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SVAZEK 21 (1976) APLIKACE MATEMATIKY CisLo 4

THE NONCONFORMING FINITE ELEMENT METHOD
IN THE PROBLEM OF CLAMPED PLATE WITH RIBS

VLADIMIR JANOVSKY, PETR PROCHAZKA
(Received December 27, 1975)

The finite element method may be viewed as an analogue of the Ritz-Galerkin
procedure with a special choice of basic functions. Both of them operate in a space
of approximations, i.e. in the space that is defined as the linear hull of the basic
functions. The Ritz-Galerkin method has one very favourable .property, namely,
the admissibility of basic functions in the trial variational principle guarantees its
convergence. This is not the case with the nonconforming method because of the
space generated by the basic functions is not a subspace of the one, on which the
minimum of the trial energy functional is to be found. If the nonconforming method
converges then this approach has many advantages. The conforming method as well
as the Ritz-Galerkin procedure may be too complicated, while the nonconforming
method is much simpler. A nonconforming solution, especially for few elements
of division, may be more exact then the conforming one and in comparison with
the Ritz-Galerkin method it is not so “‘stiff”. Hence, in many cases the nonconforming
method yields results which are more secure against violation of constructions.
It is necessary to point out that the use of nonconforming elements in practice
is perilous. It shows, namely, that the nonconforming method need not at all con-
verge to the right results. A process, leading to a necessary condition of the conver-
gence has lately been proposed. This process, known as “patch test” and developed
by B. B. Irons, has first been studied from a mathematical standpoint by G. Strang,
then by Ciarlet and others. In the sense of this approach we prove the convergence
of Ari-Adini’s rectangle in the problem of a clamped plate with ribs. The ribs are
assumed stiff against bending and torsion in the sense of Saint-Venant theory.

1. DIMENSION REDUCTION.

The problem of a plate with ribs is a three-dimensional problem of a theory of
elasticity and hence, except a few cases, analytically untreatable. Numerical solution
is too cumbersome and possible only if a top-quality computer is available. Therefore
it is necessary to use some approximative hypothesis.
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We originate from small displacement theory and formulate one type of energy
functional. This approach has many advantages. In general complicated expressions
are in our case simplified and moreover, many hypotheses are included.

The plate before deformation is situated in the three dimensional space R® so that
its middle plane and the plane Oxy = R? coincide. In the middle plane Oxy the plate
occupies a region G. For the sake of simplicity we assume:

(l.]) G = (—a, a) x (—b, b)

where a, b are positive constants. Let I = {I,}]_, be the set of straight line segments
in G characterizing ribs that are parallel to y-axis while J = {J1}1=1 is the set of
similar segments that are parallel to x-axis. The endpoints of the segments lie on the

boundary of G, i.e.
(1.2) I; = {[x,y]eR* x = x;, ye(—b,b)},

J;={[x,y]eR?* xe(—a,a), y = y;},

J

—a < x;<a,—b<y;<band x;, y; are constants, i =1,...,n, j=1,...m
From the technical standpoint we have the following problem: Let f:G — R
be the density of loading. Find a function w : G — R that is minimizing the energy

functional of a type
(1.3) F(w) = F(w) + F/(w) + Fj(w) + Fry(w) + Fr,(w) + F(w, f)

on a set of admissible functions which satisfy stable boundary conditions. In (1.3)
the particular terms stand for the following expressions:

o= [+ () 2 (s) - () oo

TORES ( )

1l

Fi(w) = 2% ,( )zdx
Frw) =1 ¥ (‘72 )d}

2 Iiel dy

1 Pw \?
Fo(w - ) dx
rl+) = 2 J,Zel J 7 (5x 0y)

Fpw,f) = —2.[ fwdxdy.
G
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If the function w is sufficiently smooth, for example w e C*(G), we obtain by
integration by parts the Eulerian equation of the variational principle:

A*'w=f on G

w = @ =0 on 0G, n is the outward normal
n
a}w 4
1.4 Mwl,=—1 , |Tw];=—
(14) [l = s - =i
2
Mw = dw — ¥
ox?
Ty — 224w _ 0w
0x Jy 0x?
and similarly on J;,j = 1,...,m,

where 0G denotes the boundary of G, [Aw],» is the difference between the values of Aw
at the left and right hand sides of the i-th rib, that is [Aw]; = Aw/[,, — Aw/[_,.
From the mathematical standpoint, there are two basic problems to be dealt with:

— to give an exact definition of the space in which the solution of the variational
problem is to be found,

— to propose a numerical method approximating the trial problem.

An exact formulation of the trial problem is given in the following chapter for the

above mentioned type of the energy functional. The nonconforming method is used
for numerical solution of the problem.

2. MATHEMATICAL FORMULATION

Let G be a domain in the n-dimensional space R". Let D(G) be a set of infinitely
differentiable functions with compact support in G. For each integer m we denote
by W™?(G) the usual Sobolev space of all functions whose derivatives of order up to m
(in generalized sense) are square integrable on G. For each w e W™?%(G) we define

the seminorm
172
W = q v [D’wlsz>
G lal=m

where a = (x,, ..., a,), @; integer, |a| = o; + @, + ... + a,

otel
pw=-——2"

= a an
0x7', ..., OX%




It is well known that [|W|l,.6 = |W|me + |W]o,c is 2 norm on W™%(G). Let Wg"*(G)
be the completion of D(G) with respect to the norm |+|,, g. Then Wg"*(G) = W™*(G)
and the seminorm | [,,,’G is a norm on Wg"%(G). For further details concerning defini-
tions and assertions see [6].

We are going to formulate the equilibrium condition of the problem on the follow-
ing space:

V= {w; we Wi3(G), we Wg(I), g»_v € Wy X(I') for each I'e I, w e Wg"*(y),
x

w W, *(y) for each yeJ
dy

with the norm m m given by

ow
dy

ow

oxX

] = wlao + ¥ (|w|z.,.. "
Iel

)

) Ly <(]w|2,,j +
1,1 Jjet

Equilibrium condition: Let f € L,(G). Find u € ¥ such that

0%u 0? ik o?
a(u, 9) + Y. o (—L'[Z) IR LA 4
fe1 )y, \0y? oy*  0x dy dx 0y

iel

(2.1)

2 A2 2 2
LY Fudte , 0w 00Ny _ o fpdxdy
i1 )y, \0x* 0x*  ox dy 0x dy G

for all ¢ € V, where

2 2 2 2 2 2
a(u,<p)=J‘(AuAcp+Qa(p+2a“ ¢ auatp)dxd
G

ox? ox? Ox dy 0x dy  dy* 9y*?

It is easy to verify that V is a Banach space and the bilinear form from the left
hand side of (2.1) is V-elliptic (see e.g. [6]). Hence, by virtue of the well known
Lax-Milgram theorem (see [6]), there exists a unique solution of the problem (2.1).

The approximation of the problem defined above is based on the following idea:
We introduce a family {V¥,},.1, of finite-dimensional spaces V;. The family is used
to find an approximative solution u, € ¥}, by applying the equilibrium condition (2.1)
on the finite dimensional space V. But, in general ¥, ¢ V and we cannot utilize the
principle (2.1). We are forced to formulate a perturbed variational principle (2.5)
on each V, in the natural way.
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We consider a division G, = {Gi,,}'{(:")l of G consisting of open rectangles G,
i =1,..., k(h)for h €(0, 1) such that

b) GuNGy=0 ij=1,...kh);: i+j,
¢)Gu,NT=0, G,Ny=0, i=1,...,kh), I'el, yeJ,
d) an edge of any rectangle G, € G, is either an edge of another rectangle

G;,€G,,j + ioraportionofdGorI'ory,I'el,yeJ.

If a point Q is a vertex of a rectangle G;, € G, then we say that Q is a node of the
division G,

We shall suppose that the sequence {G,,},,E(O',, of rectangulation is a regular family
(see [3]), i.e. with each rectangle G, of a given division G, we associate the following
geometrical parametres:

h(Gy,) . .. diameter of G,

o(Gy,) ... supremum of diameters of spheres inscribed in G, .
Then
h 2 max {h(Gy); i = 1,..., k(h)}
and
0 <7 < min {o(Gy)/h(Gy); i =1, ..., k(h)}

for each h € (0,1), where 7 is a fixed real number.
Let R be a “reference” rectangle*) in R*. Then

ij=
itj<3

A(R) = {p]p = Zoaijxi)’j + a3 X’y + a;3xy?, [x, y] eR}.

Elements of the space A(R) are the so called Ari-Adini$ polynomials.
We recall some basic properties of such polynomials. Let ¢ belong to A(R). Then
it holds:

(2.2) if A; = 1,...,4 are the vertices of the rectangle R then the values {¢p(4;),
(6p/0x) (A4:), (9p[dy) (4;), i = 1, ..., 4 define the degrees of freedom;
(2.3) if the variable x is fixed then (d¢[dx) (0, y) — (d¢[0x) (x, y) is a linear function
with respect to y;
2.4) if the variable y is fixed then (d¢/dy) (x, 0) — (é¢/éy) (x, y) is a linear function
|
with respect to x.

*) i.e. R is a fixed nondegenerate rectangle.
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There exists an invertible affine mapping F, : Gy, — R for each i = 1, ..., k(h),
he(0,1). Let he(0, 1). Then with regard to (2.2) the following definition is re-
asonable:

Vi=1{¢;0°F," € A(R) for i = 1, ..., k(h); if Q is a nodal point of a division
G, then ¢, d¢[ox, d¢|dy are continuous at the point Q with respect to G and,
moreover, if Q € éG then ¢(Q) = (0¢[ox) (Q) = (0p/dy) (Q) = 0}.

Remark 1. The spaces ¥} need not be subspacesof ¥ because ¢ ¢ Wy *(G), 0/ x ¢
W, *(I') and d¢[dy ¢ Wy **(y) for @ € V,, ' €1, y € J. But it can be easily verified that

a) g e Wo'X(I') and @ € Wy**(y) for T'el, yeJ,
b) ¢ € C(G), i.e. ¢ is continuous on G including the boundary JG,
¢) ¢ = 0on 0G.

Along the edges of a rectangle G;, € G and R we define the linear interpolation
operator % ;, and & respectively: We denote by A, B, C, D the vertices of G, or R.
Assuming  defined on the boundary dG;, and JR a.e., the value of the function
L and Ly at the point X = t4 + (1 — 1) B, t€(0, 1) of the edge AB is equal
respectively to

t lim (4 + (1 —r)B\+(1—t) hm Y(t4 + (1 — ) B)

—=1-

providing the limits exist. The functions &,/ and £y are defined in the same way
on the other edges BC, CD, AD.

Approximate problem: For f € L,(G) and h € (0, 1) find u, € ¥} such that

%u,, 0%
2.5 ay(u,, @) + T T dy +
(25) W ) ?E,{,ayz el

"“') 0 0 0
1 Lin T} 2 L % dys +
2 i= 1 FdGm ﬁy o0x / dy 0x

k(h) ~
0? 0%u, c? 4 0 du,\ 0 Jop
+— —|\ L — ) (L —)dx} =2 dxdy
)'GZJ{ 6x2 6"2 Z 700G in ax( " 0_}))6)(3( ' ay f(p

for each ¢ € V,, where

k(h) aZ 02 62 62 2
ay(uy, @) = 3. Au Ao +~ﬁz—++2— u 4 +_u¢_3_(p dx dy
= ox* 0x? Ox dy dx dy  dy? dy?
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We equip the space V,, with the natural norm ||||”,, Forgp eV,

HMW—@MM+ZOMH+

k(h) I!Z

(7 5 ren)
=1 |0y ox La(I'noG in)

1/2
G
0x OV /MLy 1n26 m)

k(h)
,(oll,h = (.;‘lq)[;(?ih)”z

The bilinear form from the left hand side of (2.5) can be easily shown to be V,-elliptic.
Following the Lax-Milgram theorem we obtain the existence and uniqueness of the
solution of problem (2.5).

The functional |||]||» defined by (2.6) on ¥, can be extended onto V@ V, = {y;
Y =@, + @5, ¢, €V, p,€V,}. It is sufficient to recall that dg,/0x and dg,[dy is
continuous on I' and y, respectively, I' €I, y e J and ¢, € V. Thus it is sensible to
define Z,,(0¢,[0x) and & (3¢ [/0y) on I' () 3G, and y () 2G, respectively. Evidently
“Il”h is a norm on V@ V,.

k(h)

(2.6) +20@

3. ERROR ANALYSIS, PATCH TEST

For the sake of simplicity we assume: J = @ and the set I contains one rib only
(denoted, say, F). All results of this chapter can be easily extended to more general

cases.
In the following C denotes a generic constant, not necessarily the same in each

two occurencies, and independent on the parameter h.

Theorem 3.1. Let u and uy, be a solution of the problem (2.1) and (2.5), respectively.
Then

GO el = Lt = ol sup (s o) el
where
E,(u, (p)-’fj<pd)¢dy — ay(u, @) — 6u0(pdy -
r Oy? dy?

k(h) 3 3
S AN A VTS
2=t JrnoG, OV " ox dy 6V

Proof. We shall, for simplicity, introduce the following notation:

52 2 k(h) A
A,,(W, (p) = a,,(W, (P) + il L Z a‘ (-g’ih (iv) ‘a“ <$ih 0_(1)) dy.

a4 roco Y ax) dy dx
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With regard to (2.1) and (2.5) we obtain
Ah(“h- (P) = Eh(u’ (P) + Ah(“’ (/’)
for ¢ e V,. Let ve V,. Subtracting 4,(v, ¢) from both sides of the above equality

we get
A(u, — v, 9) = E,(u, ) + Ay(u — v, ¢)
Since the estimate
sup (| 4i(us = 0. 9)| - [flolls ") = Cflun = o]l
peVh

and
s = o) Jloll ) = = el

are evident, we can easily reach the inequality
(32) s = olllu = CLsup (Exfu @) - [lfellh* -+ [[lu = elfls
PEV R
which holds for arbitrary v e V, and a certain constant C. Using the triangle ine-
quality |”u - u,,”l,, < l”u — vl”,, + “]u,, — vl”h and the estimate (3.2), we obtain (3.1)

immediately.
In the next three lemmas our attention will be drawn to the approximation of

a function ¢ € V, by a “‘conforming” function y € V.
We denote the outward normal of 0G,, and R by v, = (viy), v{y’) and v =

= (v, v®) respectively.
Lemma 3.1. Let I';,i = 1, 2, 3,4 be the edges of the rectangle R. Further, let ¢, and
¢, be functions on dR which satisfy the following conditions:

(a) @oe W’AI), ¢, eW">X(r), i=1,2234,

(b) o€ W"?(R),

— D 2 9o 1/2.2( 5
(©) @0=""o, +v 0_€W (6R)
T

where t = (v, — (V)

o9

— 2 (1) 9Po 1/2,2( A

Por = V7P —V '(.ZTGW/ ((‘R)
[’

(for further details concerning the spaces W*'%* and W'/ defined on a variety see
[6]). Then there exists a function y € W? *(R) such that

0
=0, —f=(p, a.e. on 0R

v

and

“'/’”2,1; = C{izil(”‘l’ol‘s/z,n + ”‘Pl”x/z,r.-) + ”‘Pox"l/z,ak + ”‘Pm”l/z,nk)~
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Proof. see [4].

Lemma 3.2. There exists a linear operator r : A(R) - W>*(R) with the following
properties: ® € A(R), ¥ = r® =

(i) ¥ =09, ﬂ‘y—:f {zg a.e. on 0R ,
ov dv

@) &= ¥[on = Clofs

Proof. For arbitrary @ € A(R) we set ¢, = ®, ¢, = Z(0P[0v) on IR and verify

that the assumptions of Lemma 3.1 are fulfilled:

(a) functions ¢, ¢ are polynomials on each edge I';, i = 1, 2, 3, 4, i.e. infinitely
smooth,

(b) in addition to above property, the functipn @, is continuous at any vertex
of the rectangle R (hence ¢, € W'*(dR)),

(c) both functions ¢y, and @4, are polynomials along any edge I'; and continuous
at any vertex of the rectangle R, hence ¢, € W"'*(0R), ¢,, € W"*(0R).

Thus there exists a function ¥ € W*'2(R) such that

Y=09, 911:2@ a.e. on OR.

ov ov

Let {1, x, y, xy, x%, y2, x3, x%y, yx?, y3, x*y, xp*} be a basis of the space A(R).
We denote by &@,, n = 1, ..., 12 the elements of that basis. Let us define ré, = ¥,
forn =1,...,12 so that

Y, e WZ'Z(R) s
Y.ed,, a—q—l" =% 0%, a.e.on 0R .
ov ov

If n=1,...,6 then we obviously set ¥, = ®,. For n =7,..., 12 the existence
of functions P, is guaranteed by the previous part of the proof. Now, we extend the
operator r linearly to the whole space A(R):

12
Let @ € A(R), i.e. ® = ) a,®,. Then
i=1
12
rg =Y o,¥,
n=1
In virtue of the finite dimension of A(R) we get

(33) [r@]ze = €[]z
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for each @ € A(R). The operator r is linear, bounded and has the property (i).
Let us denote by P, all polynomials of the 1-st degree. Provided p € P, it holds
pe A(R) and rp = p. From (3.3) we have

() [0~ e = Cin [0~ pl
PEry
for each @ € A(R). Applying the inequality (see [6])

inf ||d) — plll.R =< Cltb
pePy

2,R
to the estimate (3.4) we prove (ii).

Lemma 3.3. For each he(0, 1) there exists a linear operator r,:V, > V with
the following properties: ¢ € V,, Y = ryp =

~

(3.5) V=q, W _ i (;—‘P) a.e.ondGy,, i=1,.., k(h);

OVip Vin
(3~6) I‘/’ = Ylap = CI(P 2,h 5
(3.7) |0 = V|6 = Ch?|ol, -

Proof. Let an arbitrary ¢ € V,, be fixed. We set
(3.8) Vo= (r(poFu"))oFu

on Gy, i = 1,..., k(h). According to Lemma 3.2 we obtain

(3.9) YeW>XGy,),
(3.10) V=10, ‘(zl/"/‘ =Zu 20 on Gy,
) CVip vy,

for i = 1, ..., k(h). By virtue of the definition of ¥} and Remark 1 we derive four
assertions concerning the smoothness of y:

a) With the aid of (3.10) we can easily prove the following fact: Let us denote
I =Gy Gy, i =+ j. Let g7 and g be the traces of functions {D* y(x, y), [x, y] € G}
and {D*Y(x, y), [x, y] € G;} on the boundary &G, and 0G;, respectively. Then
g7 = g5a.e.onl for Ial < 1. Using this fact, (3.9) and the integration by parts we can
easily derive

k(h)
f YD dxdy = (—1)"’2 Do dxdy =
G i=

1) G

= (- ])”‘i‘v Yo dxdy
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for each ¢ € D(G), {al < 2. Since the generalized derivative D%/ belongs to L,(G)
for la] < 2, it means y € W»2(G).

b) Because of @ = 0 and Z,,(0¢/dv,) =0 on 0Gy, N 0G for i = 1. ..., k(h), we
obtain (see (3.10) and the assertion dbove) € Wg*(G).

c) Y e Wi (') because of ¢ € Wy (T).

d) According to (3.10) we obtain 0[///0,\ = Lu(0p|0x)ondG,, N T, i =1, ..., k(h).
Hence the function aw/ax is piecewise linear dnd continuous on I'. With respect to the
boundary condition on G we have dy[dx € Wy **(I).

Summarizing the properties a)—d), we can state ¥ € V. Moreover, it holds

Ch™ g o Fiyt — i

ih

iq’ - l//[z,(;,-,,

It

and
!‘P - '//|1,2<G.-,.) = Ch”(P o Fi—hl - "(‘P ° Fi;‘)’|l,l(k) .

With the aid of Lemma 3.2 we estimate:
“‘P ° Fi~h1 - r((/) o Fi_h‘)'lz,k = C’(P o Fi_h]lZ.R

Because of

|§0 ° F;.llz,k = Chl(PIZ,G.'h
we have

|‘P - '//lz,h Z l(l’ - l//lz ¢ =C “/’Iz Gin = C](Plz,h

and

{‘P - W‘IZ(G) Ch l(Plz b

For cach h € (0, I) and ¢ € V}, we put r,¢ equal to ¢ that is defined by (3.8). It has
been verified that the operator r;, posseses the required properties (3.5)—(3.7). This
completes the proof.

Lemma 3.4. If ue Vis a solution of the problem (2.1) then
(3.11) Eu, ¢) :f 2f(p — ) dxdy — ay(u, ¢ — )
G

Jor @ € Vi, = ryp (for r, see Lemma 3.3), h e (0, 1).

Proof. Using the formula (2.1) and the fact e V (see Lemma 3.3) we derive
the identity

—32 '32 2 ')2
3j Sy dxdy — a(u, §) =J guov dy + j Ju TV dy
G

2
r 0y* 0y? 0y 0x 0y Ox
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First, because of y — ¢ on I' () G, (see (3.5)), we have
Pudty [ Pude
r oy* oy? r 0y* dy?

Further, since dy/0x = £ ,(0¢/0x) on I' () 0G,, evidently, we get

2 2 k(’l)
T oW g, ] M9 (g )y,
r 0y 0x dy 0x rnaa,.a)’ " ox ay 0x
If we recall the definition of the form E,(u, ¢) (see Theorem 3.1) then the assertion

(3.11) will be a simple consequence of the three identities above.
The following lemma was first proved by Ciarlet [2].

Lemma 3.5. Patch test. Let ii, be a function on G which is a polynomial of the
2-nd degree on each of Gy, i = 1, ..., k(h). Then

(3.12) aiin 9 — ) = 0

for 9 € Vi, b = ryp, h€(0, 1) where r, has been defined in Lemma 3.3.

Proof. We have 4%, = 0 on each G, i = 1,..., k(h). Using the well known

Green formula (see [6]), we obtain

3%, (9 — V) 0%,  Ox dy
i, A(p — W) + —2 +2—* — +
Jo om0+ S
(3.13)
2~ 2 _ a 3
7 7o 2¢>>dxdy=f (2 - 25
ayZ ay 3G in UV”, aw
where

M, = iy + (T2 + 2 DI+ O o).
6x dy y?
Let us denote the vertices of the rectangle G,, by 4 = [ay, a,], B=1[by,a,], C =

= [by, c;], D = [ay, ¢;], a; < by, a; < ¢,. Then Miiy/ap = Miiy/cp = const. and

Mii, | p = Mii,[5c = const.*)
If we verify that

(3.14) %o _ N do + 6—(’)—6'//)(10—0
g \OVip  Ovy, o\ Ovin

0 d
(3.15) f (ﬁ‘ﬂ—a'/’)d +f (—"’-i)da:o
ap \Oviy  Ovy vy, OVin
‘) Mu,l = const. on AB () CD and AD |J BC, respectively.
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then the right hand side of (3.13) has to be zero. Summing (3.13) over i = 1, ..., k(h),
e reach the assertion (3.12). ‘
The left hand side of (3.14) satisfies

[ [ e
4\ Ovy, cp\Vy  Ovy
:__J‘h(é(f_glk) dx+J'b'<f3_<lj_5L//> dx:
a_V (7}7 y=a aj 8y [7‘}7 y=bs
[ (e gen)-(- S
dy -

According to the property (2.4) of Ari-Adini’s polynomials, the function X(x) =
= (09[dy) (x, c;) — (0@[0y) (x, a;) is linear on the interval {a,, b,>. Using (3.5),
we easily derive that (3y/dy) (x, ¢,) — (d¥[dy) (x, a,) is a linear interpolation of the
function X. Hence the integrand of the last term vanishes and the identity (3.14)
holds. The conclusion of lemma follows by observing that we can similarly prove
the identity (3.15).

Theorem 3.2. Let u and u,, be a solution of the problem (2.1) and (2.5), respectively.
Let M, = {w; we Ly(G), wis a polynomial of the 2-nd degree on each G, i =1, ...
. k(h)}, he(0,1). Then
(3.16) u = wil]]s = mf”lu — o|||» + mqt;z lu — |, + B2}
Proof. In accordance with (3.1), (3.11) and (3.12) we obtain

= sl = €Lt [ = ol + sup 2 o — )G -
PeVn PeVh G

-1
2,h§ -

(3.17) — il au — ¢~ rio))] - Jo
UpXtp

The estimate (3.16) follows from (3.17) by using (3.6), (3.7) and the inequality -
|ah(“ = Uy, ¢ — ”h‘P)l = Cl“ - ﬁhlz,h I(P - "h‘Plz,h-

Remark 2. The estimate (3.16) is valid also in the general case of the problem
(2.1), i.e. without any restriction on the sets I and J.

The problem of convergence turns into the problem of the best approximation
to the solution u on the spaces V;, and M,

4. CONVERGENCE

Let us consider the model problem from the previous chapter. We introduce
a class of regular solutions of the problem (2.1):
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Let G' and G? be open rectangles, G = G' UG, G'NG* =0, G NI =0,
i =1,2. We define a set

W={wweV,we WHX(G'), i = 1,2, we W¥(I')} .

If u is a solution of the problem (2.1) and u € W then we shall say that u is a regular
solution of (2.1).

Lemma 4.1. Let w be an element of the space W. Then we can estimate:
(4.1) inf [[jw — [l = Ch(lwlac + wlage + [las) s
PYEV h
(4.2) inf |w - (p|2_,, < Ch(]wl3,6| + Iw‘le).
peMp,

Proof. We shall only sketch the proof, because it is based on the well known
technique (see [1]). We define interpolation operators P, and P; on V, and M,
respectively. If w e Wthen P}w € V, interpolates the function w at all degrees of free-
dom on the space V, (i.e. D*w = D’(P,w) at each nodal point of the division G,,
|ozl < 1) and further P}w e M, is defined in the following way: Let us denote the
vertices of a rectangle G;, by A, B, C, D — see the proof of Lemma 3.5. Then P,fw/(; .
is a polynomial of the 2-nd degree satisfying the condition P,fw =wat A4, B, C, D
and D(P;w) = D°w at A for ]cx| < 1. It is easy to verify that

1
|W - PhW‘Z.Gih

lIA

Chlw|s ¢

ih

2
|W - PhWIZ,Gi;. = Ch|W|3,G.-h >

1 |
1“’ - Phwil,l'r\éGn. = Chlw|3.fn66,-;. >

0 0 1
L (w = Pyw) =0
ay ox LT 3G i)
so that
k(h)
HIW — P}:WIHh = (.ZI'W — P;Wli‘(;”‘ + IW — P}l.wlg,l‘ +
RONTP 3 . 2 1/2
- I ¢ — P <
+ 2 igl 6_)’ " Ox (W hW) lLﬂl'né‘Gih)) -
< Ch(|w[3ec, + IW|3,(;2 + |W|3,r)
and

k(h

i=1

2
w — P,,w]z’,, = (

This completes the proof.

) 1/2
Iw p;w|;,c,.h> < Ch((wls.or + [W]aco).
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Theorem 4.1. Let u and u, be solutions of the problem (2.1) and (2.5), respectively.
Moreover, let u be regular. Then

(4.3) [lu = wll, = o(h).

Proof. This is an easy consequence of (3.16), (4.1) and (4.2).

The main goal of this chapter is to prove the convergence u — u, without an
assumption of smoothness of the solution u. We must derive an assertion concerning
density of the space W in the space V' (weak solution).

Lemma 4.2 Let u be a solution of the problem (2.1). There exists a sequence
{w ey, w, € Wsuch that

(4.4) lim H

n—ro

w,,—u[” =0.

Proof. Because u e Wy (') and du/dx e Wy ~*(G), there exist sequences {@q,} .-,
{(pln}:o=l SUCh thdt (pOn € D(r)’ D1n € D([), h = l, 27 ey hm ||u - (Po,, 2.r = 0,

n—o

lim |

(('?u/ﬁx)(p],,n,.r = 0. For each integer n we introduce an auxiliary problem:
To find w, € W2*(G') ) W?**(G?) such that

(4.5) Aw, = f

on G', i = 1,2 (in the distribution sense),

Ow
ow,

Wy loineg = 0, 26inog =0

ja]
dw,

WoleGinr = Pon » Gini = Pin

ox

The weak solution w, of the problem (4.5) depends continuously on the boundary
conditions (see [6]), i.e.

W —uly >0, i=1,2

Since evidently w, € Wy *(G), we obtain

w, — “'2,0 — 0 and finally
“lw,, — ul” -0 for n— .

Taking into account the results of Kondratdv [5], we can state that w, e W**(G'),
i=1,2forfe LZ(G). Hence w, belongs to W.

Lemma 4.3. The inequality

(4.6) [[Plll = cl]w]]
holds for each h and w e V.
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Proof. It is sufficient to show that

1 2 }2 2
(4.7) J {E L (_’Y} dy < CJ’ {Lw_} dy
I'ncGin ay (?X I'neGin ‘(_}X (‘)y .

holds independently of h and w e V. But this is a consequence of a Bramble-Hilbert
lemma (see [1]), because

0 2 2
v L (},VY + ¢ dy = i &, % dy
FeeGm L0V 0x reGon LY Ox

where ¢ is an arbitrary constant.

Theorem 4.2. Let u and u,, be solutions of the problem (2.1) and (2.5), respectively.
Then u,, converges to u in the following sense:

(4.8) [[un = ul|ls >0 for h—0.

Proof. Let {w,},_, be a sequence whose existence is guaranteed by Lemma 4.2.
Using the estimate (3.16) and the triangle inequality, we get

Hlu,, - u“[,7 < ¢ infl”u - go”l,, + inf ‘u — @lan+ W} <
PpeVy peMpy

(4.9) = C{|Hu - w,,|||,, + inf“|w,, - (p”[,, + [u — Wyl + inf |w, — (/’IZ-" + h*}.
QeVn oMy

In accordance with (4.4) and (4.6) we can state that

]u - w,,[z‘,, < ]”u - w,,”|,l < C|Hu —wl|| >0, n>0, he(0,1)
and (4.1) and (4.2) imply
inf I”w,, - (pl“h -0
$eVh
inf
peMp

W, — (pll,h -0

for h — 0 and each fixed integer n .
The last three estimates together with (4.9) yield (4.8).

CONCLUSION

The main aim of this paper has been to verify the application of the nonconforming
finite element method to a certain problem of a plate with ribs. This procedure is very
advantageous especially when using smaller computer or minicomputers.

In this paper the case of one rib has been discussed. Some more general problem
will be studied in another work of the authors. When extending the results of the last

n

chapter to the case I = {I,}}_,, n > 1, J = 0 the same technique as that of Lemma
4.2 can be used.
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NEKONFORMNIi METODA KONECNYCH PRVKU
V PROBLEMU VETKNUTE DESKY SE ZEBRY

VLADIMIR JANOVSKY, PETR PROCHAZKA

Tato préce se zabyva otazkami konvergence jedné nekonformni metody kone¢nych
prvkl v problému, ktery se tyka feseni deformace desky se Zebry. Vychozi problém
je formulovan pro jisty typ funkciondlu simulujiciho energii soustavy desky s konec-
nym poétem Zeber. Konvergence navrhované numerické metody je dokazana pro
pfipad jednoho Zebra za ptedpokladu, Ze neni nic zndmo o regularité feSeni vychoziho
problému. Rozsifeni na ptipad konecného poctu nezkfizenych Zeber je, ve smyslu
poznamky v zdvéru prace, snadné.

Authors’ address: RNDr. Viadimir Janovsky, CSc., MFF UK, Malostranské nam. 25, 118 00
Praha 1. Ing; Petr Prochdazka, DP Metroprojekt, 120 00 Praha 2, Na Slovanech.
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