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INTRODUCTION

Recently, Mosco and Strang [5] have published an error analysis for a finite
element procedure applied to unilateral problems with an obstacle in the domain.
Using some ideas of their approach, the dual finite analysis has been accomplished
in [3] for unilateral problems with conditions of Signorini’s type on the boundary,
i.e., with boundary obstacles given by a zero function.

In the present paper we extend the results of [3] to some problems with non-
homogeneous obstacles on the boundary. The dual finite element procedures -are
proposed using piecewise linear polynomials on triangulations of the given domain
and O(h) convergence in energy norm proved, provided the solution is sufficiently
regular. Some a posteriori error estimates and two-sided bounds for the energy
of the solution are also derived.

1. THE DUAL VARIATIONAL FORMULATIONS

Let us consider the following model problem
(1.1) —Au+u=f in QcR",
u—g=z0, dufov=0, (u—g)oulov=0 on 0Q=T,

where 6u/6v denotes the derivative with respect to the outward normal v and f, g
are given functions. Let Q be a bounded domain with Lipschitz boundary (cf. e.g.
[1] for the definition). Henceforth we use the Sobolev spaces H¥(Q) with the usual
norms Hu”k, HO(Q) = Ly(Q), x = (xy, X3, .- .. X,)s

(u,0)o = J uvdx,
o

(u, v)y = (4, v)o + ingl(au/ax,., 00[0x;), .
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Assume that fe Ly(Q) and that a function G € H*(Q) exists such that G = g
on the boundary I'.")
The problem (1.1) can be recast as follows. Introduce the convex set

A = {vlveH‘(Q), yw—g=20 on T},
where yv denotes the trace of v on the boundary, and the functional (potential energy)
2(0) = 4ol = (12 0)o-
Then the problem to find u € & such that
(1.2) Lu) < L) YoeX

represents a variational formulation of the problem (1.1) and it will be called primary.
The problem can be reformulated in terms of the gradient-vector (cf. [3]) To this
end we introduce the set

Q = {qe[L,(Q)]". div ge Ly(Q)},
where the operator

divq =) dq,/ox;
i=1

is defined in the sense of distributions. For g€ Q, we may define the functional
q.ve H V*I') by means of the relation?)

(1.3) {9 .v,pv) = f (q9.grad v + vdivg)dx Vve H(Q).
o]

We write s = 0 for an se H™'/*(I') if

(s, ) =20 Yoe¥,
where
¢ ={veH'(Q), p=0onTI}.

Finally, introduce the set
(14) % = {AG [LZ(Q)]"+1 H }' = [Ary AA'n+ 1] H ll € Q H]
Ipgr=f+divd, A.vz0on I}

and the functional (complementary energy)
n+1

(BN 7=y

Alls = <aov 9>

n
2) Henceforth a . b denotes the scalar product Z a;b;. See e.g. [1]for the definition of H ™ 1/2(1“)4

i=1
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The problem to find 4° € % such that
(1.6) FA°) £ FA) Vieu,

will be called dual to the primary problem (1.2).

It is easy to prove that both the primary and the dual problem possesses a unique
solution. Moreover, there is an interpretation of the solution to the dual problem
in terms of the solution to the primary problem.

Theorem 1.1. If u is the solution to the primary problem (1.2) and A° the solution
to the dual problem (1.6), then

(1.7) A =adufox;, i=1,..,n, . =u.

Proof. First we rewrite the dual problem into an equivalent one. Setting

(1.8) }~i=Pi+aG/axi’ i=1...,n,
Antt = Pnr1 + G,

we may write for Ae %

(19) Z(3) = () +(G.f)o - 4 6]},

where
n+1

0= 43 1ol
It is readily seen that 4 € % if and only if p € %, where
U ={p =[P Ps1], P€Q. pPoui=f+AG -G +divp',
p' .v+0G/ov=10 on ry.
Consequently, the problem to find ° € % such that

(1.10) SP°) = L) Vpea,

is equivalent with the dual problem (1.6).
We can prove the following

Lemma 1.1. There exists w € HL/Z(F) such that

(L11) - Z(p°) — <p°.v + 0G|ov, w> = L(p°) - PO . v+ 8G[ov, wy
< F(p) — <PV + 0Gay, v
holds for any pe H'JZ(F), p e Qy¢, where

HY = {ve H'3(I) 0 & g
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Qrc = {Pe[L(]"", p =[P Pas1], P’ €Q, Pury =f + AG — G + div p'}.
Moreover,

p°.v+ 0G[ov,w) = 0.

Proof of this Lemma is based on a Corollary of Hahn-Banach theorem being
parallel to that of Lemma 1.1 in [3].

Using Lemma 1.1 and following the proof of Theorem 1.1 in [3], we show that
(1.12) p° =[p% pii]. P” =gradii, pli =1,
where #i solves the problem
(1.13) —Ai+id=f+AG—-G in Q, yi=w on I.

Finally, let us prove that & = u — G, which will complete the proof of Theorem 1.1,
by virtue of (1.8), (1.10) and (1.12). SettingV =v — G, U = u — G, we have Ve &,
U € % (see (1.3)). The function u is a solution of (1.2), precisely if

(uyv —u)y 2 (fiv—u)y Ywed .
Thus for U we obtain an equivalent version:
(1.14) U, V-U), 2(f,V-U) - (G V-U), We%.

Inserting V = 0 and V = 2U, we derive

(1.15) (U, U), = (£, U) — (G, U), .
Consequently, (1.15) and (1.14) result in
(1.16) U, V), = (f.V)o — (G, V), VVe%.

U is a solution of (1.14) if and only if it satisfies (1.15), (1.16). Let us verify (1.15),
(1.16) for i. In fact, we have

/
s(=—(@+G),yW) = rad (@ + G).grad V + Vdiv grad (& + dx
05 (1 i+ 6, 3v) = [ gma@+0).s grad (i + G)]
v 2
VVe®,

where (1.12) and the definition of % has been used.
On the other hand, from (1.13) we obtain that

divgrad(i + G) =i + G — f.
Consequently,
0 §'[ [grad (@ + G).grad V + V(i + G — f)]dx = (& + G, V), —
Q
“(V»f)o VVe¥,
i.e., (1.16) is satisfied for U = i.
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Making use of Lemma (1.1), we may write
0
0= (5 G),vu> = (@ + G @), — (f, o,
v

which is (1.15). Q.E.D.

2. FINITE ELEMENT APPROXIMATIONS OF THE PRIMARY PROBLEM

To propose a consistent dual finite element procedure, we restrict ourselves to
plane polygonal domains (multiply connected, in general). Thus let Q be a polygonal
bounded domain. We carve it into triangles T, generating a triangulation 7 . Denote
h the maximal side of all triangles in 7, and S, the space of continuous (in )
piecewise linear functions on J,. Henceforth we shall consider only «-f-regular
families of triangulations {.7,,}, 0 < h =1, i.e. such that positive parameters a, f§
exist, independent of h, and such that (i) no angle of all the triangles in 7, is less
than a, (ii) the ratio of any two sides in , is less than f.

Let us define g, as the linear interpolate of g on I' with the nodes determined by
the vertices of the triangulation J .

Introduce the following sets:

Ay ={veS,yw—g,20o0nT},
€, ={reS,ywz2z0onTl}=%nS,.

We say that u, € ', is a finite element approximation of the primary problem (1.2)
if
(2.1) L(uw,) £ L) Yoed,.
Since &, is a closed convex subset of H'(€), it is easy to see that (2.1) has a unique
solution. To find it, we can apply e.g. the algorithm of Gauss-Seidel with constraints
(cf. [4] Chpt., 4, § 1.4 or [3]-Section 2).

Next let us derive an error estimate for u — u,,. First we prove the following (cf.
an analogous result of [5])

Lemma 2.1. Let a function W, €€, exist such that 2(u — G) — W, e €. Then
(2:2) Ju =l = o = 6 =Wl + [6 = G,
where G denotes the linear interpolate of G on the triangulation .

Proof. Denote u = G + U and set v =G + W,. Then ve # and 2u — v =
=G + (2U — W,)e A". We have

(2.3) (uow—u)y = (fiw—u)g=0 Ywexd .
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Consequently, inserting w = v and w = 2u — v, we derive the equation
(2.4) (w, W, —U)y = (L, W, — U),.

Denoting U, = u, — G; and setting v = G + U,, we have yU, = yu, — g, = 0,
consequently v e . If w = v is inserted in (2.3), it follows that

(2.5) (u, Uy = U)y 2 (f, U, — U),.
Third, choosing v, = G; + W,, we have v, € ;. From (2.1) we obtain that
(2.6) (s 05 = )y = (up Wi — U)r Z (f, Wy — Up)o -
Then using (2.4), (2.5) and (2.6), we may write
(4 = up Uy — W)y = (0, U = Wy + Uy, = U)y = (up, Uy — W)y 2
2(LU=W)+ (LU, —U)+(f,W,—U,) =0.
Consequently,
lu —ws)? =@ —upG— G +U—U,), =
é(u—u,,,G—G,)l +(u-—u,,,U——U,,+U,,— W,,)lé
< =y 116 — Gl + U - ). QED,

According to Lemma 2.1, it remains to show the existence of a function W, € €,
sufficiently close to U = u — G and such that 2U — W, e €. The answer to this
question is contained in the following

Theorem 2.1. Assume that ue H(Q) and u —geHI,), m=1,..., M,
where I',, denotes any side of the polygonal boundary I.

Then there exists W, € S, such that

OsW,su-—g on I
and

IIA

=G = Wl = Chllu ~ Gl + 3 o~ glr)

where C is independent of h, u and G.
For the proof — see [3] Section 2.

Corollary 2.1. Let the assumption of Theorem 2.1 be satisfied. Then

Ju — s = o).
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The proof follows from Lemma 2.1, Theorem 2.1 and the inequalities

2u—g)—-W,2u—9g—-W, on I,
|G = Gifls = chg]. .

3. FINITE ELEMENT APPROXIMATIONS OF THE DUAL PROBLEM

Making use of the definition (1.4), we can transform the dual problem (1.6) into
an equivalent one: to find q° € %, such that

(3.1) I(a°) < 1(q) Va e %,

where
Uy={9eQ,q.v20 on I},

4

(3-2) 1(9) = H( X [allo + [divals) + (/. diva)o — <q.v. 9>
Then
W=aq?, (i=1,...,n), Ay =f+divg®.

Consider again the a-f-regular triangulations J, of Q = R? and the spaces S,
of piecewise linear functions on J . Introducing the subset

Uon = Uo O [Sh]?
we may define:

a vector q" € %, will be called a finite element approximation of the dual problem
(3.1), if

(3.3) I(q") < I(q) Vqe,,.

The problem (3.3) has a unique solution (cf. an analogue in [3]-Section 3, where
also some algorithm for solving (3.3) has been proposed). Note that the last term
in (3.2) reduces to an integral, i.e.,

(34) —<Q-V,y>=—Jq.vgds YqeS,.

r

As far as the error estimate for g° — q" is concerned, we may apply the approach
of [3]-Section 3, completing only the functional I of [3] by the term (3.4). Thus we
come to the following

Theorem 3.1. Assume that q° € [H*(Q)]*> and q°.ve H*(I,), where I,, is any
side of the polygonal boundary I'. Then

Lllab = atllo + [aiv(@® = )0 = o(h)
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Remark 3.1. If q" is a solution of (3.3), then

= {41, ¢4 f + divq'}eu

is an approximation to the solution 4° of (1.6). By virtue of Theorem 1.1 and 3.1,
it holds

Hdiv q" + /= ulo=0(h).

Ll - o

4. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS
OF ENERGY

In this section, we derive some a posteriori error estimates, utilising the dual
finite element analysis.
Since u satisfies (2.3), we may write for any w €

4.1) 2[L(w) — Lw)] = |w|7 = [u]} - 20/, w — u) 2
2wl = Juli = 20w = w)y = [w = ulf.

Let us search an upper bound for —%(u). From the duality theory (cf. e.g. [4] chpt.
5, § 3 for an analogous problem) it follows

(4.2) L(u) = Max  Min {£(v) — {u,yv — gD},
ueH 4+ ~1/2(I') veHY(2)
where
HIYYIr) = {seH YYI), sz0}.
Setting

V=0v-G,
we can write
L) =<yw—g>=3V+ G|} = (L, V+ G — < yV> =
= 4|V} + (%G = (5 V)o — < 9V> + 3]G} = (£, G)o.
Then obviously

(43)  Min{L(v) — <p, v — 9>} = |G|} - (/. G +V1\;1‘i3))$1(v),

veH1(R)
where
LW =3I+ ™Gy —(fiV)o— V>
It is well-known that if ¥, minimizes &,(V) over H'(), then

Mp) = {0V,|ox,, 0V,[ox,, V,}
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minimizes the functional (of complementary energy — cf. e.g. [6])

74) =13 [}

over the set 4, and
Min Z,(V) = — Mm L(p),

VeH!(R)
where
2

A= {pe[Ly(Q], i;(l’b V]oxi)o + (p3, V)o =

=(fiV)o = (V: G), + <myV> VVe HY(Q)}.

The latter relation, however, can be rewritten as follows
s .
{upVy = [.Zl(p,- + 0G[ox;) oV]ox; + (ps + G — f) V] dx.
Q i=

Inserting V = ¢ € Cg(Q), we obtain that
p' +grad Ge Q,

div(p’ + grad G) = p; + G — f,
consequently

(4.4) py=f+divp +AG —G.
Using also (1.3); we may write

{wyVy =<p'.v + 0Glov, yV) VVe H(Q).
It means that

(4.5) P v+ dGlov=pz20.
Now (4.4), (4.5) imply that (cf. the proof of Theorem 1.1)

(4.6) U A,=%.

peH .« = 1/2(I)

Inserting (4.3) into (4.2), we obtain

2(w) = Max (1G]} - (7, Q) - Min #(p)}.

peH 4 -1/(r

We have, by virtue of (4.6),

Max (— Min #(p)) = — Mm Mm L(p) = — Mm ZL(p),

peH 4 ~1/2(I') ped,
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which results in the desired bound
(4.7) = L(u) = ~4|G[T + (f. G)o + #(#°) =
< 2(G) + y(p) = 5"9(}.) Yied,

where (1.9) has been used. Thus we are led to the following

Theorem 4.1. Let 4, be any approximation of the primary problem (1.2) such
that ii,e A'"). Let q" € Uy, be a finite element approximation of the dual problem
(3.1). Then

2
(4.8) i, — u|? g;}]q? — duyfox;|o + |f + div ¢* — @, +
+ 2J‘ q" . v(i, — g)ds = E(q", @,).
r

Proof is parallel to that of Theorem 6.1 in [3].

Remark 4.1. Suppose that G is known explicitely. Then
i, =u, + G — G,

can be substituted in (4.8), where u, € &', is the finite element approximation (or
any iterative solution of the problem (2.1), obtained by means of the Gauss-Seidel
algorithm with constraints). Instead of ¢" we may insert any q"™ € %,

Note that all terms in the right-hand side of (4.8) are non-negative.

Theorem 4.2. (Two-sided bounds for the energy). Let @i, and q" be the same as
in Theorem 4.1. Then for U = u — G it holds

(4.9) 22(G) — 22(,) < |U|3 £ |4t — 8Glox|s +
+ |f = G+ dive' | = F(q"),

(4.10) 22(G) — 2<(ii,) £ (f, U)o — (G, U), £ F(q").

Proof. From (1.15) we know that

[l = (£, U)o - (G, U): -
Then we have

Zu) =3|U + G|} = (f,.U + G), = 3|U|I = (£, U)o + (G, U), +
+ 3|G[7 = (£ G)o = —3|U|} + £(6),

1y Note that Ay & o unless g, = g! Therefore, the finite element approximations u, € o,
cannot be used, in general.
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consequently,
U = 22(G) — 22(u) 2 22(G) — 22(d) -
Using (4.7) and (1.9), we obtain for any p e U,
[U]} = 202(6) - 2(w)] 2 2[£(6) + #,)] = 29().
Finally, if q" € %,,, then p = [p’, ps] € % with
(4.11) P =4q —gradG, py=f+divg" - G. Q.E.D.

Remark 4.2 If f = 0, a two-sided estimate for Huf” follows easily from (4.9) and
(4.10), as

Jult = Ju + 6] = Juli + 6]t +2(G. V), -

Theorem 4.3. Let i, q" and E(q", @,) be the same as in Theorem 4.1. Then it
holds '

2
(4.12) Y “q',' — Ou/ox;
i1

24 ”f + div ¢" — u“z < E(¢", @) .
Proof. The solution p° of (1.10) satisfies the inequality

®%Pp—9°20 Vpeu,,
where

(P, 9) =l:21(l’i’ q:o -
Consequently, we may write for any p € %
@13 296) 296 = bl ~ [p°] = [p] ~ (0" 8) =
=(P.p—P) = (PP —P)+ (PP —P) 2 [P — 9"
From (1.9) and (4.7) it follows that
(4.14) I(P) — S(P°) = Fod) — Fo(8°) = F4(2) + £(u) =
S FA) + L(v) Vieu, ved,

if A =[4, A3], where A’ = p' + grad G, A; = p; + G. We have p — p° = 4 — A°
and substituting

A=a={dl dhf+divg"}, A°={0ufox,, ox|ox,, u},

from (4.13) and (4.14) we obtain that the left-hand side of (4.12) is bounded above
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by 2#,(4") + 22(iI,). The latter sum, however, can be rearranged to E(q", ii,)
(cf. the proof of Theorem 6.1 in [3]).

Remark 4.3. Using Corollary 2.1 and Theorem 3.1, it is easy to prove that
E(q", 1), where @, = u, + G — G, (cf. Remark 4.1), tends to zero with h — 0.
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Souhrn

DUALN] ROZBOR ELIPTICKYCH ULOH S PREKAZKAMI
NA HRANICI METODOU KONECNYCH PRVKU, I

IvaN HLAVACEK

V nedavné praci [3] pfedlozil autor dudlni analyzu eliptickych tloh druhého
fadu s okrajovymi podminkami Signoriniho typu, tj. s pfekdZkami na hranici danymi
nulovou funkci. V tomto &lanku se rozsifuji vysledky z [3] na jednu tfidu podobnych
uloh, ale s nehomogennimi pfekdzkami na hranici.

Pomoci po ¢éstech linearnich polynomu na triangulaci dané oblasti jsou navrzeny
dudlni metody koneénych prvkii a dokazuje se jejich O(h)-konvergence v energetické
normé, za pfedpokladu, Ze feSeni je dostatecné hladké. Déle se odvozuji téZ nékteré
aposteriorni odhady chyb obou dudlnich metod a oboustranné odhady energie
feSeni.
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