investigate, by similar methods, the existence of
extended Gauss-Laguerre-Kronrod Quadratures with up to 10 prescribed knots and
up to 18 added knots.

One can avoid dealing directly with polynomials by seeking their zeros as the
eigenvalues of certain matrices. In [2] Golub and Kautsky show how to compute
Gauss Quadratures of the type (1.2) for which the polynomials in question are or-

* thogonal with respect to a non-negative weight function. They use the (symmetric

82



tridiagonal) Jacobi matrix the elements of which are the coefficients in the three-term
recurrence satisfied by the orthogonal polynomials. The eigenvalues of the princi-
pal submatrices of this matrix are the roots of the polynomials and so they are the
knots of the Gaussian quadratures. In [4] we extended the results of [2] to the case
where simple prescribed knots in (a, b) cause the weight function to change sign in-
side the interval of integration. We generalized the concept of Jacobi matrices for
non-negative weight functions—when orthogonal polynomials of all degrees exist—to
the case where only certain degree polynomials are orthogonal with respect to the
required weight function. To replace the Jacobi matrix we introduced there a pair of
matrices—the recurrence matrix of the polynomials and the Gram matrix measuring
their orthogonality—which we called the Jacobi pair. We also showed the relation
between Jacobi pairs for two weight functions related by a linear factor. This led
to a numerical method for the calculation of one Jacobi pair from another. In [1]
we showed how, given a Jacobi pair for the weight function w(t), it is possible to
efficiently compute the Jacobi pair for »(t)w(t), r an arbitrary polynomial. Some
simple examples of Kronrod-Patterson quadratures were computed to demonstrate
the viability of the method.

In this paper we present sequences of quadratures computed by the above tech-
niques. The sequences we are seeking generalize those of Kronrod and Patterson
in two ways. Firstly, we have used the Laguerre and Hermite weight functions and
can, in general, use any non-negative weight function w for which we know the
Jacobi matrix and po := [w(t)dt, the zero-th moment of w. Secondly, we have
sought (within the limits of usefulness) all sequences possible and not only those

with kit1 = 1+ Y k;. We have thus sought quadrature {rees which we discuss in
j=1
more detail in §2.
In §3-5 we review the methods and establish some results which lead to the com-
putational procedure given in §6. The tables of results are described and discussed

in §7.

2. QUADRATURE TREES

We seek to describe all possible sequences of imbedded Gauss quadratures, for
the weight function w, which start with k; Gauss knots. Each sequence is a path
in a quadrature tree in which a node of depth i represents a quadrature @; and all
branches from this node represent possible sequences of which Q; is a non-terminating
member.

A sequence can be considered to terminate for any of several reasons. We have
already mentioned that for some choices of k;4; there may exist no orthogonal poly-
nomial of appropriate degree and hence no quadrature of the type we seek. If the
orthogonal polynomial exists but has complex zeros then the branch will terminate.
Of somewhat more interest is the case where some Q:(f) has knots which are real
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but lie outside the interval of integration or has negative weights. In some situa-
tions quadrature sequences of this type may be useful if only some of the ); in the
sequence have these undesirable properties.

More precisely, a branch may terminate for the following reasons:

(a) no orthogonal polynomial of the appropriate degree exists,

(b) the orthogonal polynomial has complex zeros,

(c) the orthogonal polynomial has all roots real but some are outside the interval
of integration,

(d) all zeros of the orthogonal polynomial are real and inside the interval of inte-
gration but some of the weights are negative,

(e) for practical reasons, whenever ki1 > max(3k;, N + k;/2).

Cases (a) and (b) clearly indicate the end of a sequence. In some applications
quadratures of the type (c), however, may be useable (ODEs). If the condition
described in case (d) occurs in only one quadrature in the sequence then the rest
of the sequence may still be useful. Generally, negative weights are a hazard from
the point of view of round-off accumulation but if the weights which are negative
are relatively small this may not be a problem. In §7, where we list the numerical
results, we present estimators which quantify the extent of this hazard.

For ki41 < k;+1 the branches terminate because condition (a) applies, as we show
later. Although we know of no theoretical upper bound on k;4+; we have included
condition (e) because an imbedded sequence with sharply increasing numbers of
knots has little advantage over a sequence of simple Gauss quadratures.

In the next four sections we establish some basic relations, briefly review the
method of [1] and describe some implementation details.

3. MODIFYING A JACOBI PAIR OF MATRICES

We deal only with functions of a real variable. Let k& > 0 be an integer and let
P = (p1,P2, ..., pk-1)T and pi be a set of polynomials such that p;(t) has exact
degree j. There exists a lower Hessenberg matrix K, with all elements on the super-
diagonal non-zero such that

(3.1) tp(t) = Kp(t) + erpi(t)Bs,

Br a non-zero constant. Here, as later, e, is the k-th column of an identity matrix
of appropriate dimension. We call K the recurrence matrix for these polynomials.
Since the polynomials are of exact degree they are linearly independent and so p(t)
cannot vanish for any ¢. Consequently any root v of pi(t) is an eigenvalue of K. We
will denote by M the symmetric Gram matrix

b
(3.2) M::/ ppT wdt.
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When the polynomials p;(t) are orthonormal with respect to w(t), M is an iden-
tity and K is the (symmetric) Jacobi matrix. We are interested in the case where
orthogonal polynomials of all orders may not exist so M may no longer be diagonal.
We say M is j-diagonal if M := [m,,] has m,; = mj, =0,r=1,2,..., j— 1. For
such an M we have that p;j_i(t) is orthogonal with respect to w and its roots are
eigenvalues of the (j — 1) x (j — 1) principal submatrix of K.

In [4] and [1] the following results are established.

Theorem 3.1. Let the exact degree polynomials po, pi, ..., pr have recurrence
matrix K and let the exact degree polynomials py, p1, ..., pr be such that
(3.3) p:=Lp, p=pr+cp,

where L is a unit lower triangular matrix and c is some vector. Then the recurrence
matrix K for pg, p1, ..., pr satisfies

(3.4) K = L7 'KL + exc” §;.
By (3.4) the matrix K — exc? B, which differs from K only in its last row, is

similar to K and has the property that, although all its eigenvalues are those of K,
the eigenvalues of its principal j x j submatrix (each j < k) are the zeros of p;(t).

Theorem 3.2. If, in addition to Theorem 3.1, w(t) := r(t)w(t) where r(t) is a
polynomial of degree m, we define M as in (3.2) and
R b
M = / ppTwdt,
then
(3.5) r(K)M = LML” + 7,

where
Z1€2:={Z|e]Z=0", j=1,2,....,k—m},

1.e. Zy is a matrix which vanishes but for its last m rows. Furthermore, if M and
r(K) are non-singular then

(3.6) K = ML"M~'r(K)"'KL + Z,

where Z», € Z.

In case we start with a Jacobi pair J, I which corresponds to orthonormal polyno-
mials then from (3.6) we can compute K from the simpler expression

(3.7) K = MLTr(3)"'JL + Zs,
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where again Z3 € Z.

We remark that the process for modifying a Jacobi pair described here can be
viewed as a generalization of the LR process with shifting for the eigenvalues of a
matrix. Indeed, for the pair J, I, the left hand side r(J) of (3.5) is the generalization
of the shift J — vI and the MLT is the R factor. The restoring shift in RL + vI
becomes the r(J)~'J factor between the generalized R and L factors on the right
hand side of (3.7). While the LR transformation is a similarity, here the Z matrices
cause the assignment of the new eigenvalues.

4. REVIEW OF THE METHOD

Theorem 3.1 gives in (3.4) the relation between recurrence matrices of any two
exact degree polynomial bases. For any K, M (representing the polynomial base
p and w) and the polynomial #(t) there are many pairs K, M (representing some
other base p and @ = rw). Theorem 3.2 gives a second relation, (3.5), which every
such pair must satisfy. Thus starting from a pair K, M if we can find any L and M
satisfying (3.5) we can use (3.4) or (3.6) to find K, which is uniquely determined by
this choice of L and M.

Since we are in search of Gaussian quadratures we want to be sure that as many
as possible of the polynomials in the base p to which we transform are orthogonal
with respect to the modified weight function, w. That means that we want to chose
an M which is j-diagonal for as many values of j as possible.

In [4], whenever M was not j-diagonal because it was not possible to find a poly-
nomial of degree j — 1 which was orthogonal to all polynomials of lower degree, the
j — 1 polynomial was chosen either to reduce the sum of squares of off-diagonal ele-
ments in M or for convenience. As an improvement we suggest in [1] a scheme which
1s motivated by the following argument.

If the transformation matrix L takes one set of polynomials orthonormal with
respect to a non-negative weight function into another also orthonormal with respect
to a non-negative weight function then both recurrence matrices will be tridiagonal
and both Gram matrices will be identities. If in addition the polynomial r is positive
on the interval of orthogonality then the left hand side of (3.5) is positive definite
and the factoring required in (3.5) can be chosen as a Choleski decomposition. When
the left hand side of (3.5) is indefinite but orthonormal polynomials of all degrees
exist then an LDL” type factoring with D diagonal but indefinite is possible. But
when not all degree orthogonal polynomials exist the Gram matrix M cannot be
diagonal. However, in view of the preceding discussion it seems natural to choose
a block LDL” type factoring in which the D matrix is block diagonal and the L
matrix is still unit lower triangular. Any correspondingly chosen polynomial, say of
degree s, which is not orthogonal to all polynomials of lower degree will nevertheless
be orthogonal to all polynomials of degree 0, 1, ..., ¢ < s where { is, in a sense,
maximized.
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In [1] we show that it is possible, given K,M and a polynomial r of degree m,
to incrementally build up all but the last m columns of a unit lower triangular
L and all but the bottom right m x m submatrix of the symmetric matrix M,
both satisfying (3.5), without computing the corresponding Z;. This is sufficient
to uniquely determine all but the last m rows of K. We therefore have a way of
transforming from one Jacobi pair to another. We form the left hand side of (3.5)
of dimension k := n + m and find only those parts of the factors L and M which
are needed in (3.6), or equivalently, to determine a K matrix of dimension n. We
discuss the details of this computation in §6 below.

Note that only the bottom right m x m square of Z; in (3.5) is in fact not known

because the first n—m columns of the last m rows of Z; are known from the symmetry
of LMLT.

5. FACTORING A SYMMETRIC INDEFINITE MATRIX

We are concerned here with factoring the symmetric matrix A := r(KYM - Z, =
LMLT. We construct it in the form

(5.1) A =LDL”

where L is block lower triangular and D is diagonal. In fact since L = LQ with L
lower triangular and Q block diagonal we get (3.5) with M = QDQ”.

Since the polynomial r(t) may change sign at the eigenvalues of K then the matrix
being factored may be indefinite and may have vanishing leading principal minors.
However the factoring in (3.5) is such that no pivoting may be used and the matrix
L must be lower triangular. In [1] we prove the following.

Theorem 5.1. Let A; denote the order i leading principal submatrix of A, i = 1,
2,..,k,andlet0 =so <s3 <...<sy=kbesuchthat A,,,j=1,2,...,u—1are
non-singular. Then there exists a unique decomposition (5.1) with diagonal blocks
in L of orders sj—sj-1,J=1,2,..., u

The following algorithm factors a matrix A, such as in Theorem 5.1 above, into
the form (5.1) with the special choice D := E := diag(:tl,ﬁ:l, ..., x1). The matrix
L, produced during the factoring, overwrites the block lower triangle of A.

Define the sets of integers p; := {si + 1,s: +2,...,8i41} and ¢; := {si41,8i41 +
1,si41+2,...,k}. We denote by A,y the matrix block consisting of the rows with
the indecies in the set & and columns with indecies in the set y.

Algorithm 1:

(a) To start, set L = O, E = O, both k x k,
(b) fori =0,1,2,...,u—1, factor Ap, p, = Q:D?E;Q7, Qi orthogonal, D; diagonal,
E; := diag(+1,£1,...,£1) all of dimension (si4+1 — i) X (si31 — i),
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(c) set Ly, p, = Qi|Dil,
(d) set Ep,,p. = E,’,
(e) set Y = Ay p.QilDi 7Y
(f) set Ly, p, = YE;,
(8) set Ag, g, = Ag, g, — Lq',p.EiL;r.-,p.- R
At termination we have all the rows of columns 1 to s4,_1 of L and E.
This decomposition will have been determined without computing the symmetric
eigen-decomposition of a block which includes the unknown Z; as long as s,—; <
k—m.

6. THE PRACTICAL PROCEDURE

Suppose we wish to compute a quadrature (1.2) approximating (1.1) where the
n+ m order Jacobi pair J, I for w(t) is known. We will consider only the case where
the prescribed and Gauss knots are all simple; the generalization to multiple knots
analogous to that decribed in [2] is possible. We define the r(t) of Theorem 3.2 as

m

r(t) := H(t - v;).

i=1

Algorithm 2:
Given J, r(t), n and m,
(a) factor J = PAPT P orthogonal, A := diag(A1, Az, ..., Angm),
(b) if r(A) is singular increase n by 1 and go to step (a),
(c) form r(3) = Pr(A)PT,
(d) use the singular value decomposition to determine sj, sa, ..., s, as in Theorem
5.1 with s, < n,
(e) factor A :=r(J) —Z; = LELT by Algorithm 1,
(f) form K := ELPr(A)~'APTL,
(g) compute the eigenvalues of each principal submatrix of K of dimension 55,
i=12,...,u-1.

In step (f) of Algorithm 2, rather than producing K, we form a matrix K which is
block diagonally similar to it and thus each of its principal submatrices of order s;,
j=1,2,...,u— 1 has the same eigenvalues as the corresponding submatrix of K.

Each such set of eigenvalues is the set of knots for a Gaussian quadrature with the
roots of 7(t) as prescribed knots.

We must observe that it may not be possible to determine the numbers s;, in step
(d) of Algorithm 2, numerically. However, we can sometimes know a priert, from the
symmetry of a quadrature or from the fact that a quadrature formula has exact
polynomial order of precision higher than the minimum possible, that an orthogonal
polynomial of the required degree exists. The next Theorem is relevant here.
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Theorem 6.1. Let w(t) > 0 and the polynomial r(t), of degree m, be such that
for some s, 1 < s < m,

b 0 forj=0,1,2,...,s—1,
(6.1) / Yr(t)w(t)dt = i
a #0 forj=s.
Let J be the Jacobi matrix for the polynomials, po(t), pi(t), p2(t), ..., pk(t) or-

thonormal on (a,b) with respect to w(t), k > s + m. Then
(6.2) elr(J)ej =0 Vi+j<s+1,

and so the first s principal submatrices of r(J) are singular. If in addition w(t) is
symmetric on (a,b) and r(t) is anti-symmetric and of odd degree then using the
notation of Theorem 5.1 with A := r(J) we have

(a) m + s is always even and,

(b) m + s; is always odd.

Proof. Relation (3.1) for this case is
tp(t) = Ip(t) + Bepr(t)e.
Induction on m shows that
(6.3) r(t)p(t) = r(I)p(t) + zm

where z,, is a degree k + m — 1 polynomial vector with eJsz =0,V <k—m.
Multiplication of (6.3) on the right by p7(t)w(t) and integration on (a,b) gives

b
(6.4) / p(OPT (O)r(t)w(t)dt = r(3) + Za,

where Z4 € Z, from which (6.2) follows immediately by (6.1). The singularity of the
principal submatrices is then obvious.

Now assume that the additional conditions of the theorem hold. Then if m + s is
odd the integrand in (6.1) is anti-symmetric when j = s and the integral vanishes.
This contradicts the assumption of the Theorem and so m + s must be even. To
show that m + s; is odd when m is odd we note that in general

=0 wheni+j+ misodd
#0 when i+ j+ miseven

e {
Thus for m odd 7(J) has a chequerboard pattern of zeros-starting with a zero in the
(1,1) position. Since any odd dimension matrix with this property is singular the
0

result follows.
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Suppose now that we have determined {Qi(f)}i=, and we want to know for which
values of k;41 there are quadratures Q;+1(f) with the required properties. Recall
(Turan [9]) that a necessary and sufficient condition for @Q;(f) to have exact poly-

1
nomial order of precision k; + > k; is that
=1

i ks
(6.5) r(t) == H H(t - v;'))

I=1j=1
be such that ,
/ tr)wt)dt =0, j=0,1,2,.. .k —1.
Thus we know from Theorem 6.1 that k;11 > k; and in Step (d) of Algorithm 2 we
know that s; > k;. This saves k; singula; value decompositions. Furthermore, for
the case where w(¢) is symmetric, m := Y k; is odd and r(t) is anti-symmetric we
=1

know that k;+1 must be even and all odd dimensioned principal submatrices of r(J)
are known to be singular.

7. NUMERICAL RESULTS

General description.

We present quadrature trees for the generalized Laguerre and Hermite weight
functions. These are characterized by

w(t) | Interval | Constraints| Name

t¥et | [0, 00] a > —1 |Laguerre

t|*e=t" | [~o0,00]| @ > —1 | Hermite

We have restricted the computation to the case & = 0 only because we are not
aware of other useful choices of «. We would welcome the opportunity to compute
quadrature trees for other values of a or other w(t) for which the Jacobi matrix and
so are known explicitly and which may be considered to be of special interest or
usefulness.

Estimators assessing the weights. We wish here to quantify the extent to
which the negative weights of a quadrature formula may adversely affect its useful-
ness. Let p be the sum of absolute values of all the weights. As the first measure we
use

o= p/po — 1.

90



Clearly, o1 = 0 indicates that all weights are non-negative and the further o is
from zero the more the quadrature formula may suffer from the accumulation of
round off errors when it is being evaluated.

This estimator is sufficient when all weights in the quadrature formula are of the
same order. However, quadratures with rapidly decaying weight functions, like the
Laguerre and Hermite, have very small weights at the outlying knots. In this case a
quadrature formula with small ¢; may still have relatively large weights at outlying
knots. To take account of this we use two further estimators: the first is

72 = max ||

where (; is the ratio between the weight of our quadrature and the weight of the
Gauss quadrature, for the same weight function and total number of knots, both at
the j—th knot ordered, say, in increasing magnitude. The idea behind this estimator
is that it compares our quadrature with the optimal positive-weight quadrature using
the same number of knots. This estimator is expensive to compute. The second,
cheaper, estimator we use is

g = NGl
3 != mMax ————
7 polw(a;)|

where Cj is the weight corresponding to the knot z; and N is as in (1.3).

Presentation of the results.

Information concerning the trees we have investigated is laid out in the following
way. In each line of a table the column labelled 0 is coded to flag (with a %) those
nodes of a tree which represent a good quadrature formula (those with all knots
inside the interval of integration and with positive weights), or those nodes which
terminate a branch because we did not pursue it (/). Each quadrature formula the
existence or properties of which we are investigating, is represented in column 1 by
the numbers of knots added at each stage ki ko .... The designation —k; indicates
that, although all knots in the sequence are real, some knot(s) in that branch of the
sequence fall outside the interval of integration. Column 2 shows the total number
of knots that such a quadrature formula would have and in column 3 we show the
number k,, + i k;. This number represents a lower bound on the polynomial order
of precision tlll—a]t such a formula will have in general. For symmetric measures and
an odd number of symmetrically placed knots such a quadrature formula would
have polynomial order of precision one higher. Apart from the known cases (e.g.
Gegenbauer weight function (1 — ¢2)® for a certain range of  where the Kronrod
extension of an n point Gauss formula has polynomial order of precision 4n+2), there
may be instances where the polynomial order of precision of a formula is higher than
expected. Columns 4 to 8 contain knot information and columns 9 to 12 contain
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weights information. Columns 13 and 14 contain the information used to decide
whether the orthogonal polynomial of the required degree exists.

More precisely, column 4 shows the number of real zeros of the orthogonal poly-
nomial which lie outside the interval of integration, and column 5 gives a measure d
of how far from the interval of integration the most distant knot lies. The integer i
in column 5 is coded to mean (¢ :=machine epsilon)

d i
d< 038 -9
-08<d<—0.7]-8

-0.l<dg —¢ [—1
—e<d<e 0
e<d<g0.1 1

09<d 9

Column 6 gives the number of complex zeros of the orthogonal polynomial and
column 7 is coded as is column 5 to show the absolute value of the imaginary part
of the complex pair which lies furthest from the real line.

Where two knots z; and zy_j4+1 lie symmetrically about the origin we use
—log(x; + xn_j4+1) to estimate the number of decimal digits to which the computed
z; and zy_j4 agree. The smallest such number for each quadrature formula, which
we call the minimum knol symmetry is in column 8.

Column 9 displays oy coded in the same way as d and 10 and 11 display the other
weights indicators as log 02 and log o3 respectively. Column 12 shows the minimum
weight symmeiry computed analogously to the minimum knot symmetry.

Column 13 shows the 2 — norm condition number of the block of 7(J) which
gave rise to this quadrature formula and column 14 shows — log (x, (¢ the smallest
singular value of that block.

To illustrate these data Table 1 shows an extract from our complete Gauss-Hermite
tree. One can make the following observations:

e There exists a Gauss-Hermite sequence with 1 2 6 10 16 knots. (By definition no
Gauss-Hermite quadrature formula knots are outside the interval of integration
so columns 4 and 5 of this table contain only zero entries.)

e The12,126,and 126 10 16 quadratures all have non-negative weights but
the 1 2 6 10 quadrature formula has some negative weights (in fact these are
—0.011232...at +£2.0232...). The indicator oy lies between ¢ and 0.1 indicating
that no absolutely large negative weights exist but log 0o = 3 shows that at least
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one of the weights is about 1000 times as large as the corresponding weight in
the Gauss quadrature with the same number of knots.

e Knots of the 1 2 6 10 16 quadrature which are symmetrically placed about the
origin agree to at least 28 decimal digits and the weights agree to 27 digits.
The knots and weights were computed without taking advantage of symmetry
to provide a further check on accuracy.

e Nol24or1l 26 8 Gauss-Hermite quadrature formula exists because the
orthogonal polynomials for these quadratures have 2 and 6 complex roots, re-
spectively. The complex pair in the 1 2 4 quadrature formula has imaginary
parts that lie between 0.5 and 0.6 units from the real line and the 1 2 6 8 case
has a complex pair with imaginary part lying further than 0.9 units from the
real line.

o The branches corresponding to quadrature formulae with 1 2 6 10 16 44 through
to 12 6 10 16 52 knots were not examined because the corresponding blocks
of the matrix r(J) had condition numbers which were too large (arbitrarily, we
cut off at e=2/3). This was flagged by the / in column 0.

Table 1 thus contains a portion of a complete search over all the possible extensions
we have considered.

As an example, the knots and weights of the 1 2 6 10 16 quadrature formula are
displayed in Table 4.

All calculations were performed on a VAX 11/785 with quadruple precision arith-
metic (34 decimal digits), repeated in double precision (16 decimal digits) and the
two sets of results compared. One can draw various conclusions from the fact that
two particular computations of the same number agree to, say, d digits. Very conser-
vatively, one can say that the double precision result is accurate to d digits. Alter-
natively, assuming that the error of the computaion is independent of the precision
used, one can conclude that § := 34 — 16 + d digits of the quadruple precision result
are correct.

In Tables 2 and 3 we present only those quadratures which have no complex knots.
These tables have two additional columns, 15 and 16, which show the minima for
the numbers 6 representing the accuracy of the knots and the weights respectively.

In a few cases the double precision calculation was not completed because the
condition of the relevant blocks was too large. For these cases (marked by a #) a
second computation of the quadrature was performed in quad precision but using a
blocking different from the first. The entries in these columns show the minimum d for
the knots and weights of the quadratures. Two rather special quadratures (marked by
#+t) have one or two weights (O(10737) and O(1075%)), which are smaller by many
orders of magnitude than all the other weights. The two quad computations for
these particular weights agree to 14 and 10 decimals, as explained in the text to the
tables, but for all the other weights the computations agree to at least 22 decimals.
Otherwise, the imbedded sequences of good quadrature formulae are correct to at
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least 22 decimal digits. Most, as can be seen from tables 2 and 3 however, are correct
to more figures.

In the quadratures of Table 4, d is at least 10 for all knots and weights excepting
the two extremely small weights (of order 10~ !8) for which d = 8. We conclude that
the knots and weights we have obtained are accurate to at least 26 decimals.

The knots and weights of the good quadrature formulae and the complete trees,
from which the information above has been extracted, are readily available from the
authors in either hard copy or machine readable form.

Conclusions. Monegato [6] points out that Kronrod extensions with positive
weights and real knots do not exist for the Gauss-Laguerre (a = 0) weight function
while the Gauss-Hermite (—1 < a < 1) extensions can exist only for n = 1, 2,
4. Our results seem to indicate that the Hermite 4 5 rule has negative weights for
-1 <a<+039...andfora>76...

Even though Kronrod (and hence Patterson) extensions rarely exist for these
weight functions our results establish the existence of many useful sequences of
imbedded quadratures of maximal polynomial order of precision.

TABLES

In the tables below a * indicates that the knots to the quadrature are all real and
the weights are non-negative. Column 1 shows the knot sequence, column 2 the total
number of points in the quadrature and column 3 its polynomial order of precision.
Columns 4-8 give more information about the knots and 9-12 information about the
weights. Where shown, column 15 shows the number of decimal digits in the knots
which are deduced correct from the double/quad comparisons and column 16 shows
the corresponding numbers for the weights. This accuracy test was performed only
for the * quadratures. A full explanation of the legend is in the text.

Legend: # - This indicates that no double precision result was available because of
the failure of the double precision computation. The figures here show the minimum
number of decimal digits which agree between two quad precision calculations of the
same quadrature using different blocking choices.
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Table 1: Extract from the complete Gauss-Hermite tree

01 2 345 67 8910 11 12 13 14
* 1 2 3 500 00330 0 033 0 0
124 7 1100 25 0 1 0
*x 126 9 1500 00320 1 131 2 0
126 8 17 2500 69 0 4 0
126 10 19 2900 00311 3 130 5 0
126 10 12 31 4300109 O 8 -3
12610 14 33 4700106 O 8 -3
*x 126 10 16 3 5100 00280 7 127 9 -3
126 10 16 18 53 7100169 0 15 -9
1 26 10 16 20 55 750016 9 0 15 -9
126 10 16 22 57 7900 42 0 16 -9
1 26 10 16 24 59 83 0016 5 0 17 -9
126 10 16 26 61 87 00 109 O 18 -9
126 10 16 28 63 9100 69 0 19 -9
126 10 16 30 65 9500 89 0 19 -9
1 26 10 16 32 67 9900109 O 20 -9
126 10 16 34 69 103 0 0 12 9 0 20 -10
126 10 16 36 71 10700109 0 21 -10
1 26 10 16 38 73 111 0 0 16 9 0 21 -10
1 26 10 16 40 75 115 0 0 10 6 0 21 -10
126 10 16 42 77 119 00 10 7 0 22 -10
/126 10 16 44 79 123 23 -9
/126 10 16 46 81 127 23 -10
/ 1 26 10 16 48 83 131 23 -10
/ 126 10 16 50 85 135 23 -10
/ 126 10 16 52 87 139 24 -10
* 1 26 10 18 37 5500 00280 6 12510 -3
126 10 18 20 57 7700209 O 22 -3
1 26 10 18 22 59 8100209 0 18 -9
Table 1: Extract from the complete Gauss-Hermite tree.
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Table 2: Gauss-Hermite quadrature sequences.

2 345 67 891011 12 13 14 15 16

1

1
*x 12 6

0 33 32
0 31 31

0

3 500 00330 0 033 0

131 2
130 5

1
3

35100 00280 7
375500 00280 6

91500 00320
41 63 00 00 26 1

192900 00 311

12 610
* 1 2 6 10 16
* 1 2 6 10 18

127 9 -3 27 24
1 25 10 -3 27 24#

6 2 24 12 -3

12 6 10 22
12 610 24

12 6 12
* 12 6 12 28

4 917 12 -3

43 67 00 00 26 1

29

3

213300 00 313

1 22 12 =5 25 22#
8

511 10 14 -4

49 7700 00270 8

5589 00 00 251

119 13 -5

12 612 34
12 612 36

12 6 14

5793 00 00 231

0

233700 00309 3 229 5
45 67 00 00279 8 22211 -6

12 6 14 22
12 614 24
12 6 14 28
1 2 6 14 32
12 6 14 34

*x 12 8

4771 00 002 9 6 3 18 11 -6

51. 79 00 00257 7 219 12 -6

5587 00 00247 9 218 14 -6

579100 00237 8 217 14 -6

111900 00320 0
315100 0030 3

0 32 31

130 2

*x 12 8 20 1256 7 -1 29 26

* 1 2 8 22

3356600 00280 2 222 7 -1 29 22

0 32 32

132 0

1

5 900 00330 O

132000 00 321

1

1
* 14 8 14

* 14 816
* 14 8 18

* 1410
* 1 4 12

31

1

128 7 -1 32 29
126 7 -1 30 27
126 8 —1 29 26

27 4100 00300 4
130 3

294500 00300 4
3149900 00 280 4

0 26 31
0 29 31

1

152500 00 320

130 3

1

51 85 00 00 170 6

172900 00 320

112 11 -4

1

*x 1 412 34

0 28 32
0 31 31
0 29 31

1

31

71300 00330 O
193100 00320 2
210300 00310 2

6

1
* 1 6 12
*x 16 14

130 4

129 4

0 000300 0226 5 028 30

5 800 00330 O
91300 00320
172500 00319 3

*x 1 6 16 23 39

1 33 33
1 32 33

0

1
2

133

3

2
*x 23 4

*

131
130 4

1

23 4 8

41 6500 00272 6 3 23 10 -3

223100 00310 3

23 4 824
*x 23 414

0 30 28

128 6
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Table 2: Gauss-Hermite quadrature sequences. Continued

16
31

15

14

2 3 4567 8 910 11 12 13

1
* 2 3 6

32
31

13t 2 1

1

1117 0000 32 0
2743 000030 0 4
51 75 00 0 0 25
53 79 00 00 25

29

128 6 —1

6 16

3 6 16 24

2 3 6 16 26
* 2 3 6 18

3

*

110 2 20 14 -7

2

8 218 14 -7

1

27
32

29
33
31

127 6 —1

1

20 4T 000030 0 3

1
0

1
127 5 -1 27

1
126 5 -1

32

712 000033 0 O
2135 000030 0 2

2
* 2 5 14

*

29
31

129 4

33

132 2

916 000033 0 O

25 41

26
25

000027 0 3

* 2 716
* 2 7 18

27

2745 000027 0 2

1 132 2 0

914 0000 32 8

1725 00 0 0 31

30

31

31
10 -2

1

0 3

4

3553 000 028 9 6 2 26

1929 000 0 31

4 5 8 18

* 4 5 10

29

31

0
1

0
0

130 5

0 3

129 6

2331 000030 9 3
11 18 0000 32 0

4 5 14

4

4
* 4 10
* 4 10 18

32
31

2 32
130 2

1 32
1

1
1

*

1322 000032 0 32

*

31

31

31

1

0
3250 000029 0 5
3352 000029 9 5

14 24 000 0 31

26

29

127 9 -1

127 9 -1

4 10 19
* 4 10 20
* 4 10 21
x 4 10 23

22

3454 000029 0 3 323 9 -1 28

3556 000029 0 5

224

0 25 22/14##

0
1

41 67 000027 9 5 223 9 -3

26

0

125 10

3760 000029 0 3 17 17 10

124 11

5

1

1526 000032 0 0

3964 0000 29

4 10 25

* 4 11

28

32

129 3

4 11 26
4 11 28
6
* 6 9 14
* 6 9 16

* 6 11

122 9 -3

5

1

1524 000032 0 2

0000 27
29 43 000 0 31

43 71

31 3 0 32 30
128 8 -1 30 28
22

1

*

0 5

3147 000029 °0 31022 9 -1 28

17 28 0000 32 0 2
1932 0000 32 0

30
28
29

32

0
0
1

3
5, 90 000026 9 8 218 14 -3

31
129 4

1

32

1

* 6 13
* 6 14

29

129 5

2034 000029 0 2

6 14 35
* 6 16

128 5 1 29 27
118 14 -5

1

55 88 000023 5 9

2238 000030 0
23 40 00 0 0 31

6 16 33
* 6 17

28

31

1

128 5

0 2
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Table 2: Gauss-Hermite quadrature sequences. Continued

01 2 34567 8910 11 12 13 14 15 16
8 11 19 300000302 3 129 4 0
8 11 16 3 510000291 7 126 9 -3
8 11 18 37 550000 281 6 1 24 10 -3
8 11 28 47 7% 0000249 6 22213 -3
* 8 13 21 340000310 3 128 4 -1 31 30
* 8 15 23 380000310 2 127 5 -1 31 28
* 8 16 24 400000290 3 128 6 129 29
* 8 17 25 420000310 11221 6 129 28
8 19 27 46 0000311 3 127 6 0
* 8 22 30 52 00003 0 3 127 7129 26
8 22 39 69 108 0 0 00229 12 2 16 18 -8

Table 2: Summary showing all the Gauss-Hermite quadrature sequences for which
knots and weights were computed.

## — As for # above but for this quadrature the knots agree to 25 decimal digits
and the weights agree to 22 digits except in the case of one pair of weights, with
magnitude O(10~37), and which agree to 14 decimal digits.

Table 3: Gauss-Laguerre quadrature sequences.

01 2 3456789 10 11 12 13 14 15 16
1 =2 3 1500 0 1 -1 1 0
1 -2 4 7 11 00000 2 -1 3 0
1 -2 4 7 142120000 0 5 -1 7 =2
1 -2 4 8 15220000 0 5 -1 7 =2
1 -2 410 17210000 2 5 -1 7 -3
1 -2 411 18290000 4 3 -1 7 -4
1 -2 413 203 0000 3 5 -1 7T -4
1 -2 5 8130000 0 2 -1 4 0
1 -2 6 9150000 0 1 -1 4 0
1 -2 6 16 26410000 0 7 -1 10 -5
1 -2 -7 10171900 0 3 -1 5 1
1 -2 -7 16 26420000 2 9 -1 11 -7
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Table 3: Gauss-Laguerre quadrature sequences. Continued

14 15 16

2 345678910 11 12 13

1

11

8 —1
0 2 -1

17 27 44 0 00 0 1

-7

1 -2

3
12
12
12

11190000

=5
—6
=7

9 8 -1

24371100

8 —13
8 —14

-2
-2

1
1

9 9 —-1

25392900

9 -1

1
0

20470000

18

0 32 32

0

4 70000
9140000

4
7

9
9
9

1725000 0
18 270 0 0 0
19290 0 0 0

8
9
10
11
12

6

9 4 54 8

9
9
0
0
0
0
0
0
0
9

7
5
3
2
1
3

20310000

2133 0000

-1 31 31
-1 31 29
-2 29 24
-2 30 27

4
4
4
4
1
5

1

10 16 0 0 0 O

11 180 00 0
12200 00 0

14 24 0 00 0 2

10

0 32 32
-2 27 27

5 90000
15250000

4
0
5

10

0 32 31

6 110000

17 28 0 0 0 O
18301100

11
5 —12

6
6

6 3 -1

0

1

-4 28 24

5
5
0
5
3
5
0
4

2034 0000

14
15

1
0
0
2
0
0
0

21 36 0 0 00

-1 32 30
-2 27 25

1
9

7130000

19310000
2033 0000

12
13
15

-3 27 22

8
2
7
6

223710000

0 32 25
-5 26 24

8150000
20320000

2
0 6 —1

9
0
6

12
7 —13

21341900

1

6 100 000

-2 30 28

6

4

4
6 2 32

4
0

13200000

7

14220000

6

15240000

16 26 0 0 0 0 4

10

0 33 31

2
7

7120000

9 6 -1

17271 900
47 770 0 0 O

5 —10
5 —10

2
2

19 —15

5 14 -1

30
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Table 3: Gauss-Laguerre quadrature sequences. Continued

01 2 345678910 11 12 13 14 15 16
2 6 8140000 0 1 2 2 0 32 30
2 7 916 0000 0 0 6 3 132 25
2 -8 10 181 9 0 0 1 2 -1 2 -1
2 -8 13 2336 0000 5 7 -1 12 —4
2 -8 14 243830000 3 5 —1 10 -6
2 -8 15 25400000 9 8 -1 11 -5
2 -8 17 217441900 9 8 -1 11 -6
2 -8 —18 28 46 1 900 1 8 -1 11 -7
3 6 9150000 0 2 2 3 -1 30 30
3 7 10170000 0 2 2 3 031 29
3 8 11190000 0 1 2 3 -1 31 26
3 -9 122101900 0 2 -1 4 -1
3 -9 -18 30481900 910 -1 18 -3
4 8 12200000 0 3 2 3 -2 30 29
4 9 13220000 0 1 2 4 -1 30 27
4 -10 14 241 900 1 3 -1 3 -2

* 4 11 15 26 0 0 0 0 0 3 2 3 -3 30 27

* b 9 14230000 0 4 2 5 —1 29 28

* 5 10 15250000 0 3 2 5 -2 30 26
5 —11 16 271 900 0 4 -1 7 -1

* 5 12 17290000 0 4 2 5 =3 30 25

* 6 11 17280000 0 4 2 7T -2 27 26

* 6 12 1830 0000 021 50 6 —3 27 10/25##
6 13 19320000 1 5 2 6 -3
6 14 20340000 1 4 3 6 —4

* 7 12 19 31 0 0 00 0 5 2 6 —4 26 24

* 7 13 20330000 0o 3 7 6 —4 26 24

* 7 15 22370000 0 5 2 7 =5 26 22

*x 8 13 21 34 0000 0 6 2 10 -2 24 23#
8 —14 22361100 1 4 -1 10 -2
8 15 233830000 9 6 2 10 -3

* 8 16 24400000 0 6 2 10 —4 24 214

Table 3: Summary showing all the Gauss-Laguerre quadrature sequences for which
knots and weights were computed.

#+# — As for # above but for this quadrature the knots agree to 27 decimal digits
and the weights agree to 25 digits except in the case of one pair of weights, with

magnitude O(107%%), and which agree to 10 decimal digits.
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Table 4

Knots and weights for the 1 2 6 10 16 sequence of Gauss-Hermite quadrature
formulae. Sigma 1,2,3 are as in the text.
Computed on VAX 11/785 in quadruple precision.

MACHINE EPSILON = 9.630D-35

1 2 sequence:
Knots

0.000000000000000000000000000000D + 00

—1.224744871391589049098642037353 D + 00
1.224744871391589049098642037353 D + 00

Weights

1.18163590060367735153211165556 D + 00
2.95408975150919337883027913890D — 01
2.95408975150919337883027913890D — 01

POLYNOMIAL ORDER OF PRECISION = 5

SIGMA 1= -1.925929944387235853055977942584927D-34
SIGMA 2= 1.000000000000000000000000000000004D+00
SIGMA 3= 2.240844535169032411301027730059634D+00

1 2 6 sequence:

Knots

0.000000000000000000000000000000D + 00
—1.224744871391589049098642037353D + 00
1.224744871391589049098642037353 D + 00
—2.959210779063837722311138500535D + 00
—2.023230191100515659208320895180D + 00
—5.240335474869576451483839135948D — 01

Weights

4.50147009753781848202709202118D — 01
1.68118928947677671965950845303D — 01
1.68118928947677671965950845303D — 01
1.67088263068823521461393689906 D — 04
1.41731178739791059714177897487D — 02
4.78694285491141488088899111869D — 01

5.240335474869576451483839135948D — 01
2.023230191100515659208320895180D + 00
2.959210779063837722311138500535D + 00

POLYNOMIAL ORDER OF PRECISION =

15

4.78694285491141488088899111869D — 01
1.41731178739791059714177897487D — 02
1.67088263068823521461393689906D — 04

SIGMA 1= -1.540743955509788682444782354067942D-33

SIGMA 2=
SIGMA 3=
12 6 10 sequence:

Knots
0.000000000000000000000000000000D + 00

4.218657282483369521514548068185277D+00 ‘
5.391370962480835242976052784016956D+00

Weights
5.37881607005101039875784864049D — 01

1.13607298957482659626345686030D — 01
1.13607298957482659626345686030D — 01
1.06565897728522360973823858841D — 04
—1.12324384890691912225435834936 D — 02

—1.224744871391589049098642037353D + 00

1.224744871391589049098642037353D + 00
—2.959210779063837722311138500535D + 00
—2.023230191100515659208320895180D + 00
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Table 4 Continued

—5.240335474869576451483839135948D — 01
5.240335474869576451483839135948D — 01
2.023230191100515659208320895180D + 00
2.959210779063837722311138500535D + 00

—4.499599398310388802884295119400D + 00

—3.667774215946337860037932517458D + 00

—2.266513262056788027465986175439.D + 00

—1.835707975175186873773036614278.D + 00

—8.700408953529029001349566962812D — 01
8.700408953529029001349566962812D — 01
1.835707975175186873773036614278D + 00
2.266513262056788027465986175439D + 00
3.667774215946337860037932517458D + 00
4.499599398310388802884295119400D + 00

POLYNOMIAL ORDER OF PRECISION = 29

3.69246433689208725292842090463 D — 01
3.69246433689208725292842090463.D — 01
—1.12324384890691912225435834936 D — 02
1.06565897728522360973823858841 D — 04
1.52957177053223973324134687923 D — 09
1.08027672066247628796313943952D — 06
5.11331743908837734921475476903 D — 03
3.20552430994458680658156670806 D — 02
1.08388619550030099230015174557D — 01
1.08388619550030099230015174557D — 01
3.20552430994458680658156670806 D — 02
5.11331743908837734921475476903D — 03
1.08027672066247628796313943952D — 06
1.52957177053223973324134687923 D — 09

SIGMA 1= 2.534889917349494341655744189629344D-02

SIGMA 2=
SIGMA 3=

126 10 16 sequence:

Knots

0.000000000000000000000000000000.D + 00
—1.224744871391589049098642037353D + 00
1.224744871391589049098642037353.D + 00
—2.959210779063837722311138500535D + 00
—2.023230191100515659208320895180D + 00
—5.240335474869576451483839135948 D — 01
5.240335474869576451483839135948 D — 01
2.023230191100515659208320895180.D + 00
2.959210779063837722311138500535D + 00
—4.499599398310388802884295119400D + 00
—3.667774215946337860037932517458D + 00
—2.266513262056788027465986175439.D + 00
—1.835707975175186873773036614278D + 00
—8.700408953529029001349566962812D — 01
8.700408953529029001349566962812D — 01
1.835707975175186873773036614278 D + 00
2.266513262056788027465986175439D + 00
3.667774215946337860037932517458 D + 00
4.499599398310388802884295119400D + 00

102

1.153264812896678983415366409354841D+03
1.017761552406140585113475979497925D+01

Weights

9.12626753636618015784618751433D — 04
8.02455181473911204774905924210D — 02
8.02455181473911204774905924205D — 02
6.33286208056174798926698340755D — 05
4.09675277203441034424345187364D — 03
2.62448714887843068475168131330D — 01
2.62448714887843068475168131330D — 01
4.09675277203441034424345187314D — 03
6.33286208056174798926698340746 D — 05
8.15537218169173874335697571146 D — 10
4.37378180409268808882839681361D — 07
1.45155804251558622875835195102D — 03
5.59288289114694100849109490240D — 03
1.63712215557357978737966786231D — 01
1.63712215557357978737966786231D — 01
5.59288289114694100849109490349D — 03
1.45155804251558622875835195116 D — 03
4.37378180409268808882839681374D — 07
8.15537218169173874335697571136D — 10



Table 4 Continued
—6.375939270982235951712703750732D + 00 1.86840148945094127438034772980D — 18
—5.643257857885745062803754283040D + 00  9.65994662785610740367890571874D — 15
—5.036089944473093968685964322632D + 00  5.48968369484997636702024987325D — 12
—4.029220140504371364793504978119D + 00  3.79202223923196151758999511307D — 08
—3.349163953713194977367385026776 D + 00  4.84627997370203600119434942905D — 06
—2.570558376584296709113064004430D + 00 4.87853993044438190544096198568 D — 04
—1.579412134846767085720367583019D + 00 2.77805089085350998625061959126 D — 02
—1.760641420820089350297456865320D — 01  3.39885955855852376532651612290D — 01

1.760641420820089350297456865320D — 01
1.579412134846767085720367583011.D + 00
2.570558376584296709113064004439D + 00
3.349163953713194977367385026772D + 00
4.029220140504371364793504978124D + 00
5.036089944473093968685964322627D + 00
5.643257857885745062803754283034D + 00
6.375939270982235951712703750730D + 00

3.39885955855852376532651612290D — 01
2.77805089085350998625061959122D — 02
4.87853993044438190544096198535D — 04
4.84627997370203600119434942914D — 06
3.79202223923196151758999511291.D — 08
5.48968369484997636702024987350D — 12
9.65994662785610740367890571967D — 15
1.86840148945094127438034772891D — 18

POLYNOMIAL ORDER OF PRECISION = 51

SIGMA 1= -1.637040452729150475097581251197188D-33
SIGMA 2= 6.569363395543873950747533272909761D+06
SIGMA 3= 1.66787637545753623442750526560556718D+01
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