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Summary. The paper deals with a new mathematical model for quantum mechanics based 
on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic proper­
ties of the integral are examined. 
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1. INTRODUCTION 

A new model for mechanics was suggested by A. Dvurecenskij and the author 
in [ l ] and [2]. This model was further developed e.g. in [3 — 5]. In [6 —8], a calculus 
for observables was constructed. There are three basic notions in the F-quantum 
space theory: F-quantum space, F-observable and F-state. 

F-quantum space is a family F <= <0, \}x of real functions satisfying the following 
properties: 1. If fe F, then / ' = 1 - fe F. 2. If fn e F (n = 1, 2, . . . ) , then V/„ = 
= sup/ / JGF. 

n 

F-observable is a G-homomorphism from the cr-algebra B of Borel subsets of R 
to F, i.e. a mapping with the following two properties: 1. x(E') = x(E)' for every 
EeB.2. x(U En) = V *(En) for every En e B (n = 1, 2, . . . ) . 

n n 

F-state is a mapping m: F -> <0, 1> defined on an F-quantum space F and 
satisfying the following two conditions: 1. m(a v a1) = 1 for every a e F. 2. If 
ane F (n = 1,2,...) and a{ ^ a] (i 4= j), then m(V an) = X m(an)- Recall that the 

n n 

definition due to Piasecki [9] inspired our investigations. 
A classical analogue of a state is a probability measure, a classical analogue of an 

observable is a random variable £ defined on a probability space (Q, S, P). To every 
random variable £ an F-observable x can be assigned by the formula x(E) = ^~1(E). 

If x is an F-observable and m is an F-state, then the composite mapping m Q x is 
a probability measure on the a-algebra B. We shall denote it by mx, hence mx(E) = 
= m(x(E)), EeB. 
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In a framework of the calculus constructed in [6 — 8], we shall construct the in­
definite integral of an observable and prove its G-additivity. Another approach to the 
problem is given in [10]. 

Recall that an F-observable x is called integrable, if the integral J^ t dmx (t) exists. 
It is then denoted by m(x) and called the mean value of x. This definition is also in 
a full agreement with the classical one. 

2. INDEFINITE INTEGRAL 

Our aim is to define the indefinite integral Ja x dm, a e F. This integral presents 
the crucial point in the concept of conditional probability. We shall follow again the 
classical case, where \A £ dP = \xA^ dP. Therefore we must investigate the preimages 
(^XA)1 (E)> E e B. This investigation leads to the following definition. 

Definition 1. If x: B -> F is an F-observable, then for every a e F and every 
Borel set E e B we define 

fa A(X(E) v a'), if 0 * E 
aK } \a' v (x(E) A a), if OeE 

Proposition 1. The mapping xa: B —> F is an F-observable for any a e F. If x is 
integrable, then xa is integrable, too. 

Proof. If 0 i E, then OeE'. Therefore 

xjE') = a' v (x(Ef) A a) = a' v (x(E)' A a) = 

= (a A (x(E) v a'))' = (x(E))' . 

The case O e E can be examined similarly. 

If A, B are disjoint Borel sets and 0 $ A, 0 e B, then 0 e A u B and 

xjA) v xa(B) = [a A (x(A) v a')] v a' v (a A x(B)) = 

= a' v (a A (x(A))) v (a A (X(B))) = 

= a' v (a A (x(A) v x(B))) = 

= a' v [a A x(A u B)] = xa(A u B). 

The case 0 <£ A, 0 $ B can be examined similarly. Now, if An e B (n = 1,2,...) and An 

are disjoint, then 0 belongs at most to one set, say 0 e At. Then by the above 

xJ\JAn) = xa(Ax) v xj U An) = xjA,) v(a A (( V x(An)) v a') = 
n «4= 1 n+ 1 

= xa(A,) v V (a A (x(A„) v a')) = 

= *a(A1) v V x i 4 ) = V ^ 4 ) . 

The case when 0 <£ \JAn can be examined similarly. 
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Let x be integrable. Put G(t) = m(x((-oo, t))), H(t) = m(xa((-oo, t))). Then 
H(t) ^ G(t) + 1. Since x is integrable, the integral j R \t\ dmx(t) exists. Therefore, 
JR |t| dH(j) and hence also JR t dH(t) = JR t dmXa(t) exists. 

Definition 2, Let x be an integrable F-observable, a e F. Then we define 

\a x dm = m(xa) = j R t dmXa(t) . 

3. SUM OF OBSERVABLES 

Since our next step is the proof of the G-additivity of the mapping a r-> ja x dm, 
in the connection with the relation xAuB = 1A + 1B (A n B = 0), we must first 
study the sum of observahles. The sum was defined in [6 — 8] as an F-observable 
z: B —> F by the formula 

z ( ( - oo, t)) = V [ x ( ( - oo, r)) A y((- oo, t - r))] , t e R . 
reQ 

Of course, it was proved that by this formula an F-observable z is uniquely deter­
mined. It is denoted by z = x + y. 

Proposition 2. If a, b e F are orthogonal elements (i.e. a :§ b'), then m(xavb) = 
= m(xa + xb). 

Proof. First observe that m(b) = 1 implies m(b A c) = m(c) and m(b) = 0 implies 
m(b v c) = m(c). Denote z = xa + x6. Let t ^ 0. Then 

m(z(—oo, t)) = m(\/ (a A (x((—oo, r)) v a')) A 
r<t 

A (b' v (x(—oo, t — r) A b)) v V (a A (x(—oo, r) v a')) A 
t<r^o 

A b A ( x ( - oo, t - r) v b')) v V (a' v ( (x ( - oo, r)) A a)) A 
r>o 

A b A ( x ( - oo, t - r) v b'))) = m( V (a A x ( ( - oo, r))) A 
r<t 

A (b' v x( ( -oo , t - r))) v \/ (a A (x( -oo , r)) A 
t^r<o 

A b A x((— 00, t — r)) v V (#' v *(( — °°^ r))) A 
r^o 

A b A x( ( -oo , t - r))) = m(((a A X ( ( - O O , t))) v 

v (b A x(((-oo, t)))) = m((a v b) A X ( ( - O O , t))) = 

= tn(xavb((-^,t)))-
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If t > 0, then 

m(z((-oo, t))) = m( V((« A (x(( -co , r)) v a')) A 

A (b' v (x ( -oo , t - r) A b))) v V ((^' v (x((-oo, r)) A a) A 
0 < r < t 

A (b' v (x ( ( - oo, t - r)) A b))) v V ((a' v x ( ( - oo, r)) A a) A 

A (b A x ( ( - ao , t - rj) v b'))) = m((a' A b') v x( ( -oo , *))) = 

= m((a v b)' v x( ( -oo , t))) = m(x a v , ( ( -oo , t))). 

Since the equalities hold for every t e R, we have m(xavb(D)) = m(xa + xb(D)) for 
every D e B. 

Proposition 3. If x is an integrable F-observable and a, b are two orthogonal 
elements of F, then 

HXavb) = m(Xa) + m(Xb) • 

Proof. For every c e f we define Qc: B -> <0, 1) by the equality <2C(D) = 
= m(xc(D \ {0])). Since 0 £ D \ {0}, we have 

Qc(D) = m(c A x(D \ {0}) ) , 
hence 

Qavb(D) = m((a v 6) A X(Z>X{0})) = Qa(D) + Qh(D). 

Moreover, 

m(xc) = JR x d m J O = IR\{o} t dmXc(t) + J{0} r dm J O = 

= jRUo} * dm J O = j * t dQc(t) 

for every c e F, hence 

m(xa,b) = J* rdQ a v 6 (0 - $RtdQa(t) + JR f d & ( 0 = "*(*«) + m(x„). 

4. PROPERTIES OF THE INDEFINITE INTEGRAL 

Proposition 4. If aneF (n = 1,2,...), an /* a, aeF and x is an integrable 

observable, then 

\Qn x dm —> j a x dm . 

Proof. Put /iM = m,fln (n = 1, 2, . . . ) , li = mXa, i.e. 

f | / F x Jm(a M Ax(F ) ) , if 0 * £ 
^ j jm(a ; v x(K) , if 0 e E , 

and a similar rule holds for ji. Evidently fin(E) / fi(E) for 0 ̂  E and /!„(£) \ n(E) if 
0 e E. Moreover, ^(F) ^ /L(F) in the former case and fin(E) <; / J F ) in the latter. 
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Since the integrals JR t dfit(t) and JR t dfi(t) exist, for every e > 0 there is an interval 
<a, b> such that 

jR\<«,&> \t\ dfi^t) < e , iR\<a,b> \t\ dfi(t) < s . 

It is not difficult to see that 

l i m Ua,b} t dfin(t) = J < 0 > t d/i(t) . 
n->oo 

Therefore 

| L x dm - Ja x dm | = | JR t d/in(l) - JR t d/a(t)| g 

^ JR\<«,*> H d^«(0 + JR\<«,6> H d^i (0 + 

+ | ]"<«,*>> t dfin(t) - J<fl>fe> t dfi(t)\ < 3s . 

Theorem. Let x be an integrable observable. For any a e F put v(a) = \a x dm. 
Then v has the following two properties: 

1. v (a v a') = v (1) for every a e F. 
00 00 

2. If an e F (n = 1,2, . . . ) , an = am (n ?- m), then \i(Man) = £ /t (a„). 
« = i « = i 

Proof. v(a v a') = JR t d/i(t), where /i(F) = m((a v a') A x(F)) or /i(E) = 
= m((a v a')' v x(F)) = m(x(E)). Similarly v(1) = JR t dx(t), where x(E) = m(x(F)) 
in both cases. Therefore fi = x and v(a v a') = v(1) for any a e F. 

If c, d are pairwise orthogonal, then by Proposition 2 and Proposition 3 

v(c v d) = m(xcvd) = m(xc + xd) = m(xc) + m(xd) = v(c) + v(d) . 

Hence, by induction, 

v ( V a i ) = i v ( a i ) . 
1 = 1 i = l 

/I 00 00 

If we now put bB = y ah then b = V bn = V <*»• Therefore by Proposition 4 

v( V a.) = v(i>) = lim v(í>„) = lim £ v(ař) = £ V(Û,). 
i = l л -+ oo n->oo 1 = 1 i = l 

References 

[1] B. Riečan: A new аpproаch to some notions of stаtisticаl quаntum mechаnics. Вusefаl 36, 
1988,4-6. 

[2] B. Riecan, A. Dvurečenskij: On rаndomness аnd fuzziness. In: Progress in Ғuzzy Sets in 
Europe, (Wаrszаwа 1986), PAN, Wаrszаwа 1988, 321-327. 

[3] A. Dvurečenskij, B. Riečan: On joint distribution of observаbles for F-quаntum spаces. 
Ғuzzy Sets аnd Systems. 

213 




		webmaster@dml.cz
	2020-07-02T07:19:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




