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Summary. A mathematical model of the equilibrium problem of elastic sandwich plates is
established. Using the theory of inequalities of Korn’s type for a general class of elliptic systems
the existence and uniqueness of a variational solution is proved.
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INTRODUCTION

The high strength characteristics of composite materials make it possible to
construct plates and shells with both great strength and low weight. The walls of
the structure which guarantee the required carrying capacity are thin, but their
bending rigidity is not sufficient. One can increase the bending rigidity of the
wall while preserving the weight of the structure if one uses the three-layer struc-
ture of the wall with a filling. The filling of the wall guarantees the cooperation of
the outer layers with high strength. Since light materials of the “foam plastic”
type or “ribs elements™ are used for the core layer, the field of deformation of the
core layer affects the work of the whole structure essentially. Hence when estab-
lishing a mathematical model, we have to take into account the above mentioned
specific features of the sandwich structure.

In the books [5], [6] the equations of equilibrium and boundary conditions are
derived on the basis of the “broken line” hypothesis from the principle of minimum
potential energy. The solution of these equations is based on the Fourier and Ritz
methods, respectively. It is the aim of the present paper to establish the mathematical
model and prove the existence and uniqueness of a variational solution. To this end
we apply the theory of inequalities of Korn’s type for a general class of elliptic

systems [1], [2].
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1. ASSUMPTIONS

Let us consider a thin three-layer plate, which has two outer stiff layers — faces —
of a thickness e with a high strength. These layers are connected by a core layer
of a thickness 2h°, made of a material with an essentially lower strength. We shall
assume that the core layer can transmit an essential part of horizontal forces and

Fig. 1

bending moments. We assume that all three layers are elastic, working togehter
without any shearing on the interlayer boundaries. Let the material of the stiff layers
be isotropic and that of core layer transversally isotropic, the axis of isotropy being
perpendicular to the middle plane of the plate.

. Basic hypotheses:

(1.1) 1° Kirchhoff’s hypothesis for the outer stiff layers,
2° the shear deformations y,,, y,, of the core layer are functions of x, y only,
3° the relative extension ¢, of the middle layer will be neglected,
4° the normal stress o, is negligible compared with o,, ¢, and therefore will
be neglected.

The system of hypotheses enables us to take into account the total deformation of
the core layer, because the straight element, perpendicular to the middle plane before
the deformation, remains straight after the deformation (but not perpendicular to
the deformed middle plane, due to the nonzero shear deformations). As the hypothesis
of normal preservation has been accepted for the faces, the graph of the displacement
along the thickness of the plate is piecewise linear (see Fig. 2).
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Moreover, we assume that the thickness of the core layer 2h° is constant, whereas
the thickness e of the faces is a continuous function of (x, y) € @, |le]c@ < h°.
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On the basis of the hypotheses (1.1) (see also Fig. 2) the following relations for the
vector of displacements can be formulated:

1. The stiff layers:
lower layer: ze[—h® — e, —h°],
(1.2) u(x, y, z) = uy(x, y) — [(z + h°) + (e(x, y)[2)] ow(x, y)[ox,
o(x, ¥, z) = vy(x, ) = [(z + h°) + (e(x, y)[2)] ow(x, y)[oy;
upper layer: z e [h° h° + e],
s 1, 2) = s ) = [z = 1) = (efx, 9/2)] B, 2o
s 1 2) = sl 2) = [(= = 1) = (elx, )/2)] dw(, ).
2. The core layer:
(1.3) u(x, y,z) = (1)2) {(uy + u;) — (2/h°) [(uy — u;) — e(x, y) ow[ox]},
o(x, v, 2) = (1/2) {(v1 + v2) = (2[h°) [(04 — v2) — e(x, y) dw[Oy]}.
Here u, v are displacements in the direction of the {positive) x- and y-axes, respectivelys

w is the deflection in the direction of the positive z-axis; u;, v; are the displacements
of the middle planes of the lower (i = 1) and upper (i = 2) layers, respectively.

For the strain tensor components we obtain the following strain-displacement
relations:

1° The stiff layers (upper signs hold for the upper stiff layer, lower signs for
the lower stiff layer):

(1.4) ey’ = (1)2) d(uy + uy)[ox — z 0*w[ox? £ h° da,[ox,
2= (1/2) vy + vy)[0oy — z *w|dy* + h° du,[dy,

g’
v’ = (1)2) (uy + u,)[0y + (1)2) 8(vy + v,)[ox —
— 22 0*w|ox 0y £ h°(0u,|dy + Oa,|0x).
2° The core layer:
(1.5) &) =(1/2) a(uy + u,y)j0x + z(—*w;0x* + 0uy[0x),
> = (1;2) a(vy + v,)]dy + z(—0?w[dy* + da,/dy),
Yoy = (1;2) 0(uy + uy)[y + (1]2) d(vy + v,)]0x +
+ 2z[ —0*wox dy + (1)2) (0o, [0y + 0a,[0x)],

m

where
(1.6)  oy(x, y) = —(uy — uz)[2h° + (1 + (e[2h°)) dw]ox,
ay(x, y) = —(vy — v5)2h° + (1 + (e[2h°)) dw[dy.
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The stress tensor components have the form
(1.7)  of = EJ(1 — p?) (ek + pel) = EJJ2(1 — p2) [0(u; + uy)fox +
+ po(vy + v,)[0y — 22(0*w[ox?® + p 6*wjdy?) +
+ (—1)"2h°(0ay [0x + p day[0y)],
ay = Ef(1 — p%) (& + pes) = Ef(2(1 — 42)) [a(0; + v,)]0y +
+ po(uy + uy)jox — 2z(02w[oy? + pd?w[ox?) +
+ (= 1)' 2h°%(00, [0y + p Oay]0x)],
1y, = EJ(2(1 + p) v, = GLo((uy + uy)[2)]0y + &((vy + v,)[2)j0x —
— 2z 0*w[ox 0y + (—1)" h°(0ay [y + Oa,[0x)]
for i =1,2;
(1.8) 0 = Eo/(2(1 — p?))[0(uy + uy)[ox + pd(v, + vy)[oy —
— 22(0°w[ox® + pd*w[oy®) + z(00y[0x + p 0o, [0y)],
0 = Eo/(2(1 — p?)) [0(vy + v,)[oy + pd(uy + uy)/ox — 22(0%w[oy? +
+ p 0*w[ox?) + z(0uy[dy + p Oy [6x)],
9y = Go[1/2 d(uy + u,)[dy + 12 8(vy + v,)[0x +
+ z(—2 0*w[ox 0y + a0y + 0a,[0x)],
T = Goly, T;)z = Go0y,
where E; is Young’s modulus of the i-th layer, u is Poisson’s ratio, the same for all
three layers,
G, =EJ(21 + p), E,=E, =E,, E,=E,.

We assume that
O<u<l1.

The strain energy of the i-th layer is given by the formula

1 e e _
U, = —J (okek + 038, + ToyVey + Ta¥az + T2¥y)dxdydz, i=0,1,2,
QxA;

where
(=h® — e, =% for i=1,
A, = {(—H°, 1) for i=0,
(% 1 + e) for i=2.

Then we can write the strain energy of the whole plate in the form
2
(1.9) U=3"U,.
i=o

Let us denote

wWl=u +uy, Wl=0v,+0v,, v=u, —uy, ut=0,—-v,, u=w
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and consider the vector field
u=(u',u ud, ut, u’).
We shall need the following system of strain operators:
(1.10) A y(u) = ou'lox, N ,(u) = du*[oy,
N3(u) = 1/4{out|oy + ou|ox), N 4(u) = 0%u’|ox?,
N s(u) = 0*u’loy?, N g(u) = dulox Oy,
N a(u) = (—1/2h°) (0u3[ox) — (u[2h°) (ou*[oy) + [ + (e/2h°)].
(0%u®[0x?) + p[(1 + e[2h°)] *u®|oy® + 1/2h°[(de[0x) .
. (0u®|ox) + u(oeloy) (eu®loy)],
N g(u) = (—pf2h°) (0u3[ox) — (1/2h°) (ou*[oy) + p[(1 + €[2h°)].
(0%u®|ox?) + [1 + (ef2h°)] (0%u®|0y?) +
+ 1/2h°[u(0e|ox) (0u’|ox) + (de[dy) (0u’[oy)],
No(u) = (—1/2h°) [(0u?|oy) + (ou*|ox)] + (2 + e[h®) (0%u®[ox dy) +
+ (1/2h°) [(0e[oy) (0u®[ox) + (de[ox) (ou®[oy)] .

Let us introduce the matrix
K* 0
=[5 ]

where

(Be + Bh); (Be + Bh)u; 0 0
(B,+B)w;(B,+B,) 0 0
k- |0 0 4B, + B)(1—p); 0
0 0 0 2(D¥ + D, + D.);
0 0 0 2(D¥ + Dy + D) p;
0 0 0 0
0 0
0 0
0 0
2D} + D, + D) O
2D} + D, + D,) O
0 2D} + Dy + Do) (1 — 1) (6.6)
2[ D, + (B, + By[3) h°?] 0
K** =10 2[D,, + (B, + B,[3) h°%]
0 0
0
0

2Dy + (B, + ByJ3) 171 (1 — ) (3.3)
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D, = E;h%|[3(1 — p?)], B, = Eh°[(1 — p?),
D, = E&[12(1 — p*)], B, =eE/[(1 — u?),

I

D} = D, + B,(h® + ¢[2)*, D, = D, + B,h°(h° + ¢[2).
Moreover, we define the bilinear form
9
(1.11) ale;u,v) = Y Ky & (u) & j(v)dxdy.
Qij=1

Integrating in (1.9) along the z-coordinate and using (1.4)—(1.8), we can show that
(1.12) a(e; u, u) = 2U(u).

Assume that the loading is determined only by transversal loads in the z-direction.
Then the potential of external forces is

I
(1.13) L{u) =J powdxdy + > Pw{x;, ;) + J pwdy, (w=u’),
P i=1 y

where y is a given (rectifiable) curve, y = Q, p, € L'(y) and p, € L'(2) given functions,
P; given constants, (x;, y;) € Q given points.

We shall consider the classical boundary conditions of a partially clamped
plate. Namely, we prescribe

(1.14) u;=0, v;,=0, i=12,
w=0, dwdn=0

on a part I', of the boundary 0Q, where dw/dn denotes the normal derivative.

2. VARIATIONAL FORMULATION OF THE PROBLEM

The formulation of the problem will be based on the principle of virtual displace-
ments.

Let Q be a bounded domain in R? with a Lipschitz boundary (see e.g. [2], Chapt.
1 for the definition).

We define the space of functions with finite energy

W= [H'@)]* x H(9).
where H(Q), k = 1,2, denotes the standard Sobolev space W**(Q). The norm in
H*(Q) will be denoted by |+, H(Q) = IX(Q).

The vector fields ue W will be called displacement functions with finite energy,

since
ue W=U(u) <

follows from the fact that 4" ,(u) e [*(Q) for all i = 1, ..., 9, and all the entries K;;
are bounded in Q.
The boundary conditions (1.14) determine the space of virtual displacements.
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Assume that I, is an open part of the boundary 0Q and the length of T, is positive.
We define
V=[V]* x H:(Q) = W
where
Vo ={veH(Q):v=0on I}

and H}, (Q) is the closure in H(Q) of continuously differentiable functions, satisfying
the conditions (1.14) for w, i.e.,
H Q) =%, # ={weC”(Q): w=0wlon=0on I,}.

Note that the boundary conditions

u;=v,=0 (i=12) onT,
are equivalent to

u'=0, i=1,234o0n TI,.
The principle of virtual displacements

8U = SL
takes the form
(2.1) ale; u, v) = L(v)
where
v = du = (6u', du®, ou, su*, du’)e V.
We say that u e Vis a variational (weak) solution of the boundary value problem

under consideration, if (2.1) holds for any function v € V.

In order to prove the existence and uniqueness of a variational solution, we first
have to prove the V — ellipticity of the form a(e; u, v), i.e., the existence of a positive
constant a, such that

(22) a(e; u, u) = aoulf;, YueV,
where 4
Jullw = (X [wlie + w7300

“The condition (2.2) is called an inequality of Korn’s type and its proof is based on
several results which will be taken from the literature (see the book [2] or the paper

[1])-

First, we easily realize that the matrix K is positive definite, so that

9
(2.3) ale; u, u) = ko_; [ ()]0
holds for any ue W.

A more valuable result is the so called coerciveness of the system of operators
{# (uw)}]-, on the space W, i.e. the following inequality:

(4) S @l + X el 2 clulfy vaew.
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The latter inequality follows from Theorem 3.2in [1]. In fact, we first have to write
the operators ,";(u) in the form

./Vi(”)"_‘z Y mgDlw’, i=1,..,9,

s=1|p|Sxs
where .
Df = alﬂl/axﬁx ayﬂz ,
;=1 for s=1,2,3,4 and »,=2 for s=35.
Note that if e e C(Q), then the coefficients satisfy
ngeC@) forall i=1,..,9, s=1,...,5 and |B| =x,.
Thus we can apply the above mentioned theorem. Let us define the (9 x 5) matrix
[N €] with entries
N!'s€= Z nisﬂéglégzy i=1,,..,9, S=1,...,5.

|=xs
Then the system {J4"(u)};-; is coercive on W (i.e., (2.4) holds) if and only if the
rank of the matrix [N;¢] is equal to 5 for

0=+¢eRr® if (x,y)eQ,
0+ ¢eC® if (x,y)edQ.

(Here C? denotes the complex two-dimensional space.)
In our case the transposed matrix [N;¢]7 has the following form:

E 0 52/40 0 0 0 0 0

0 & &/40 0 0 0 0 0

000 0 0 0 —&2k) — (210 —&,)(2h%)
000 0 0 0 —pu&l(2k°) —&,(2h°) —&,)(2°)
000 2 & & (1+2—Zo>(él+u¢2) (1+—>(uél+¢) ( >€1€2

It is not difficult to find that the rank of the matrix is 5 under the conditions
imposed above. Therefore (2.4) holds.

Lemma 2.1. Let us define the subspace

Py={ueV: |#(W|oe=0i=1,..9}.
Then
(2.5 P, = {0},
i.e., Py reduces to the zero element.
Proof. From the conditions
Nu)=0, i=123

we conclude that (u',u?) are components of a rigid body displacement, so that
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(see e.g. [2], Theorem 6.3.2 and its proof)

(2.6) u' =a; — by, u*=a, + bx,

where a; and b are arbitrary real constants.
The conditions
N {u)=0, i=4,5¢6
imply that u® is a linear polynomial. The boundary conditions on I',, however,
yield u® = 0. Consequently, the conditions of vanishing of A";(u), A (u) and A 5(u)
reduce to
oudlox + poutloy = 0,

poudlox + outloy =0,
oudloy + ou*lox = 0.

The first two conditions are equivalent to
udlox =0, ou*ldy =0.

Thus we may again conclude that (u*, u*) represent a rigid body displacement, i.e.,

1

I

wd=d,—cy, ut*=d, + cx.

Next, let us consider the two functions u®, u? from (2.6). Since ue V; u' and u?
vanish on I',. Assume that
|as| + |b] > 0.
Then
2.7) a,—by =0

holds on I',. If b = 0, then a; = O follows, which is a contradiction. Therefore
b # 0 and (2.7) represents a straight line in R?. The second condition
a,+bx=0 on I,

represents another straight line. The two straight lines intersect in one point only.
Consequently, I', is contained in a one-point set, which contradicts the assumption
on the set I',. We arrive at the conclusion that a, and b vanish.

The case |a,| + |b| > 0 can be treated in a parallel way. The same argument is
applicable to the couple (u3, u*). Q.E.D.

Now we are able to prove the V-ellipticity of the form a. In fact, we may apply
Lemma 11.3.2 of the book [2], since (2.3), (2.4) and (2.6) verify the assumptions
of the lemma.

Theorem 2.1. There exists a unique variational solution of the boundary value
problem.

Proof. Using the Sobolev Embedding Theorem, it is easy to show that
ILW)| = Clou®]20 < Clv]w

so that the functional L: ¥V —» R?! is linear and continuous.
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The form a(e; u, v) being symmetric and V-elliptic, the existence and uniqueness
of a solution u € V of the problem (2.1) follows immediately from the Riesz-Fréchet
Theorem ([3]).
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Souhrn

RESENI OKRAJOVYCH ULOH PRO SENDVICOVE DESKY
IGor Bock, IVAN HLAVACEK, JAN LoviSEk
Odvozuji se rovnice a okrajové podminky matematického modelu sendviCovych desek.

Na zakladé teorie nerovnosti Kornova typu pro jistou dosti obecnou tfidu eliptickych soustav
rovnic je dokdzana existence a jednoznacnost variaéniho feSeni okrajové ulohy.

Pe3ome

O PENIEHUU KPAEBBIX 3AJIAY [IJIS1 TPEXCJIOVHBIX IJTACTUHOK

Icor Bock, IVAN HLAVACEK, JAN LoViSEk

VcTaHaBIUBaETCS MATEMATHYECKAsi MOJIENIb PABHOBECHBIX 3aa4 YIPYTHX TPEXCIIOMHBIX I1aCTH-
HOK. Ilpu momomu Teopun HepaBeHCTB THma KopHa mis oOImero kjacca 3JUIANTHYECKHX CHCTEM
JIOKa3bIBAIOTCSI CYIIECTBOBAHME M €IMHCTBEHHOCTh BaPHAIIMOHHOI'O PEeINeHMs.
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