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Summary. The paper deals with a new mathematical model for quantum mechanics based
on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic proper-
ties of the integral are examined.
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1. INTRODUCTION

A new model for mechanics was suggested by A. Dvurecenskij and the author
in [1] and [2]. This model was further developed e.g. in [3—5]. In [6—8], a calculus
for observables was constructed. There are three basic notions in the F-quantum
space theory: F-quantum space, F-observable and F-state.

F-quantum space is a family F < €0, 1>* of real functions satisfying the following
properties: 1. If fe F, then f' =1 — fe F. 2. If f,e F (n = 1,2,...), then V [, =
= sup f,eF. "

F-observable is a a-homomorphism from the o-—algebra B of Borel subsets of R
to F, i.e. a mapping with the following two properties: 1. x(E') = x(E)' for every
EeB.2. x(U E,) = Vx(E)forevery E,eB(n=12,.

F-state is a mapping m: F — <0, 1) deﬁned on an F-quantum space F and
satisfying the following two conditions: 1. m(a v a') =1 for every aeF. 2. If
a,€F (n=1,2,...)and a; £ aj (i % j), then m(V a,) =Y m(a,). Recall that the

n

definition due to Piasecki [9] inspired our 1nvest1gatlons.

A classical analogue of a state is a probability measure, a classical analogue of an
observable is a random variable ¢ defined on a probability space (2, S, P). To every
random variable & an F-observable x can be assigned by the formula x(E) = &~ '(E).

If x is an F-observable and m is an F-state, then the composite mapping m o x is
a probability measure on the o-algebra B. We shall denote it by m,, hence m(E) =
= m(x(E)), E€ B.
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In a framework of the calculus constructed in [6—8], we shall construct the in-
definite integral of an observable and prove its o-additivity. Another approach to the
problem is given in [10].

Recall that an F-observable x is called integrable, if the integral [ t dm, (7)exists.
It is then denoted by m(x) and called the mean value of x. This definition is also in
a full agreement with the classical one.

2. INDEFINITE INTEGRAL

Our aim is to define the indefinite integral [, x dm, a € F. This integral presents
the crucial point in the concept of conditional probability. We shall follow again the
classical case, where [, & dP = [y,& dP. Therefore we must investigate the preimages
(&x4)~* (E), E € B. This investigation leads to the following definition.

Definition 1. If x: B — F is an F-observable, then for every ae€ F and every
Borel set E € B we define

_Ja A(x(E) v a), if O¢E
xJ(E) = {a, v (x(E) A @), if 0€E

Proposition 1. The mapping x,: B —» F is an F-observable for any a € F. If x is
integrable, then x, is integrable, too.
Proof. If 0 ¢ E, then 0 € E’. Therefore
x(E)=a v (x(E) Aa)=a v (x(E) Aa)=
(a A (X(E) v a)) = (x(E)) .
The case 0 € E can be examined similarly.
If A, B are disjoint Borel sets and 0 ¢ A, 0 € B, then 0 e 4 U B and

x(A) v x(B) =[a A (x(4) v a’)] v a' v (a A x(B)) =
v 0 A GO v (@ A (X(B)) =
=a' v (a A (x(4) v x(B))) =
=4da v [aAx(AuB)] = x, (AU B).

The case 0 ¢ A4, 0 ¢ B can be examined similarly. Now, if 4,€ B(n = 1,2,...)and 4,
are disjoint, then O belongs at most to one set, say 0 € A;. Then by the above

xa(L")A,,) = x,(4,) v x,,(nij1 A,) = x,(4;) v (a A (("\*/1 x(4,)) v a') =
= x,(4,) v"\:l(a A (x(4,) v a)) =

= x,(4;) v \ilxa(A,,) =V x,(4,) .

Il

Il

The case when 0 ¢ (J4, can be examined similarly.
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Let x be integrable. Put G(t) = m(x((— o0, 1)), H(t) = m(x(— 0, 1))). Then
H(t) £ G(?) + 1. Since x is integrable, the integral [g |¢| dm,(t) exists. Therefore,
fx |t] dH(t) and hence also [ t dH(1) = [ t dm_ (1) exists.

Definition 2. Let x be an integrable F-observable, a € F. Then we define
faxdm = m(x,) = [gtdm(1).

3. SUM OF OBSERVABLES

Since our next step is the proof of the o-additivity of the mapping a — ja x dm,
in the connection with the relation y, .5 = ¥4 + ¥z (A N B = 0), we must first
study the sum of observables. The sum was defined in [6—8] as an F-observable
z: B — F by the formula

(=0 0) = V [(=2.7) A (=0t = )] teR.

Of course, it was proved that by this formula an F-observable z is uniquely deter-
mined. It is denoted by z = x + y.

Proposition 2. If a, be F are orthogonal elements (i.e. a < b'), then m(x,,) =
= m(x, + X;).

Proof. First observe that m(b) = 1implies m(b A ¢) = m(c)and m(b) = 0 implies
m(b v ¢) = m(c). Denote z = x, + x,. Let t < 0. Then

m(z(—o0, 1)) = m(V (a A (x((—o0,7)) v a')) A

r<t

A (b Vv (x(—o0,t — 1) A D)) vt V (a A (x(=o0,r) v a)) A

AbA(x(=w,t—1) Vv b)) vr\>/0(a’ V ((x(= o0, 1)) A a)) A
AbA(x(—o,t—r) VD))= m(r\</¢(a A x((— o0, 1)) A

A Vv x(—o0, 1= 1)) VI§Y<O(a A (x(= o0, 1)) A
AbAx((—o0,t = 1)) vrllo(a’ v x((—o0. 1) A
AbAx(—oo,t—71))=m(((a A x((—o0,1)) v

v (b A X((=o0. 1) = m((a v b) A x((—0,1)) =

= m(x,,5((— 0, 1)) .
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If t > 0, then
le((— 0. 1) = m(V (@ A (=0, 7) v )
AV (et =) A B V(@ () A ) A
A (=0t = ) A B)) Y V(@ (= 0,7) 4 @) A

Ab A x(=oot =7) v b)) =m(a Ab)v x((—oo,1) =
= m((a v b) v x((— 0, 1)) = m(x,,((—0,1))).

Since the equalities hold for every t € R, we have m(x,, (D)) = m(x, + x,(D)) for
every De B.

Proposition 3. If x is an integrable F-observable and a, b are two orthogonal
elements of F, then

m(x,,,) = m(x,) + m(x,).
Proof. For every ce F we define Q.:B— <0,1) by the equality Q(D) =
= m(x/(D\{0))). Since 0 ¢ D\ {0}, we have

QD) = m(c » x(D\{0})),

hence
Quus(D) = m{(a v b) A x(D\{0})) = QD) + Q4D).
Moreover,
m(x,) = [rtdm, (1) = [0y tdm (1) + [0, tdm (1) =
= [ryoy 1dmy (1) = et dQ(t)
for every c € F, hence

M(x,yp) = [r1dQu, (1) = [r1dQ(1) + [r1dQ(t) = m(x,) + m(x,) .

4. PROPERTIES OF THE INDEFINITE INTEGRAL
Proposition 4. If a,e F (n =1,2, ...), ay 7~ a, acF and x is an integrable
observable, then
fo,xdm > {,xdm .
Proof. Put p, = my,, (n =1,2,...), 0 = my,, ie.

_ [m(a, A x(E)), if O¢E
m(E) = {m(a,’, v x(E), if O€E,

and a similar rule holds for . Evidently p,(E) ~ u(E) for 0 ¢ E and p,(E) \ p(E) if
0 € E. Moreover, u,(E) < u(E) in the former case and p,(E) < y;(E) in the latter.
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Since the integrals [t dy,(1) and [g t dp(t) exist, for every & > O there is an interval
<a, b such that

Srycawy 1 dra(t) < &0 Srcanm |t dut) < e
It is not difficult to see that
lim §, 0 1dp(t) = [ap 1du(t).

Therefore

[fan xdm — foxdm| = |[rt du(t) — [xtdu(r)| £
= Srvcanms 1] A1) + Sricasy [1] drs(t) +
+ | cas £ d1) = Jeany tdu(n)] < 3e.

Theorem. Let x be an integrable observable. For any a € F put v(a) = [, x dm.
Then v has the following two properties:

1. v(a v a') = v(1) for every a e F.
2. Ifa,eF(n=12..),a,<a,(n#m),thenu(Va,) =3 u(a,).
n=1 n=1

Proof. va v a’) = [ptdpu(t), where w(E) = m((a v a’) A x(E)) or w(E) =
= m((a v a') v x(E)) = m(x(E)). Similarly v(1) = [g t dx(t), where »(E) = m(x(E))
in both cases. Therefore = » and v(a v a') = v(1) for any a € F.

If ¢, d are pairwise orthogonal, then by Proposition 2 and Proposition 3

Ve v d) = m(x.,4) = m(x, + x;) = m(x.) + m(x,) = v(c) + v(d).

Hence, by induction,

n

v(ii'/l @) = ¥ v(a).

If we now put b, = V a;, then b =V b, = V a;. Therefore by Proposition 4

i=1 n=1 i=1
WV a;) = v(b) = limv(b,) = lim Y v(a;) = Y v(a;).
i=1 n—o n—oo i =

=1 i=1
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¢ Sahrn

O STREDNEJ HODNOTE V F-KVANTOVOM PRIESTORE

BELOSLAV RIECAN

Praca sa zaobera novym matematickym modelom pre kvantovi mechaniku, ktory je zaloZeny
na teodrii fuzzy mnoZin [1]. Definuje sa neurCity integral z pozorovatelnej a skiimaju sa jeho
zakladné vlastnosti.

Pesrome

O CPEAHEM 3HAYEHUU B F-KBAHTOBOM ITPOCTPAHCTBE

BELOSLAV RIECAN

B pabote paccMaTpuBaeTCsi HOBasi MaTeMaTHYECKasi MO/IENIb KBAHTOBOM MEXaHUKW, OCHOBAHHAS
Ha TEOPUM HEYETKUX MHOXKECTB. ONpeAenseTcsi HeOIpeeIeHHbI MHTEerpaJ OT M3MEpPEHMS, pac-
CMaTpHUBAIOTCS €r0 OCHOBHBIE CBOMCTBA.
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