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PERIODIC AUTOREGRESSION WITH EXOGENOUS VARIABLES
AND PERIODIC VARIANCES

JIRf ANDEL
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Summary. The periodic autoregressive process with non-vanishing mean and with exogenous
variables is investigated in the paper. It is assumed that the model has also periodic variances.
The statistical analysis is based on the Bayes approach with a vague prior density. Estimators of
the parameters and asymptotic tests of hypotheses are derived.

Keywords Bayes approach, estimating parameters, exogenous variables, perlodlc autoregres-
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1. INTRODUCTION

The classical autoregressive process {X,} is given by the model
X, =bX,  +...+bX,_,+7Y,

where by, ..., b, are autoregressive parameters and {Y,} is an innovation process of
uncorrelated random variables with EY, = 0, Var Y, = ¢2. For describing a seasonal
time series the autoregressive model can be generalized in such a way that periodic
functions {b;;}i-1, k = 1, ..., p, are used instead of single values {b;}7_, if p is the
known period of the seasonal series. More precisely, we assume that the variables
X4, ....X, are given and that X, for ¢t > n are generated by

n

(1-1) Xor(i-)p+k = Y biXot(G-1yp+k—i T Yur(j=1)p+k»
i=1

k=1,...,p;j=1,2,....If Var Y, = ¢* does not depend on t, we have the model
with equal variances. If Var Y, . ;_1),4x = o2 depends on k, the model has periodic
variances. :

The model (1.1) was investigated by Pagano [5]. A statistical analysis of (1.1) is
described by Andgl [1]. Since the periodic autoregression (1.1) has a connection
with multidimensional autoregressive models, it was recommended by Newton [4]
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to use it for estimating parameters and other characteristics of multidimensional
models.

If EX, is a non-vanishing p-periodic function, the model (1.]) can be modified to

(1-2) XusGi-1ypsr = M + Y beiXu+(j-typ+k-i T YasG-typ+k
i=1
where pi,, ..., t, are constants. This model was analyzed in detail by And€l et al.[3].
If we wish to take into account also the influence of some exogenous variables
@45 ..., Ps, We come to the model

(1.3) XosGi-typ+k = M + 3 biXusjonypar—i +
i=1
S ms
+ Z 2, st Psw+(j- yp+k—r T Yn+(j—1)p+k s
s=1r=0
k=1,...,p,j=1,2,.... Here y, by; and a,, are unknown parameters and ¢,
are given values of the exogenous variables @,. Our statistical analysis of the model
(1.3) will be based on a realization Xy, ..., xy of the random variables X, ..., Xj.

The case when the variables Y, have equal variances was considered by And&l [2].
In the present paper we assume that Y, are independent normal variables such that

(1.4) Yo (- 1ypsx ~ N(O, "’i)

Further we assume that (X, ..., X,) and (Y4, Y,+2,...) are independent sets of
variables. The analysis is based on the Bayes approach in which the parameters are
supposed to be random variables with a vague prior distribution. In the case of equal
variances it was possible to derive explicit results for finite values of N. In the model
with periodic variances most results are asymptotic. Our estimators of the parameters
W, by; and ag, are identical with the maximum likelihood estimators. Moreover,
it is well known that under general assumptions the asymptotic posterior distribution
does not depend on the prior distribution. The Bayesian procedure makes in this
case the computation of the asymptotic distributions and asymptotic tests easier.

2. PRELIMINARIES

We devote this section to some auxiliary theorems which will be needed in the
main part of this paper. Their proofs can be found in Andé&l [1].

We will use the symbol ¢ for constants. If not necessary, we will not distinguish
between different constants.

Theorem 2.1. Let Q,,...,Q, be n x n symmetric positive definite matrices. Let
Q=0Q, + ...+ Q,. If p = 2, then the matrix

388



Qo..o0 ‘t |QQQ Qe |
|__‘ !

Q,-Q'Q ... Q_,Q7'Q,,

is positive definite,

Theorem 2.2. Let V be an n x n symmetric positive definite matrix and let
a random vector X = (X, ..., X,) have the density

(2.1) q(x) = c(l + x'Vx)™™'%
where m = n + 1. Introduce a random vector
Z = (Zl’ ey Zs), = (Xil’ ...,X,‘s), 5

wherel < s <nand 1 £i <...< iy < n. Let W be the matrix arising from the
rOWS iy, ..., igand from the columns iy, ..., i5of the matrix V™. Then the marginal
density of the vector Z is

4,(z) = (1 + ZW™lz)"m=n+a)/z

Theorem 2.3. Let a vector X = (X,,....X,) have the density (2.1). Then the
random variable

m—n

F = X'¥YX

has the F, ,_, distribution.

3. STATISTICAL ANALYSIS OF THE MODEL

We consider the model (1.3) with the assumption (1.4). At the beginning of this
section we introduce the necessary notation. Put

= (g ry) s be=(byy, ... by, b=(bl,....,b,)",
A = (s0: - > Okom,) > G = (apq, ... @p5), @ = (af, ..., @),

,a X? =(x!—la""x‘_"),’

x = (x4, ..., Xy)
(P.?t = ((pst» CERPY (ps,!—m,-), , m=my + .o+ mg,
@k = (l‘l’lu bl’w a’:)’ H 0 = (@,!’7 @;v)l, o = (617"" O'p)',

0’ 0’ 0’ ’
W, = (1, Xnt(j=1p+k > Plnt(i—1)ptk s ‘/’S,n+(i—1)p+k) ’

[N—n—k]
o = | Y 1,
p

where [ ] denotes the integer part,

oy Ak

R = anu,—np“ , Q= Z Xn+(,—1)p+kwk1 » Qi —JZ w,”w“
j=1 -
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We shall assume that the mairices Q1. ..., Q, are positive definite. This is no sub-
stantial restriction, because for o, > 1 + n + m this condition is satisfied with

probability one.
The conditional density of X, 4, ..., X, given X; = x,..., X, = x,, 0,06 1s

f(xll+1’ cees XN [ ESTRERL Xns @’ d) = (21[)"(1"'—")/2 x

P 1=,
x [To exp{— L zzk,.},
k=1

20y j=1

where
N
. . b/xo _ zal 0 . —
Zrj = Xpt(G-Dp+k — Bk — BiXn+(j-1)p+k ) ksPs,n+(j-1)p+k
=
!’
= Xp+(-Dp+k — @kwkj .

Theorem 3.1. Let @ and ¢ have the prior density

oit...oyt for ¢,>0,...,0,>0 and ©eRya+ntm>

n(@, 0) - {0 otherwise ,

and let (@,6) be independent of (Xy,...,X,). Then the posterior density of ©
and o is

(3.1) 9(0,0| x) = cor™ oy x

k=

LS|
x exp {— S =L (6.~ 0y a6, - 81 + u]
k
for ¢, > 0,...,0, > 0 and zero otherwise, where
0; =Q 'q, v =x— 0;q,.
Proof. From the Bayes theorem we have
g(@, 4 l X) = Cf(X,,+ 15 eoes XN l X5 ooy Xps @5 6) n(@a 6) :

We insert for f and make use of the fact that

2
2_ ZI?j = (@k - @:)I Qk(@k - @:) +ov.. [

j=1

Theorem 3.2. (i) Modus of the posterior density (3.1) is
0=0*, o =vf(q, +1) for k=1,....p.

(ii) The marginal posterior density of @ is
gl(@ | X) = Ckl:ll [1 + Uk_l(@k _ @:t)/ Qk(@k _ @:)]—ak/Z .
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(iiiy The marginal posterior density of o is

14
gx(0 | x) = CAH1G’:HR+"+M exp { —0,/(205)}
for 6, >0,...,0,>0.

Proof. (i) It is clear that g(©. ¢ | x) < g(@*, ¢ | x). Using calculus we can derive
that g(@*, g | x) reaches its maximum for g; = 67, ..., 0, = 0y.
(ii) The density g,(@ | x) can be calculated from

9.(0|x) =[5 ... [§9(@,06|x)do,...do,.
(iii) We have
92(6 | ¥) = [Ryisnam 9(0. 6| x)dO =

P 1 4
=c[]oy™ "exp {— &}J‘ exp {— 5 (0, — 0;) Q(O, — 6;‘)} de, .
k=1 Ritn+m

2 2
2ok O

To evaluate the last integral we use the substitution

O, — @1? = O0yYk -

The corresponding Jacobian is o, *"*™ and from here we get the assertion (iii). [J

An important conclusion from Theorem 3.2 is that @,,..., @, are, given Xx,
conditionally independent, and also 04, ..., o, are, given x, conditionally independent.

The first problem which we are going to investigate is a construction of tests
of fit.

Theorem 3.3. The posterior distribution of the variable

o —1—n—m
3.2 F =2+ -
(3.2) k (1+n+muy,

(0, — 6}) QO, — 65)

is F1+n+m.1k—1—n—-mfor k= ]9 ~ees P-

Proof. The assertion follows from Theorem 3.2 (ii) and from Theorem 2.3. [

Theorem 3.3 can be used for testing that @, for a given fixed k is equal to a fixed
vector @;. We insert @, = @} into (3.2) and if the result exceeds the critical value
of the corresponding F distribution, the hypothesis @, = @} can be rejected.

If we wish to test the hypothesis that the whole vector @ is equal to a given vector
©°, we must combine the statistics F,. Because of the conditional independence, we
can use the so called ‘‘combination of independent tests of fit”. Let H, be the
distribution function of Fy 4 pimu—1-n—m Put m, = 1 — H(F}). It is well known
that then the posterior distribution of

P
g=—-2YInm
k=1

is x3,- Therefore, a test of Hy: @ = ©° can be based on ¢. If ¢ exceeds the critical
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value y3,(«), we reject H, on the level oo. However, the calculation of Hy(F,) can be
a little difficult. Below we derive an asymptotic method, which is easier from the
numerical point of view.

Theorem 3.4. Denote 67 = v,/(w, — n — m — 1). Then, given x, the variables
61,...,6; are independent and

(ak —n—m-— 1) 6'13/‘7/% ~ Xsk—n—m-l .

Proof. The marginal posterior density of o, is
(3.3) cop T exp { —v/(207)}

which we get from Theorem 3.2 (iii) as well as the assertion about the independence.
From (3.3) we obtain that v,/o; ~ X3 _,_m-1. Now, the assertion is.an easy con-
sequence of this fact. [J

Let us introduce explicitly two important special cases of the previous theorem.
If p = 2, then

6%/&% ~ Fal—n—m—l,az—n—m—l .

The hypothesis 6> = ¢3 can be tested in the same way as the classical comparison
of two variances in two independent samples from two normal distributions. If
o, = oy do not depend on k, we can use Cochran’s test for testing the hypothesis

o} = ... = o,. This test is based on the statistic
2 4 2
g = (max&;)/ Y &;
1sk<p k=1

and its critical values can be found in statistical tables.
Write Q; ! in the form

” 13

21 22 ’3
-l :
il 32 33
i k k||

where 0} ', Q72 and Q3% are 1 x 1,n x nand m x m blocks, respectively. We have
defined @, = (i, by, a;)'. Similarly we shall write @} in the form @} = (u;, b’, a;’)’.

Theorem 3.5. (i) The marginal posterior density of p is
4
g5(u| %) = Cl\Hl[l + (e — )P (0, Q)] @™

(i) The marginal posterior density of b is

galb| %) = ¢ TT[1 + o7 (b, — b1 (@2 (by — b))~ "02.
k=1
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(i) The marginal posterior density of a is
14
gs(alx) = e TT[1 + o5 ‘o, — af) (@) (a0 — af)] =177,
k=1

Proof. All the three formulas follow from Theorem 3.2 (ii) and from Theorem
22.. 0
It is clear that gy, ..., u, are conditionally independent and the same is true also

for by, ...,b,and foray, ..., a,.

4. SOME APPROXIMATIONS

If a vector X = (X, ..., X,) has the density (2.1), then the vector ¥ = m'/?X has
the density
(1 + y'Vy/m)y—™2.

As m — oo, the distribution of Y converges to N(0, V~'). Thus for large m we can
approximate the distribution of X by N(0, m~'V~!). Hence it follows that

(4.1) mX'VX ~ y?
approximately holds. Denote
U=0"'9Q, U=U +..+U

p>
lu,0...0 “ luuu, uu'y,_, 4
L= ............... il | BRI [.
loo...u,_,| |U_uU'yY u,_u'u,_,

Further we introduce
UM = (e —n— m)(0,00")", UP = (2 — 1 —m)(vQ%) ",
U = (o — 1 - ) (@)
UD = UP + ...+ UP for i=1,23.

Define matrices L; (i = 1,2, 3) with help of U{” and U in the same way as the
matrix L with help of U, and U. Then the densities g,(@ | x), g3(s| x), ga(b | x)
and gs(a | x) can be approximated by the densities

M-~

(0 - €7) U0, — 6))} .

1

§(@]x)=cexp{-1}

k

(:uk - :“::)2 U}cl)} ’

™M=

aiu|x) = cop (~1

< U
-

ga(b|x) = cexp{—1) (b — by) U (b, — )},

k=1

it
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and

Ty

gs(a|x) = cexp{—=3) (a — ai) UP(a, — ap)},
k

respectively. Therefore, if we denote
14 IL
Yo =kzl(@k - 9:)' uk(@k - @:) s Yu =k>:1(uk - #:)2 Uf.-l) s

P P
s =k;(bk - b:)’ UI(cZ)(bk - bf) > Ya =k;(ak - “f)’ Ul(cs)(ak - “:) s
then

2 2 2 2
Yo ~ Xp(t+n+mys Yu ™~ Xps VYo~ Xap> Va ™~ Xmp

approximately hold. These results can be used in the following way. If we have
a hypothesis H,: p = p°, then we calculate

p
n ='Zl(m? - w ) UP .

If y, = x3(«), we reject H, on a level which is approximately equal to «. Similarly
we can test hypotheses about b, @ and about the whole 0.

Now, we will discuss how to test the hypothesis Hy: @, = ... = @,. Put

4,=0,-0,—(0; —0;) for k=1,..,p—1, 4,=0,- 0},

p-1 r—1

A=(dy,... 4, ), h=YUd,, G=Y 4Ud, — U 'h.
k=1 k=1

p_
If © has the density §;(@ | x), then the density of (4}, ..., 4,)' is

cexp{—14[G + (4, + U 'hy U(4, + U 'h)]} .
Since G = A'LA, the marginal density of 4 is ¢ exp { —44'LA4}. Thus the posterior

. ’ : : 5 2 2
density of ry = A'LA is approximately 2(,— 1yctantm: I 7o 2 Xip—1)(14n+m(®)s We
reject H,. Similarly we can describe also the remaining three cases. Let

AP =y — Hp — (l‘;k - l‘:)’ 4, = (A(1") > -~-,A§;F—)1 ",
AP = b, — b, — (bf — b;), 4, = (49", .., 4P,
AP =a, —a,— (af —a}), 4,=(4"",....42),
re=4,L4,, r,=4,L,4,, r,=A4,L:4,.
Then we have approximately
ry ~ Xﬁ—l s Ip ™~ X(zp—l)n’ Fqg ~ X(zp—l)m‘

These results can be used for testing hypotheses that yu,, b, and a, separately do not.
depend on k.
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Souhrn

PERIODICKA AUTOREGRESE S EXOGENNIMI VELICINAMI
A S PERIODICKYMI ROZPTYLY

JIRi ANDEL
V praci je vySetfovan periodicky autoregresni proces s nenulovou stiedni hodnotou a s exo-
gennimi veliinami. Predpoklada se, Ze model ma i periodické rozptyly. Statistickd analyza je

zaloZena na bayesovském pristupu s nevlastni apriorni hustotou. Jsou odvozeny odhady para-
metri a asymptotické testy hypotéz.

Pesome

IIEPIOANYECKAS ABTOPEI'PECCHUA C 5K30I'EHHBIMHU ITEPEMEHHBIMI
1 NMEPMONYECKVMU BAPMAHIIAMUI

JIki ANDEL

B paboTe mccieayeTcs MEPHONMYECKUIL IPOLIECC ABTOPErPECCHH C HEHYJIEBBIM CPEJHHM 3Haye-
HHEM M C 3K30TCHHBIMM NEpeMeHHbIMH. IIpennonaraeTcs, 4T0 BapUaHUAM TaKXKe NEPHOIUYECCKHUE.
+ CraTucTnyeckuii aHaJIM3 OCHOBaH Ha npuHImne Belieca ¢ HECOGCTBEHHOI aNPUOPHOIL INIOTHOCTBIO.
B craTbe BHIBEEHB! OLEHKH NapaMETPOB ¥ ACHMITOTHYECKHE NIPOBEPKH THILOTES.
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