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SVAZEK 21 (1976) A P L I K A C E M ATE M A T I K Y ČÍSLO 4 

THE 0 - 1 LAW GENERALIZED FOR NON-DENUMERABLE 
FAMILIES OF EVENTS AND OF cz-ALGEBRAS OF EVENTS 

N G U Y E N - V A N - H O 

(Received January 27, 1976) 

I N T R O D U C T I O N 

Let (Q, stf, P) be a complete probability space. Let Tbe an arbitrary set of indices, 
T = {t}, such that 

(1.1) card T^ card N, where N = {1, 2, 3, ...} . 

Let {Ar, t e T} c ^ and {(7t, t e T} be a family of <r-algebras of events in sd'. Let 
cr(-) denote the r/-algebra generated by (•). 

In the case card T= card N, t = {tn}, neN, the following definitions are well-
known: 

.2) lim sup Лtn = П U Лtk (є sé), 

oo oo 

(1.3) liminfA,,, = U fMr* M ) , 
n = 1 /c = n 

oo 

(1.4) lim sup atn = f\ ^v^-v °"f„+i' atn + 2> •••) (being a c-algebra c= $$) . 
> . = i 

It is clear that 

(1.5) lim inf An = 0 \ l i m sup An, where A„ = f2 \A M . 

The following two theorems are well known (see, e.g. [ l ] , [2], [3], [4]). 
The Borel-Cantelli Lemma. If {A„}, neN, is a sequence of independent events 

00 

in s4', then P(lim sup An) = 0, or = 1, according to ]T P(A„) < oo, or = oo, respecti­
vely. , I=1 

The 0— 1 law of Kolmogorov. If {r/„}, n e N, is a sequence of independent r/-al-
gebras in j / , then lim sup crn is composed of events of probability 0 or 1. 
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In Section 2 the author will generalize the definitions in (1.2) —(1.4) to the defini­
tions of SUPA , , INF Ar, and SUP <x„ respectively, for the case (l . l) . 

T T T 

In Section 3 there will be given results generalizing the Borel-Cantelli Lemma 
and the 0— 1 law of Kolmogorov. 

2. GENERAL DEFINITIONS 

Let T, TV, {A„ te T}, {at, t e T} be given as in Section 1. Let (1.1) be satisfied. 
Denote 

(2.1) S(T) = {{tn}:neN9 tneT9 tt + tj if / * j e N} , 

i.e. S(T) is the set of all subsequences {tn} of distinct indices of T 
Let us define: 

GO OO 

(2.2) S U P A , = U I i m s u p A , n = U 0 U Atk , 
T {tn}eS(T) {tn}eS(T) n=l k = n 

00 00 

tk ' (2.3) INF At = f| --na inf Ar„ = 0 U f) A 
T [tn}eS(T) {tn}eS(T) n=\ k = n 

and 

(2.4) SUP(Tr = c/(c7{r)i},{tn}6S(T)), 
T 

where a{tn} denotes lim sup otn . 
Clearly, 

(2.5) INF At = Q\ SUP At. 
T T 

The following Lemma shows that the new definitions generalize the ones in (1.2) to 
(1.4) respectively. 

Lemma 1,1f 

(2.6) card T = card N , T = {tn} , ne JV, 

then 

(2.7) SUPA f = l imsupA r n , 
T 

(2.8) INF A, = l iminfA r n , 
r 

and 

(2.9) SUP at = lim sup atn. 
T 
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Proof , a) Evidently, lim sup Atn cz SUPA , . Now, let COG SUP At. There exists 
T T 

a subsequence {tn(k)} eS(T) such that cD e lim sup Atn , by (2.2). On the other hand, 
l imsupA f n k cz lim sup Atn, by (1.2) and by {tn(k)} cz {tn}. Therefore SUP At cz 
c lim sup Atn, and (2.7) is proved. 

b) (2.8) follows from (1.5), (2.5), and (2.7). 

c) Obviously, lim sup otn cz SUP ot. 
T 

Let m e N be given. Let {tn(k)} e S(T). Hence {tn(k)} cz {tn} and n{k) -> oo as k -> oo. 
Thus there is a k(m) e N such that n(k) ^ m for all k ^ k(m). One has successively 

lim sup ot , cz o(ot ,ot ,ot , ...) 
r 'n(k) V « m ' f/n + ! ' ( / / . + 2 ' / 

for every {tn(k)} e S(T), by (1.4), 

SUPcrf cz <r(crfm, <rtm + .,<rtm + 2, . . . ) 
T 

for every m e N, by (2.4), 

SUP crr cz lim sup cr,n , by (l .4). 
T 

This completes the proof of (2.9). 

3. RESULTS 

Note that when card T ^ card N, SUP ot defined by (2.4) is always a cr-algebra 
T 

of events in stf, while SUP A, or INF At with card T> card N belongs to srf only under 
T T 

some conditions. However it will be proved in Theorem 1 below that one of them is 
always an event in s& having probability 1 or 0 respectively. 

Theorem 1. Let (Q, s/, P) be a complete probability space, and let {At, t e T}, 
with T satisfying (1.1), be a family of independent events in stf. At least one of the 
following assertions is always valid: 

(3.1) SUP Ates4 , P(SUP A,) - 1 , 
T A 

(3.2) l N F A r e ^ , P(INFAr) = 0 . 
T T 

More precisely, 

(i) (3A) is satisfied if there exists {tn} eS(P) such that 

OO 

(3.3) X KK) = oo , 
n = l 
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(ii) (3.2) is satisfied if there exists {tn} eS(T) such that 

oo oo 

(3.4) X P(A J < oo or £ (1 - P(A J ) = oo , 
n = I n = 1 

(iii) bOth (3.1) afid (3.2) are satisfied if we have (3.3) for some {tn} e S(T) as well as 
(3.4) for some {tn} eS(T). 

Proof, a) If (3.3) is satisfied for some {tn} eS(T), then from the Borel-Cantelli 
Lemma we get P(limsupA,M) = 1, i.e. 

P(:Q)\limsupA j = 0 . 

Since lim sup Atn cz SUP A,, or equivalently Q \ SUP At a Q \ lim sup A1n, one has 
T T 

Q\$UP AtesJ and P(Q \ SUP At) = 0, by the completeness of the probability 
7 T 

space. 
Therefore (3A) is valid. 
b) If one of the conditions in (3.4) is satisfied for some {/„} e S(F), we have then 

00 

YJP(AU) = oo. Now (3.2) follows from (2.5) and the proof above for{Ar, t e T}. 
n= 1 

The following Theorem generalizes the 0— 1 law of Kolmogorov. 

Theorem 2. Let {at, t e T} with card T ^ card N be a family of independent a-alge-
bras contained in s/. Then 

(3.5) P(A) = 0 or = 1 for all A e SUP at . 
T 

Proof. Denote 

(3.6) m = {A :AesJ, P(A) = 0 or = 1} . 

The 0—1 law of Kolmogorov implies 

(3.7) m ID a{tn] for every {tn} e S(T) . 

It follows from (3.6) that 

(3.8) (a) A, B e M => A u B e Wt , 

(b) A e sUt => A e sDt, 

(c) Q e m. 

Hence sJJl is an algebra containing the family (o"{rn}, {tn} e S(T)). Moreover, Wl is 
a monotone class. In fact, let {An} cz SM, An | , then 

r,/i- 4. A \ i- o/ A \ \ - if there is Ak such that P(A) = 1 , 
P(hm t A.) = lim P{An) = | Q . f ^ } = Q* for ^ ^ ^ 
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Hence lim | An e sDl. Similarly, one has also lim j An e SM for An l in tyl, 
Therefore sJJí is a rx-algebra containing 

<r{o{tn], {í„} eS(T)) = SUP<r r. 
T 

This completes the proof. 
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S o u h r n 

ZÁKON 0 - 1 ZOBECNĚNÝ PRO NESPOČETNÉ SYSTÉMY JEVŮ 
A JEVOVÝCH fj-ALGEBER 

NGUYEN-VAN-HO 

Pojmy lim sup An, HminfA,, pro posloupnosti množin An a pojem lim sup o-,, 
pro posloupnosti ď-algeber an jsou v článku zobecněny pro nespočetné systémy 
množin, resp. ď-algeber. Na základě těchto zobecněných definic se pak dokazuje 
určitá slabší obdoba Borelova-Cantelliho lemmatu pro nespočetné systémy množin 
Ař, t e T9 a přímé zobecnění Kolmogorovova 0—1 zákona pro nespočetné systémy 
ď-algeber a,, t e T 
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