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SVAZEK 22 (1977) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

DUAL FINITE ELEMENT ANALYSIS FOR ELLIPTIC 
PROBLEMS WITH OBSTACLES ON THE BOUNDARY, I 

IVAN HLAVACEK 

(Received March 8, 1976) 

INTRODUCTION 

Recently, Mosco and Strang [5] have published an error analysis for a finite 
element procedure applied to unilateral problems with an obstacle in the domain. 
Using some ideas of their approach, the dual finite analysis has been accomplished 
in [3] for unilateral problems with conditions of Signorini's type on the boundary, 
i.e., with boundary obstacles given by a zero function. 

In the present paper we extend the results of [3] to some problems with non-
homogeneous obstacles on the boundary. The dual finite element procedures are 
proposed using piecewise linear polynomials on triangulations of the given domain 
and 0(h) convergence in energy norm proved, provided the solution is sufficiently 
regular. Some a posteriori error estimates and two-sided bounds for the energy 
of the solution are also derived. 

1, THE DUAL VARIATIONAL FORMULATIONS 

Let us consider the following model problem 

(1.1) -Aw + I I = - / in Q c Rn, 

u - g ^ 0 , du\dv ^ 0 , (u - g) dujdv = 0 on dQ = F, 

where dujdv denotes the derivative with respect to the outward normal v and /, g 
are given functions. Let Q be a bounded domain with Lipschitz boundary (cf. e.g. 
[1] for the definition). Henceforth we use the Sobolev spaces Hk(Q) with the usual 
norms ||w||fc, H°(Q) = L2(Q), x = (xl9 x2, ..., xn), 

uváx, 
Q 

(u,v)0 

(u, v)ľ = (u, v)0 + ^(дu/ôxi, дv\дx^)0 . 
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Assume that f e L2(Q) and that a function G e H2(Q) exists such that G = g 
on the boundary F.1) 

The problem (1.1) can be recast as follows. Introduce the convex set 

X = {v\veH\a)9 yv-gHO on F} , 

where yv denotes the trace of v on the boundary, and the functional (potential energy) 

^{v) = i|HI- - (/• v)o • 

Then the problem to find w e J f such that 

(1.2) &{u)^Se(v) V v e J f 

represents a variational formulation of the problem (1.1) and it will be called primary. 
The problem can be reformulated in terms of the gradient-vector (cf. [3]). To this 

end we introduce the set 

Q = {qe[L2(Q)]\ div q e L2(Q)} , 
where the operator 

n 

div q = £ dqjdxi 
i=l 

is defined in the sense of distributions. For qe Q, we may define the functional 
q .ve H~1/2(F) by means of the relation2) 

(1.3) (q . v, yv} = \ (q . grad v + v div q) dx Vv e H\Q) . 

We write s = 0 for an s e H~1/2(r) if 

<S, yv> ^ 0 VveV, 
where 

<€ = {v G H\Q\ yv = 0 on F} . 

Finally, introduce the set 

(1.4) ® = {ke[L2(Q)Y + \ k = [k\Xn+i~\> 'XeQ, 

K+i = / + divA', A ' . v ^ O o n F} 

and the functional (complementary energy) 

(1-5) . ^ ) = Vi.1||A.|o-a.v,a>. 
i=l 

*) See e. g. [2], where some sufficient conditions for the existence of G are presented. 

n 
2) Henceforth a . b denotes the scalar product *~~ afti. See e.g. [1] for the definition of H~1/2(r). 

i= 1 
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The problem to find k° e <% such that 

(1.6) #>g(X°) ̂  #>0(k) Vke®, 

will be called dual to the primary problem (1.2). 
It is easy to prove that both the primary and the dual problem possesses a unique 

solution. Moreover, there is an interpretation of the solution to the dual problem 
in terms of the solution to the primary problem. 

Theorem 1.1. Ifu is the solution to the primary problem (1.2) and 1° the solution 
to the dual problem (1.6), then 

(1.7) l°i = du/dXi, i = 1, . . . , n , A°+1 = u . 

Proof . First we rewrite the dual problem into an equivalent one. Setting 

(1.8) Xi = Pi + dG\dxl9 i = 1, . . . , M , 

K + l = Pn + 1 + G , 
we may write for k e W 

(1-9) *M = Sty) + (G,/)0 - ilGf? , 
where 

^ ) = *"i1iNio. 
1 = 1 

It is readily seen that A e ^ if and only if p e %G, where 
^ G = {P = [>', p w + i ] , P ' e Q , P„+1 - f + A G - G + d i v p \ 

p ' . v + dG/dv = 0 on F} . 

Consequently, the problem to find p° e °ttG such that 

(110) S-(p°)SS-(p) MpsouG 

is equivalent with the dual problem (1.6). 
We can prove the following 

Lemma 1.1. There exists w e H+/2(F) such that 

(1.11) Sty0) -<p°.v + dGjdv, „> ^ *>(p°) _ < p 0 y + a G / 5 v > w > ^ 

_ ^ ( P ) - <P • v + 5G/av, w > 

holds for any \i e H+/2(F), p e Q/G, where 

IIV2 = ^ e t f ^ ( r ) , t > ^ o } , 

246 



QfG = {pe[L2(Q)Y+i, f> = | » „ + 1 ] , p'eQ, pn+l = j + AG - G + div p'} . 
Moreover, 

<p° . v + dGjdv, w> = 0 . 

P roo f of this Lemma is based on a Corollary of Hahn-Banach theorem being 
parallel to that of Lemma 1.1 in [3]. 

Using Lemma 1.1 and following the proof of Theorem 1.1 in [3], we show that 

(1.12) p° = |>° ' , p ° + 1 ] , f»°' = g r a d u , p°+1=u, 

where u solves the problem 

(1.13) —Aw + u = / + AG — G in Q , yu = w on F . 

Finally, let us prove that u = u — G, which will complete the proof of Theorem 1.1, 
by virtue of (1.8), (1.10) and (1.12). Setting V = v - G, U = u - G, we have Ve # , 
U G # (see (1.3)). The function u is a solution of (1.2), precisely if 

(u, v - u)t = (/, v - u)0 VveJf. 

Thus for U we obtain an equivalent version: 

(1.14) (U, V - UX = (/, V - U)0 - (G, V - U)t We V . 

Inserting V = 0 and V = 2U, we derive 

(1.15) (U, U)t = (/, U)0 - (G, U)t . 

Consequently, (1.15) and (1.14) result in 

(1.16) (U, V)x - (/, V)0 - (G, V)t VVe V . 

U is a solution of (1.14) if and only if it satisfies (1.15), (1.16). Let us verify (1.15), 
(1.16) for u. In fact, we have 

0 = / — (fi + G), yv\ = j [grad (u + G) . grad V + Vdiv grad (w + G)] dx 

V V e ^ , 

where (1.12) and the definition of °llG has been used. 
On the other hand, from (1.13) we obtain that 

div grad (u + G) = u + G — / . 

Consequently, 

0 ^ 1 [grad (fi + G). grad V + V(fi + G - / ) ] dx = (fi + G, V)x -

- ( V , / ) 0 V V e ^ , 

i.e., (1.16) is satisfied for U = u. 
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Making use of Lemma (1.1), vye may write 

-Іjv(ӣ + G),yu 

which is (1.15). Q.E.D. 

2. FINITE ELEMENT APPROXIMATIONS OF THE PRIMARY PROBLEM 

To propose a consistent dual finite element procedure, we restrict ourselves to 
plane polygonal domains (multiply connected, in general). Thus let Q be a polygonal 
bounded domain. We carve it into triangles T, generating a triangulation 3Th, Denote 
h the maximal side of all triangles in £Th and Sh the space of continuous (in Q) 
piecewise linear functions on 3Thm Henceforth we shall consider only a-/?-regular 
families of triangulations { ^ } , 0 < h _ 1, i.e. such that positive parameters a, f$ 
exist, independent of h, and such that (i) no angle of all the triangles in 3Th is less 
than a, (ii) the ratio of any two sides in 3~h is less than ft. 

Let us define gh as the linear interpolate of g on F with the nodes determined by 
the vertices of the triangulation &~h. 

Introduce the following sets: 

^h = {ve Sh, yv - gh = 0 on F} , 

<gh = { r e Sh, yv = 0 on F} = V n Sh . 

We say that uh eXh is a finite element approximation of the primary problem (1.2) 
if 

(2.1) S£(uh) <, <£(v) VveXh. 

Since Xh is a closed convex subset of HX(Q), it is easy to see that (2.1) has a unique 
solution. To find it, we can apply e.g. the algorithm of Gauss-Seidel with constraints 
(cf. [4] Chpt., 4, § 1.4 or [3]-Section 2). 

Next let us derive an error estimate for u — uh. First we prove the following (cf. 
an analogous result of [5]) 

Lemma 2.1. Let a function Wh e
 <€h exist such that 2(u — G) — Whe

(£. Then 

(2.2) ||w - wA||i = ||w - G - Wh\x + IG - Gj I i , 

where Gj denotes the linear interpolate of G on the triangulation $~h. 

Proof. Denote u = G + U and set v = G + Wh. Then v e JT and 2u — v = 
= G + (2U - Wh) e JT. We have 

(2.3) (u, w ~ u)x - (/, w - u)0 = 0 VweJf. 
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Consequently, inserting w = v and w = 2u — v, we derive the equation 

(2.4) («, Wh - U\ = (f, W„ - U)0 . 

Denoting Uh = uh — Gi and setting v = G + Uh, we have yUh = yuh — gh ^ 0, 
consequently v e X. If w = v is inserted in (2.3), it follows that 

(2.5) («, Uh - U)t ^ (/, Uh - U)0 . 

Third, choosing v^ = G/ + Wh, we have vA e $Ch. From (2.1) we obtain that 

(2.6) («„, t>, - «A)X = («„, i n - Uh)t ^ (/, » i - U„)0 . 

Then using (2.4), (2.5) and (2.6), we may write 

(« - uh, Uh - Wk)t = («, U -Wh + Uh- U\ - («„, U„ - ^ ) , ^ 

^ (/, c/ - wh)0 + (/, U, - U)0 + (/, Wh - Uh)0 = 0 . 

Consequently, 

||u - Uh\\ = (u: - Uh, G - Gj + U - U^)i = 

S(u-uh,G - G,\ +(u-uh,U -Uh + Uh- Wh)t S 

= ||u ~ u.li {||G - GJIX + ||U - Wil-} , Q.E.D. 

According to Lemma 2.1, it remains to show the existence of a function Wh e ^h, 
sufficiently close to U = u — G and such that 2U — Whe ^. The answer to this 
question is contained in the following 

Theorem 2.1. Assume that u e H2(Q) and u — g e H2(rm), m = 1, . . . , M, 

where rm denotes any side of the polygonal boundary F. 

Then there exists Wh e Sh such that 

0 = Wh = u - g on F 
and 

M 

11! - G - W^li = Ch(\u - G\\2 + X ||u - g\\H2(rm)), 
m = l 

where C is independent of h, u and G. 
For the proof — see [3] Section 2. 

Corollary 2.1. Let the assumption of Theorem 2.1 be satisfied. Then 

1 u - tt4i = 0(h). 
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The proof follows from Lemma 2A , Theorem 2A and the inequalities 

2(u - g) - Wh ^ u - g - Wh on F, 

||G - G /||1 = Ch\\G\\2. 

3. FINITE ELEMENT APPROXIMATIONS OF THE DUAL PROBLEM 

Making use of the definition (1.4), we can transform the dual problem (1.6) into 
an equivalent one: to find q° e °U0 such that 

(3.1) /(q°) = 7(q) V q e ^ 0 , 

where 

*o = {q e Q, q . v = 0 on T} , 

(3.2) I(q) = K £ | c j . | 0 + ||div q||0) + (/, div q)0 - <q . v, fl> . 
i = l 

Then 
A° = tf°, (i = l, . . . , « ) , A°+1 = / + d i v q ° . 

Consider again the a-/?-regular triangulations ^h of Q c R2 and the spaces Sh 

of piecewise linear functions on ^~h. Introducing the subset 

#o* = ^ o n [S , ] 2 , 
we may define: 

a vector qh e ^ 0 h will be called a finite element approximation of the dual problem 

(3A), if 

(3.3) I(q*)^I(q) V q e ^ 0 A . 

The problem (3.3) has a unique solution (cf. an analogue in [3]-Section 3, where 
also some algorithm for solving (3.3) has been proposed). Note that the last term 
in (3.2) reduces to an integral, i.e., 

(3.4) - < q . v , a > = - f q.vgás V q e 8 ň . 

As far as the error estimate for q° — qh is concerned, we may apply the approach 
of [3]-Section 3, completing only the functional I of [3] by the term (3.4). Thus we 
come to the following 

Theorem 3.1. Assume that q° e [H2(Q)]2 and q°. v e H2(rm), where Fm is any 
side of the polygonal boundary F. Then 

2 

I I | k ľ - « ? | | o + |d iv(q°-q*) | | 0 = o(h). 
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R e m a r k 3.L If qh is a solution of (3.3), then 

*h = {quqh2,f+divqh}e® 

is an approximation to the solution k° of (1.6). By virtue of Theorem 1A and 3A, 
it holds 

2 

X ||«2? - dujdxtlo = 0(h), ||div q* + j - u | | 0 = 0(h) . 
І = 1 ' 

4. A POSTERIORI ERROR ESTIMATES AND TWO-SIDED BOUNDS 
OF ENERGY 

In this section, we derive some a posteriori error estimates, utilising the dual 
finite element analysis. 

Since u satisfies (2.3), we may write for any w e J f 

(4.1) 2[.S?(w) - .$?(«)] = H|? - ||«||? - 2(j, W-u)0Z 

^ II 112 | | 112 <-»/ \ II 112 

— M l - ~ IMI1 ~ A M ' w ~~ Mj1 ~ llw ~ M -• 
Let us search an upper bound for — $£(u). From the duality theory (cf. e.g. [4] chpt. 
5, § 3 for an analogous problem) it follows 

(4.2) Se{u) = Max Min {£P(v) - </x, yv - g}} , 
/xeH+ ~ i / 2 ( D t;elf-(.Q) 

where 
H;1/2(F) = { s e H " 1 / 2 ( F ) , S^O}. 

Setting 
V- !? - G, 

we can write 

.S?(t>) = </., yv - a> = i | |V+ G||? - (f, V + G)0 - <n, 7V> = 

= i|M|? + (V G). - (L V)0 - in, 7V> + i|G|? - (f, G)0 . 

Then obviously 

(4.3) Min {X(v) -<n,yv- g}} = i | G | ? - (f, G)0 + Min .S?.(V), 
yeHK-Q) VeH^-Q) 

where 

-?i(v) = i l ^ l i + (v, G\ - (f, V)0 - <n, 7V> • 

It is well-known that if V^ minimizes .Sf t(V) over H\Q), then 

A(/i) = {BVjdx,, 6Vjdx2, V„} 
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minimizes the functional (of complementary energy — cf. e.g. [6]) 

<n/>) = i £wio 
over the set A^ and 

Min &X(V) = - Min Sf(p) , 

where 

A,. = {pe [L2(Q)]\ £ (Pi> SVldxt)0 + (p3, V)0 = 
i = i 

= ( / V)0 - (V, G\ + <fi, yV) V V e H 1 ^ ) } -

The latter relation, however, can be rewritten as follows 

2 

<џ, ľV> [ Z (PІ + ðG/Őx,) ŐV/őx; + (p3 + G - / ) V] dx . 

Inserting V = cp e C^(Q), we obtain that 

p' + grad Ge Q , 

div(p ' + gradG) = p3 + G - / , 
consequently 

(4.4) T3 = / + div p' + AG - G . 

Using also (1.3), we may write 

</i, yV) = <jp'. v + dG/dv, yV) VVG Hx(0) . 

It means that 

(4.5) p'. v + dG/dv = // .= 0 . 

Now (4.4), (4.5) imply that (cf. the proof of Theorem 1.1) 

(4.6) U 4, = ^G • 
AieH+ " i / 2 ( D 

Inserting (4.3) into (4.2), we obtain 

S£(u)= Max { i | G | | ? - ( / , G ) 0 - M i n ^ ( p ) } 
//eH+-i/-(T) peAM 

We have, by virtue of (4.6), 

Max ( - Min Sŕ(p)) = - Min Min SЃ(p) = - Min Sŕ(p), 
ЏЄH+-1/ЦГ) pєЛџ џ p peUG 
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which results in the desired bound 

(4.7) - S£(u) = ~\\G\\ + (/, G)0 + sr(p°) S 

^ S£(G) + 9>(p) = Sfg(k) VA e ^ , 

where (1.9) has been used. Thus we are led to the following 

Theorem 4.1. Let uh be any approximation of the primary problem (1.2) such 
that uh e JT1). Let qh e ^/oh be a finite element approximation of the dual problem 
(3.1). Then 

(4.8) \\uh - u\\ ^ £ \\qh - dutJdXijl + | | / + div qh - uh\\2
0 + 

i = l 

+ 2 J qh. v(uh -g)ds = E(qh, uh) . 
J r 

Proo f is parallel to that of Theorem 6.1 in [3]. 

R e m a r k 4.1. Suppose that G is known explicitely. Then 

uh = uh + G — G{ 

can be substituted in (4.8), where uh e Jfh is the finite element approximation (or 
any iterative solution of the problem (2.1), obtained by means of the Gauss-Seidel 
algorithm with constraints). Instead of qh we may insert any qhm e %0h. 

Note that all terms in the right-hand side of (4.8) are non-negative. 

Theorem 4.2. (Two-sided bounds for the energy). Let uh and qh be the same as 
in Theorem 4.1. Then for U = u — G it holds 

(4.9) 2JSP(G) - 2<?(uh) ^ \\U\\1 ^ \\qh - dGldx\\l + 

+ \\f - G + div q% = F(qh) , 

(4.10) 2i?(G) - 2<£(uh) ^ (f, U)0 - (G, U), ^ F(qh). 

Proof . From (1.15) we know that 

\\u\\i=(f,U)0-(G,U)1. 
Then we have 

Se(u) = i | U + G\\ - (/, U + G)0 = i lU I ? - ( / U)0 + (G, U). + 

+ i | G | ? - (/, G)0 = -$\\U\\1 + &{G) , 

1) Note that Xh cj= J T unless gh^ g\ Therefore, the finite element approximations uh e 3fh 

cannot be used, in general. 
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consequently, 

|| 171? = 2S£(G) - 2S£(u) = 2S£(G) - 2S£(uh) . 

Using (4.7) and (1.9), we obtain for any pe UG 

HUH? = 2[JS?(G) - S£(u)~\ = 2\S£(G) + 9>g(X)\ = 2Sf(p). 

Finally, if qh e %0h, then p = [p\ p3] e ^G with 

(4.11) p' = q* - grad G , p3 = / + div q* - G . Q.E.D. 

Remark 4.2 Iff = 0, a two-sided estimate for |u?|| follows easily from (4.9) and 
(4.10), as 

||ii||? = ||U + G||i = ||U||i + ||G||i + 2(G, U)t . 

Theorem 4.3. Let uh, qh and E(qh, uh) be the same as in Theorem 4.L Then it 
holds 

(4A2) £ ||«{ - dujdxtll + ||f + div qh - ufQ S E(qh, uh) . 
i = i 

Proof. The solution p° of (1.10) satisfies the inequality 

(p°,p-p°) = 0 Vpe®G, 
where 

3 

(P><l) = Z(Ppq/)o-
t = i 

Consequently, we may write for any p e ^ G 

(4A3) 2Sf{p) - 2S*(p°) = \p\\2 - \\p<>\\2 ^ | p | - - (p°, p) = 

= (P, P ~ P°) ~ (P°, P~P°) + (P°, P-P°)^ \\P ~ P°\\2 • 

From (1.9) and (4.7) it follows that 

(4.14) Sf(p) - S*(p°) = S*g(X) - S*g(X°) = S*9(X) + <£(u) < 

g Sfg(X) + S£(v) VA e ^ , v e Jf , 

if X = [A', A3], where A' = f>' + grad G, A3 = p3 + G. We have p - f>° = A - A0 

and substituting 

A = X" = {g?, q*,f + div q*} , A0 = {dujdxu dx\dx2, u] , 

from (4.13) and (4.14) we obtain that the left-hand side of (4.12) is bounded above 
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by 2^g[kh) + 2<£{uh). The latter sum, however, can be rearranged to E(qh, uh) 

(cf. the proof of Theorem 6.1 in [3]). 

R e m a r k 4.3. Using Corollary 2A and Theorem 3.1, it is easy to prove that 

F(q\ uh), where uh = uh + G — GL (cf. Remark 4A), tends to zero with h -> 0. 
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S o u h r n 

DUÁLNÍ ROZBOR ELIPTICKÝCH ÚLOH S PŘEKÁŽKAMI 
NA HRANICI METODOU KONEČNÝCH PRVKŮ, I 

IVAN HLAVÁČEK 

V nedávné práci [3] předložil autor duální analýzu eliptických úloh druhého 
řádu s okrajovými podmínkami Signoriniho typu, tj. s překážkami na hranici danými 
nulovou funkcí. V tomto článku se rozšiřují výsledky z [3] na jednu třídu podobných 
úloh, ale s nehomogenními překážkami na hranici. 

Pomocí po částech lineárních polynomů na triangulaci dané oblasti jsou navrženy 
duální metody konečných prvků a dokazuje se jejich O(h)-konvergence v energetické 
normě, za předpokladu, že řešení je dostatečně hladké. Dále se odvozují též některé 
aposteriorní odhady chyb obou duálních metod a oboustranné odhady energie 
řešení. 
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