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SVAZEK 23 (1978) APLIKACE MATEMATIKY ČÍSLO s 

ON THE CONTINUITY OF INVARIANT STATISTICS 

NGUYEN VAN H O 

(Received February 21, 1977) 

INTRODUCTION 

The continuity of some estimates of the location and the location vector was proved 
in [3], Theorem 1, Hodges-Lehmann (1963), and in [4], Theorem 6.2.2, Puri-Sen 
(1971). All these estimates are translation invariant but the theorems do not cha­
racterize the interesting property of the estimates. 

The aim of this paper is to establish theorems on the continuity of translation as 
well as scale invariant statistics in general, from which the above mentioned results 
in [3] and [4] follow. 

Let us discuss the proof of the first assertion of Theorem 1 in [3] by Hodges-
Lehmann (the first assertion of Theorem 6.2.2 in [4] by Puri-Sen is dealt with simi­
larly). The authors have concluded P(A** = c) = 0 on the basis of the Fubini 
theorem and of the fact that each line L of the family of all lines parallel to the direc­
tion of e = (0, ..., 0, 1, ..., 1) with m zeros and n units intersects the set S = 
= {A**(Xl5 ...,Xm, Yu ..., Y„) = c] in a single point which has probability zero by 
the assumed continuity of the cdf H of (X l 5 . ..,Xm, Yu ..., Yn). Assume Xu ...,Xm, 
Yu ..., Yn are mutually independent. The assumption makes it possible to apply 
the Fubini theorem, as the probability measure P is the product of its projections 
onto the axes Xu ..., Xm, Yu ..., Yn. Then the Fubini theorem could lead to the result 
P(A** = c) = 0 if L were parallel to some of the axes. However, Lis not so. One may 
try to change axes by rotating them in order to make L parallel to some new axis. 
But after the rotation the probability measure P is not the product of its projections 
onto the new axes (cf. Example 1 below) and the result P(A** = c) = 0 cannot follow 
from the Fubini theorem (cf. Example 2 below). 

These proofs would remain true if the following postulate were true: "the mea-
surability of S and the fact that each Lparallel to e intersects S in a single point imply 
that S consists of a finite or denumqrable family of measurable sets {SJ such that 
for each S; there is an axis such that each line parallel to the axis intersects Sf in at 
most a single point". 
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On the basis of this postulate Theorem 1 in Section IV would remain true if the 
words "absolutely continuous" were replaced by "continuous" and T(X, Y) were 
of the form T= (T1(XU Yt),..., Tk(Xk9 Yk)) with the assumption that X1, ...,XN 

are mutually independent. 

Similarly, on the basis of the following postulate: "the measurability of S and the 
fact that each line Llying in the hyperplanes X\ = x°l9 ..., Xm = xm, where x°l9 ..., xm 

are arbitrary real numbers, and containing the point (x?, ..., x°, 0, ..., 0) intersects S 
in a single point imply the assertion on S as the above postulate", Theorem 2 in 
Section IV would remain true if the words "absolutely continuous" were replaced 
by "continuous", T were of the form T = (Tt(Xl9 Yx), ..., Tk(Xk9 Yk)) with the as­
sumption that X1, ...,XN are mutually independent and the condition Tt(X, Y) = 0 
iff Y = 0inh\ 1 S i S K were replaced by Tt(Xh Y,) = 0 iff Y, = 0(n\ 1 ̂  i ^ k. 

Although the proof of the first assertion of Theorem 1 in [3] is dubious its second 
assertion on the absolute continuity proved in the same way remains still true, since 
the Lebesgue measure <£ in RN according to axes Xl9 ...,XN is always the product 
of its projections onto the new axes £1? ..., £N obtained by a rotation or by any 
transformation of axes Xl9 ...,XN with the Jacobian J = Ji(£i) ... JN(£>N)> ar-d so 
the Fubini theorem leads to $£(A** e A) = 0 provided £?(A) = 0. 

In view of Lemma 2(iii) in Section II, the second assertion of Theorem 6.2.2 in [4] 
must be modified as follows: "the condition (6.2.8) and the absolute continuity of 
Fa(x) for each a = 1 , . . . , n imply the absolute continuity of the cdf's of each com­
ponent of #„". 

Example 1. Let P be a Gaussian measure with the density f(x9 y) = (inab)'1 . 
. Qxp{~i(x2ja2 + y2/b2)}, a 4= b > 0. Thus P = Px x P}„ where Px, P are 
projections of P onto the axes x and y. Let (£, r\) be the new axes obtained by rotating 
(x, y) by an angle -7r/4. Then P 4= P^ x Pr 

Example 2. Suppose X and Y are dependent, X = Y a.s., and X is uniformly 
distributed on (0, 1). The probability measure P generated by (X, Y) has a continuous 
cdf 

F(x, y) = 0 if x ^ 0 or y ^0, 

x if 0 < x < y and 0 < x < 1 , 

y if 0 < y < x and 0 < y < I , 

1 if x ^ 1 and y ^ 1 . 

Let S = {x — y = 0}. Each line parallel to y intersects S in a single point of proba­
bility zero by the continuity of F but P(S) = P(K = Y) = 1. 

Lemmas in Section II emphasize and summarize the continuity relations between 
the joint cdf of a random vector and its marginal cdf's. 
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11. LEMMAS 

Let (Q, srf, P) be a probability space and let £1?.«., Cfc be random variables (a.s. 
finite) defined on it. Let Fj(x), ...,Ffc(x) be cdf's of tx, . . . ,£* and let F(xl5 ...,xfc) 
be thecdf of (^1, . . , £fc). 

Lemma 1. The following assertions are equivalent: 

(i) Fi(x), ..., Ffc(x) are continuous, 

(ii) Fi(x), ..., Ffc(x) are uniformly continuous, 

(iii) F(xx, ...,xfc) is continuous, 

(iv) F(xi,...,Xfc) is uniformly continuous. 

Proof. 

(i) <=> (ii) and (iv) => (iii) are evident. 

(ii) => (iv): For x' = (x[, ..., x'k) and x" = (xi', ..., xk) let y' = (y[, ..., yfc), where 
y; = min (x't, x'l), 1 ^ i ^ k, and j / " = ( / ; , ..., }4'), where y'\ = max (x|., x"), 1 ^ 
g / g k. The conclusion follows from 

|F(*") - r(x')| ^ FGO - r(/) = 
fc fc 

. = i y = i 

= p(n[^- ^ /;]) n (uK, > J;]) ^ 
i J 

SP{!j([ij>y'j]niij^y'n)}< 
1 = 1 

^ip{y'j<Zj^y';} = Z\Fj(xj)-F(x'j)\-
j=l j=i 

(iii) => (i): Suppose there is a discontinuous cdf, say Fx(x). Let x0 be a discontinuity 
point of Fi(x). Denote A = ^1

1(x0) = {co : Ci(a>) = x0} e J / . Then 

P(<^ = x0) = Fi(x0) - Fi(x0 - 0) = P(A) = p>0. 

Since F is continuous, 

0 = F(x0,x2, ...,xfc) - F(x0 - 0, x2, ...,xfc) = 

= -°(fi = x0, £2 ^ x2,..., ^ <; xfc) 

for any real x2, ..., xfc. Therefore either 

P{co e A : £2(CD) S X2, ..., £k(co) g xfc] = 0 
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for any real x2, ..., xfc, 

or >^P(^ = « D ) ^ F ( A ) = p > 0 , 
i = 2 

which contradicts the a.s. finiteness of the random variables £2- •••> C&- Q.E.D. 

Corollary 1. Lemma 1 remains true when £t, ..., Cfc are random vectors of arbi­
trary dimensions ni, ..., nfc, respectively. 

R e m a r k 1. The equivalence introduced in Lemma 1 is a special property of cdf's. 
For bounded and nondecreasing multivariate functions the equivalence does not hold 
in general. Let us consider 

G(x, y) = 0 if x ^ 0 or y ^ 0 , 

(1 - e~y) eyx if 0 < x < e~y and y > 0 , 

1 - e~y if x > e~y and y > 0 . 

Clearly, G(—oo, — oo) = 0, G -f-oo, + oo) = 1 and G(x, y) is nondecreasing and 
continuous in x and y, but G(x, y) is not a cdf, as 

AG = G(x2, y2) - G(xl5 y2) - G(x2, yt) 4- G(x t, yx) < 0 
for 

0 < x t < e-yi < x2 and 0 < yt < — ln(xj) < y2 . 

One has 
Gt(x) = G(x, oo) = 0 if x g 0 , 

1 if x > 0 , 

i.e., Gx(x) is not continuous and moreover, G(x, y) is not uniformly continuous, as 
G(x, 1 - In (x)) - G(0, 1 - In (x)) > 1 - e'1 > \ for any x, 0 < x < 1. 

Lemma 2. 

(i) If F(xu ..., xfc) is absolutely continuous, then Fi(x), ..., Ffc(x) are so as well. 

(ii) If Fi(x), ..., Ffc(x) are absolutely continuous and £ 1 ? . . . , £fc are mutually 
independent, then F(xl9 ...,xfc) is SO as well. 

(iii) IfFx(x),..., Ffc(x) are absolutely continuous, then F(xu ..., xk) is not general­
ly so but it is continuous even if £u . . . , £fc are mutually dependent. 

Proof. 

(i) and (ii) are well-known. 

(iii) The continuity of F follows from Lemma 1. In order to prove that F is general­
ly not absolutely continuous it is sufficient to form a counterexample. Let k = 2. 
Let £i = £2 a.s. and let each of them be uniformly distributed on (0, 1). From 
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Example 2 one has clearly d1F\(dxl dx2) = 0 a.e. with respect to the Lebesgue mea­
sure i f in K2, and ^s dF(x1? x2) = 1 where s = {(x, x), 0 < x < 1} with <£(s) = 0. 
It means that F(x1? x2) is not absolutely continuous (but is continuous), while Fi(x) 
and F2(x) are so. Q.E.D. 

Another example which is not so special is the following 

E x a m p l e 3. Let £ t be uniformly distributed on (0,1) and P(£2 e (0, 1)) = 1. 
Let £2 = £ t for 0 < £x g \, and let £2 be uniformly distributed on (\, l) for \ < 
< Ci ^ 1, i.e. the conditional cdf of £2 for a given £j is of the form 

F2(x2 | x\) = 0 if 0 < X! ^ i and x2 < xx , 

2x2 — 1 if i < Xj < 1 and i < x2 < 1 , 

1 if 0 < Xj S i and x2 ^ Xj , or \ < xl < 1 and x2 ^ 1 . 

Therefore 

F(xj, x2) = 0 if Xj ^ 0 or x2 :g 0 , 

xx if 0 <x< ^ i and x2 ^ x t , or \ < xl < I and x2 ^ 1 , 

x2 if 0 < x2 S i and *i ^ *2 > or ^ < x2 < I and Xj ^ 1 , 

i + 2(xi - i ) (x2 - i ) if i < x1 < 1 and | < x2 < 1 , 

1 if x ^ 1 and x2 ^ 1 . 

Thus we obtain 

F2(x2) = 0 if x2 S 0 , 

x2 if 0 < x2 < 1 , 

1 if x2 ^ 1 , 

i.e. c2 is also uniformly distributed on (0, 1) as £-_, while 

d2F (2 if \ < xx < 1 and i < x, < 1 , 

dxt dx2 [0 otherwise 

^2 

dx{ dx2 = \ and dF(x l s x2) = \ , 
J J Ridxidx2 J J, 

where s = {(x, x), 0 < x < \) with &(s) = 0, i.e. F is not absolutely continuous 
(but is continuous). 

Corollary 2. Lemma 2 can be generalized for the case of £1} ..., tk being random 
vectors. 
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Ill, NOTATION AND DEFINITIONS 

Let Xj = (X{, ...,X{), 1 S J S N be k-dimensional random vectors. Let X = 
= (X\ ...,Xm), Y=(Xm + 1 , , . . , X m + n ) , Z = (X, Y), where m ^ 0, n ^ l , m + n = 
= N. For the case m = 0, Y = Z, let x, y, z, ... be representations of X, Y, Z, ..., 
respectively. Denote Z t = (Xh Y,), 1 ^ i ^ fc, where 

X, = ( X i , . . . , X m ) , Y^^r1,...,^4-"). 

Let T= T(Z) = T(X, Y) = (Tj(X, Y), ..., Tk(X, Y)) be a k-dimensional statistic. 
For a = (au ...,as)eR\ b = (b,, ..., bs) e Rs, let a(p) stand for (a, ..., a) e Rps 

and a * b = (a t b,, ..., Osbs). 

Definition 1. Tb<? statistic T(X, Y) is said to be translation invariant iff 

(1) T(X, Y + b(n)) = T(X, Y) + b /Or all b = (b1? ..., bk) e Rk . 

Definition 2. Tbe' statistic T(X, Y) is said to be scale invariant of the first type or 
of the second type iff 

(2) T(X, tY) = t T(X, Y) for all t e R1, or 

(3) T(X, a(n) * Y) - a * T(X, Y) for all a = (ax, ..., ak) e Rk, 

respectively. 

Definition 3. The statistic Tis said to be linear invariant of the first type or of the 
second type iff it is translation invariant as well as scale invariant of the first type 
or of the second type, i.e. iff 

(4) T(X, tY + b(n)) = t T(X, Y) + b for all t e R1 and all b e Rk, or 

(5) T(X, \a(n) * Y] + b(n)) = \a * T(X, Y)] + b for all a, be Rk, 

respectively. 

Remark 2. In some cases (if necessary) Definitions 2 and 3 may be modified in 
the following way: (2), (3), (4), and (5) are replaced by 

(2') T(tX, tY) = t T(X, Y) for all t e R\ 

(y) T(a(m) * X, a(n) * Y) = a * T(X, Y) for all a e Rk, 

(4') T(tX, tY + b(n)) = r T(X, Y) + b for all t e R1 and all a e Rk, 

(5f) T(a(m) * X, [V"1 * Y] + b(n)) = \a * T(X, Y)] + b for all O, b e Rk. 
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Note that Definitions 2 and 3 of the second type are stronger than those of the first 
type. Statistics satisfying one or all the Definitions would be formulated in estimating 
location parameters, see e.g. Hodges-Lehmann (1963) [3], Puri-Sen (1971) [4], 
Bickel-Lehmann (1975) [1], [2], ... . 

R e m a r k 3. If T(X, Y) = (Tt(Xl9 Yj, .... Tk(Xk, Yk)), Tis scale or linear invariant 
of the second type iff it is scale or linear invariant of the first type, respectively, as 
obtained easily from the Definitions. 

IV. THEOREMS 

Let us keep the notation of Section III. 

Theorem 1. Let T(X, Y) = (TX(X, Y), ..., Tk(X, Y)) be translation invariant. 
Then the cdf's of Tl9 ..., Tk are absolutely continuous provided the cdf F(x, y) of 
(X, Y) is so. 

Proof. For i, 1 ^ i ^ k and A a R1 with Se(A) = 0, put Rf = {(x, y) e RNk : 
: Ti(x, y) E A}. Rf is measurable. Consider in RNk the family of all lines parallel to 
the direction of the vector I = (0(mk\ l(nk)): 

Ses = {L(x, y) = {(x, y + t(nk)), t e R1}, (x, y) e RNk}. 
For each L = L(x°, y°) e S£7, one has 

[(x, y) e L(x°, y°) n Rf] o [(x, y) = (x°, y° + [c - T(x°, y°)f'k>, c e A] 

This means that each L e Sex intersects Rf in a set equivalent to A, therefore the set 
has the Lebesgue measure zero. Then J£(Rf) = 0, by the Fubini theorem applied 
to the Lebesgue measure S£ in RNk. It follows from the absolute continuity of F(x, y) 
that P(Tt E A) = $Ri* ... J dF(x, y) = 0 for all A c R1 with S£(A) = 0, i.e. the cdf 
of Tt is absolutely continuous. Q.E.D. 

R e m a r k 4. In view of Lemma 2 (iii) one cannot obtain the absolute continuity 
of the joint cdf of T = (T1? ..., Tk) under the assumptions of Theorem 1. The same 
argument explains why the second assertion of Theorem 6.2.2 in [4] mentioned in 
Section I is dubious. 

Corollary 3. The result of Theorem 1 holds for a statistic T which is linear in­
variant of the first type or of the second type. 

Theorem 2. Let T = (T{(X, Y), ..., Tk(X, Y)) be scale invariant of the first type or 
of the second type and such that Tt(x, y) = 0 iffy = 0(nk\ 1 ^ / ^ k. Let F(x, y) 
be absolutely continuous. Then the cdfs of 7\, ..., Tk are so as well. 
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Proof . Theorem 2 is proved similarly as Theorem 1, with JSfj replaced by 

if; = {L'(x, y) = {(x, rj) : t e R1}, (x, y) e RNk, y * 0 W } . 

The intersection of K(x°, y°) with Rf, A c R\ S£(A) = 0 is {(x°, [c/(T(x°, y0))] v°), 
cez l , which has the Lebesgue measure zero. The rest of the proof follows as in 
Theorem 1. Q.E.D. 

R e m a r k 5. Theorem 2 remains true for T which is scale invariant in the sense of 
the definition modified as in Remark 2 and such that T^x, y) = 0 iff (x, y) = 0(Nk). 
In order to prove it let us put S£\ = {L(x, y) = {t(x, y), teR1}, (x, y) e RNk\ 
\{0{Nk)}}. Then the intersection of L'(x°, y°) e S£\ with R?, A c R\ if(A) = 0 

is {[c/(T((x°, y0))] (x°, y°), c e A} of the Lebesgue measure zero. 
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S o u h r n 

SPOJITOST INVARIANTNÍCH STATISTIK 

NGUYÉŇ VÁN H O 

Cílem článku je dokázat obecné věty o absolutní spojitosti statistik invariantních 
vzhledem ke změně polohy a měřítka, z nichž plynou příbuzné výsledky Hodgese-
-Lehmanna a Puri-Sena. Vyšetřuje se také vztah mezi spojitostí sdružené distribuční 
funkce náhodného vektoru a jeho marginálních distribučních funkcí. 
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