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SVAZEK 21 (1976) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

THE NONCONFORMING FINITE ELEMENT METHOD 
IN THE PROBLEM OF CLAMPED PLATE WITH RIBS 

VLADIMIR JANOVSKY, PETR PROCHAZKA 

(Received December 27, 1975) 

The finite element method may be viewed as an analogue of the Ritz-Galerkin 
procedure with a special choice of basic functions. Both of them operate in a space 
of approximations, i.e. in the space that is defined as the linear hull of the basic 
functions. The Ritz-Galerkin method has one very favourable property, namely, 
the admissibility of basic functions in the trial variational principle guarantees its 
convergence. This is not the case with the nonconforming method because of the 
space generated by the basic functions is not a subspace of the one, on which the 
minimum of the trial energy functional is to be found. If the nonconforming method 
converges then this approach has many advantages. The conforming method as well 
as the Ritz-Galerkin procedure may be too complicated, while the nonconforming 
method is much simpler. A nonconforming solution, especially for few elements 
of division, may be more exact then the conforming one and in comparison with 
the Ritz-Galerkin method it is not so "stiff". Hence, in many cases the nonconforming 
method yields results which are more secure against violation of constructions. 
It is necessary to point out that the use of nonconforming elements in practice 
is perilous. It shows, namely, that the nonconforming method need not at all con
verge to the right results. A process, leading to a necessary condition of the conver
gence has lately been proposed. This process, known as "patch test" and developed 
by B. B. Irons, has first been studied from a mathematical standpoint by G. Strang, 
then by Ciarlet and others. In the sense of this approach we prove the convergence 
of Ari-AdinFs rectangle in the problem of a clamped plate with ribs. The ribs are 
assumed stiff against bending and torsion in the sense of Saint-Venant theory. 

1. D I M E N S I O N R E D U C T I O N . 

The problem of a plate with ribs is a three-dimensional problem of a theory of 
elasticity and hence, except a few cases, analytically untreatable. Numerical solution 
is too cumbersome and possible only if a top-quality computer is available. Therefore 
it is necessary to use some approximative hypothesis. 
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We originate from small displacement theory and formulate one type of energy 

functional. This approach has many advantages. In general complicated expressions 

are in our case simplified and moreover, many hypotheses are included. 

The plate before deformation is situated in the three dimensional space R3 so that 

its middle plane and the plane Oxy = R2 coincide. In the middle plane Oxy the plate 

occupies a region G. For the sake of simplicity we assume: 

(1.1) G = (-a, a) x (-b,b) 

where a, b are positive constants. Let I = {1,}"= i be the set of straight line segments 

in G characterizing ribs that are parallel to y-axis while J = {jj}J=1 is the set of 

similar segments that are parallel to x-axis. The endpoints of the segments lie on the 

boundary of G, i.e. 

(1.2) I; = {[x, y] eR2; x = xh y e (-b, b)} , 

Jj = {[x, y] G R2; x e ( - f l , a), y = yj} , 

— a<xi<a,—b<yJ<b and xh yy- are constants, i = 1, ..., n , j = 1, ..., m. 

From the technical standpoint we have the following problem: Let f: G —• R 

be the density of loading. Find a function w : G -> R that is minimizing the energy 

functional of a type 

(1.3) F(w) = Fp(w) + Ff(w) + Fj(w) + FTJ(w) + FrJ(w) + Ff(wJ) 

on a set of admissible functions which satisfy stable boundary conditions. In (1.3) 

the particular terms stand for the following expressions: 

d^\\2(^\\m\^y 
dx2 \dxdy \dy2 ' 

, 2 

™-ЫAЏ)* 
^-ШAШ-

"м-i&Lfàh 
2jjeJjjj V 

Ff(w,f) = - 2 Ј 
G 

д2W ^2 

кôx õyj 

fw áx áy . 
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If the function w is sufficiently smooth, for example w e C\G)9 we obtain by 
integration by parts the Eulerian equation of the variational principle: 

A2w = / on G 

dw 
w = — = 0 on dG_ n is the outward normal 

dn 

(1.4) [Mwl = 
дъw 

дxдy2 

Ii 

[Tw], 
_ д*w 

~ дy4 

\iw = Aw 
д2w 

= 7 ^ 
w дw 

\li 

dx dy dx2 

and similarly on Jj9j = 1, ..., m , 
where 3G denotes the boundary of G, [-4w]£ is the difference between the values of Aw 
at the left and right hand sides of the i-th rib, that is \Aw]i = Aw/ + 0 — Aw/„0. 

From the mathematical standpoint, there are two basic problems to be dealt with: 

— to give an exact definition of the space in which the solution of the variational 
problem is to be found, 

— to propose a numerical method approximating the trial problem. 

An exact formulation of the trial problem is given in the following chapter for the 
above mentioned type of the energy functional. The nonconforming method is used 
for numerical solution of the problem. 

2. MATHEMATICAL FORMULATION 

Let G be a domain in the n-dimensional space Rn. Let D(G) be a set of infinitely 
differentiable functions with compact support in G. For each integer m we denote 
by Wm,2(G) the usual Sobolev space of all functions whose derivatives of order up to m 
(in generalized sense) are square integrable on G. For each w e Wm,2(G) we define 
the seminorm 

I4".G = ( T £ |D*w|2dGY/2 

where a = (a^ ..., a„), a ; integer, |a| = a t + a2 + . . . + a„, 

D w — 
dx\\...,8xl" 
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It is well known that ||w||m>G = |w|mG + |w|0 G is a norm on Wm,2(G). Let W£'2(G) 
be the completion of D(G) with respect to the norm |"|m,G. Then Wm'2(G) e Wm-2(G) 
and the seminorm |*|m>G is a norm on Wm,2(G). For further details concerning defini
tions and assertions see [6]. 

We are going to formulate the equilibrium condition of the problem on the follow
ing space: 

V - \w; w e W0
2'2(G), w e W0'

2(F), — e W0
1,2(F) for each re I, we W^2(y), 

( dx 

eW0 '2(y) for each ye A 
ÔW 

with the norm given by 

IIMII = H-.o +1 (M«. + T ) + s ( ( H^ 
ltel\ OX {J.J Jjej\ 

Equilibrium condition: Letfe L2(G). Find u e Vsuch that 

«..-) + ! [ (p* 
jieijiiVy dy 

. + 
дw 

Уy UJj 

д2u õ2ę . 
+ — ] dy + 

дx дy дx ôy 

(2.1) 

-I-
JjeJjj. \dx dx dx dy dx dyj J G 

for all </> e V, where 

a(w, <p) = 
д2u д2ę „ д2u ð2ф ð2u ð i 

Au Лę + —- —£ + 2 - - + — - f ) dx dy . 
ćbr ćbr <3x ćty дx дy дy 

2u d2<p\ 

y28y2)' 

It is easy to verify that V is a Banach space and the bilinear form from the left 
hand side of (2.1) is V-elliptic (see e.g. [6]). Hence, by virtue of the well known 
Lax-Milgram theorem (see [6]), there exists a unique solution of the problem (2A). 

The approximation of the problem defined above is based on the following idea: 
We introduce a family {Vh}he(0$1) of finite-dimensional spaces Vh. The family is used 
to find an approximative solution uh e Vh by applying the equilibrium condition (2.1) 
on the finite dimensional space Vh. But, in general Vh <£ V and we cannot utilize the 
principle (2.1). We are forced to formulate a perturbed variational principle (2.5) 
on each Vh in the natural way. 
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We consider a division Gh = {Gih}
k
t = \ of G consisting of open rectangles Gih, 

i = 1, ..., k(h) for h E (0, 1) such that 
k(h) _ 

a) G = U Gih, 

b) G;„ ft G,,, = 0 / , j = l , . . . , k ( h ) ; i * ; , 

c ) G l 7 , n ^ = 0 , G ( , n ? = 0 , i=\,...,k(h), r e l , yeJ, 

d) an edge of any rectangle Gih e Gh is either an edge of another rectangle 

Gjh e Gh, j #= / or a portion of dG or F or y, F G I, y e J . 

If a point g is a vertex of a rectangle G|7| e G,, then we say that Q is a node of the 
division Gh. 

We shall suppose that the sequence {Gh}he(0l) of rectangulation is a regular family 
(see [3]), i.e. with each rectangle Gih of a given division Gh we associate the following 
geometrical parametres: 

h(Gih) . . . diameter of Gih , 

g(Gih) . . . supremum of diameters of spheres inscribed in Gih. 

Then 

h _z max {h(Gih); i = l,...,k(h)} 

and 

0 < y = min {e(Gih)lh(Gih); i = 1, ..., k(h)} 

for each /? e (0,1), where y is a fixed real number. 
Let R be a '<reference,, rectangle*) in R2. Then 

A(R) = {<p\cp = _] aijxiyJ + 03i*3y + tfi3*y3 , [x, y] eR} . 
f,1=o 
i + j<;3 

Elements of the space A(R) are the so called Ari-Adinis polynomials. 
We recall some basic properties of such polynomials. Let q> belong to A(#). Then 

it holds: 

(2.2) if At- = V..., 4 are the vertices of the rectangle R then the values {<p(A,-), 
(dcpjdx) (A,), (dcpjdy) (At), i = 1, ..., 4 define the degrees of freedom; 

(2.3) if the variable x is fixed then (dcpjdx) (0, y) — (d(pjdx) (x, y) is a linear function 
with respect to y; 

(2.4) if the variable y is fixed then (dcpjdy) (x, 0) — (dcpjdy) (x, y) is a linear function 
with respect to x. 

*) i.e. R is a fixed nondegenerate rectangle. 
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There exists an invertible affine mapping F^ : Gih -> R for each i = 1, ..., k(h), 
h e (0, 1). Let h e (0, 1). Then with regard to (2.2) the following definition is re
asonable: 

yh = {(p; (p°FJh
x e A(R) for i = 1, ..., k(h); if Q is a nodal point of a division 

Gh then cp, dcpjdx, dcp/dy are continuous at the point Q with respect to G and, 
moreover, if Q e dG then <p(Q) = (<3<p/Ox) (g) = (dcp\dy) (Q) = 0}. 

R e m a r k 1. The spaces V,, need not be subspacesof V because(p£ W0
2,2(G), d(pjdx£ 

WQ ,2(r) and d<p/<3y £ WJ ,2(y) for <B e V,,, F e I, 7 e J. But it can be easily verified that 

a) cp e W0
2'2(r) and cp e W0'

2(}>) for F el, ye J, 

b) q) e C(G), i.e. cp is continuous on G including the boundary <3G, 

c) cp = 0 on dG. 

Along the edges of a rectangle Gihe G and K we define the linear interpolation 
operator &ih and if respectively: We denote by A, B, C, D the vertices of Gih or JR. 
Assuming t/> defined on the boundary dGih and dR a.e., the value of the function 
Seih\j/ and <£\\J at the point X = tA + (1 - t) B, t e (0, 1) of the edge AB is equal 
respectively to 

t lim I>(T_4 + (1 - T) B) + (1 ~ 0 lim I//(TA + (1 - T) B) 
T - > 1 - T~>0 + 

providing the limits exist. The functions i f ih\j/ and ifi/f are defined in the same way 
on the other edges BC, CD, AD. 

Approximate problem: Forfe L2(G) and h e (0, l) find uh e Vh such that 

(2-5) ah{uh,(P) + Yi\\
d^dy + 

rei ( J r dyz dyz 

2 -=i JmdGihdy \ lH dxj dy\ * dx) j 

yej 1J. 3x2 <5x2 2 £1 J ,nac,„ 5x V 5y ) dx V 0>>1 J J G 

for each <p e Vh, where 

, v "*> f / , 52u <32<p . <32u a2(/> <32
M d2<p\ , J 

«*(«»> 4») = £ MM <-*> + —7 —1 + 2 — + -~-~)dxdy. 
i-t Jo \ f3x2 <9x2 dxdydxdy dy2 8v2) 
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We equip the space Vh with the natural norm "| | *• Vor (p e Vh, 

Ml. = {HI.+|,(Hi, + iE Ilia's) 
E(l (2.6) 

1 ЦҺ) 

УЄІ V 2 Í = i 

fc(fc) 

Lz(yndGih), 

L2(rndGih) 

1/2 

+ 

M-.*=!(£M-.<>«.)1 12 

The bilinear form from the left hand side of (2.5) can be easily shown to be V^-elliptic. 
Following the Lax-Milgram theorem we obtain the existence and uniqueness of the 
solution of problem (2.5). 

The functional \\\'\\\h defined by (2.6) on Vh can be extended onto V© Vh = [ij/; 
ij/ = (p1 4- cp29 (p1 e V, (p2e Vh}. It is sufficient to recall that d(f>ljdx and dq>ljdy is 
continuous on F and y, respectively, F eI, y e J and (pl e V. Thus it is sensible to 
define ^ih(d(pxjdx) and ^^(dqyjdy) on F f] dGih and y f) dGih respectively. Evidently 
| | | ' | |L is a norm on V© Vh. 

3. ERROR ANALYSIS, PATCH TEST 

For the sake of simplicity we assume: J — 0 and the set I contains one rib only 
(denoted, say, F). All results of this chapter can be easily extended to more general 
cases. 

In the following C denotes a generic constant, not necessarily the same in each 
two occurencies, and independent on the parameter h. 

Theorem 3.1. Let u and uh be a solution of the problem (2.1) and (2.5), respectively. 
Then 

(3-1) 

where 

\u - uh\\\h ^ C{ inf Ujit - cp\\\h + sup (Eh(u, tp) \\\(p\\\h
 l] 

<peVf (peVh 

Eh(
u> (P) = 2 f<P áx d y - ah(u, <p) ~ - ^ ~ dy 

j G Jr fy dy2 

-\"i\ f(**u(**w 
2 Í=I JrnaGihdy V dxj dy\ dxj 

Proof. We shall, for simplicity, introduce the following notation: 

At \ t \ f S2wd2cp , 1 *<ft) f 5 / 8w\ d / d<p\. 
Ah(w, <p) = ah{w, q>) +\ - _ _ ^ d y + - Z T\*»'T)T\Sr'*ir)dy-
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With regard to (2A) and (2.5) we obtain 

Muh> <P) = Eh(u> <p) + Mu> <P) 

for <p e Vh. Let v e Vh. Subtracting AA(v, <p) from both sides of the above equality 

we get 

Ah(uh - v, <p) = Eh(u, <p) + AA(w - v, <p) 

Since the estimate 

su P ( |A(w„ - v, <p)\. \\\<P\\\;1) ^ C\\\uh - v|||A 

(peVh 

and 
suP(|AA(« - P , V ) | . | | H | | ; 1 ) ^ c | | | « - p | | Һ 

<peVh 

are evident, we can easily reach the inequality 

(3.2) | | | „ , - ^lll, S C{ sup (Eh(u, <p) . I I H H - + |||« - v\\\h) 
<psVh 

which holds for arbitrary v e Vh and a certain constant C. Using the triangle ine
quality |||w — wA|||A = |||w — v|||A + |||wA — v|j|A and the estimate (3.2), we obtain (3.1) 
immediately. 

In the next three lemmas our attention will be drawn to the approximation of 
a function cp e Vh by a "conforming" function f e K 

We denote the outward normal of dGih and dR by vih = (v^}, v(.A
}) and v = 

= (v(1), v(2)) respectively. 

Lemma 3.1. Let Fh i = 1, 2, 3,4 be the edges of the rectangle R. Further, let <p0 and 
(px be functions on dR which satisfy the following conditions: 

(a) <B0eW3/2*2(Ff), y.eW112'2^^ i - 1 ,2 ,3 ,4 , 

(b) <p0eWU2{dR)9 

(c) cpi0 = v ( 1 V i + v (2 ) ^ G Wl/2>2(dR) 
dx 

where T = (v (2 ) , - v ( 1 ) ) , 

<Poi = v<2ty. - v(1) ^ e WU2-2(ÕR) 
õz 

(for further details concerning the spaces W3/2'2 and W1/2'2 defined on a variety see 
[6]). Then there exists a function \j/e W2 2(R) such that 

# y/ = <p0 , — = <p1 a.e. on dR 
dv 

and 
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Proof, see [4]. 

Lemma 3.2. There exists a linear operator r : A(R) -> W1,2(R) with the following 
properties: <P e A(R), W = r<P => 

fjw /Í)W\ 

(i) W = 4>, — = JS?[ — J a.e.ondR, 
Oy \ d v / 

(«) I I * - v\\2fR S C\<P\2iR . 

Proof . For arbitrary <£> e A(R) we set cp0 = <£, cpi = J£(d<PJdv) on dR and verify 
that the assumptions of Lemma 3.1 are fulfilled: 

(a) functions cp0, (pl are polynomials on each edge Fh i = 1, 2, 3, 4, i.e. infinitely 
smooth, 

(b) in addition to above property, the functipn cp0 is continuous at any vertex 
of the rectangle R (hence cp0 e W1,2(dR)), 

(c) both functions cp10 and cpoy are polynomials along any edge Ft and continuous 
at any vertex of the rectangle R, hence cpl0 e W1,2(dR), (p0l e W1,2(dR). 

Thus there exists a function We W2'2(R) such that 

dW 30 
y = <J> , — = <£ — a . e . on dR . 

dv dv 

Let {1, x, y, xy, x2, y2, x3, x2y, yx2, y3, x3y, xy3} be a basis of the space A(R). 
We denote by <Pn, n = 1,..., 12 the elements of that basis. Let us define r<Pn = W„ 
for n = 1, ..., 12 so that 

VneW2,2(R), 

m Wn e Ф„, ^ = SЄ ( a.e. on ÕR . 
дv 

If n = 1, ..., 6 then we obviously set !Pn = <£„. For n = 1, ..., 12 the existence 
of functions Wn is guaranteed by the previous part of the proof. Now, we extend the 
operator r linearly to the whole space A(R): 

Let Ф є A(R), i.e. Ф = £ anФ,,. Then 
І = I 

rФ = ^ocnWn 

л = l 

In virtue of the finite dimension of A(R) we get 

(з-з) \\rФ\\2tR ѓ C\\Ф\\2,R 
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for each <P e A(K). The operator r is linear, bounded and has the property (i). 
Let us denote by P1 all polynomials of the 1-st degree. Provided peP1? it holds 

p e A(R) and rp = p. From (3.3) we have 

(3.4) | | * - r<P\\2tRSCM\\cI>- p\\2fR 
pePi 

for each <P e A(R). Applying the inequality (see [6]) 

inf ||4> - p||2>R ^ C|*|2>R 
pePi 

to the estimate (3.4) we prove (ii). 

Lemma 3.3. FOr each h e (0, 1) there exists a linear operator rh : Vh -> V with 
the following properties: cp e Vh, if/ = rhcp => 

(3.5) # = <p , -^ = <£ih (Q\ a.e. on BGih, i = 1, . . . . fc(h) ; 
8vih \dvihJ 

(3.6) |<p - ip\2ih = c|<p|2,» ; 

(3-7) |<p - iA|L2fG) = Ch2\cp\2>h. 

Proof. Let an arbitrary cp e Vh be fixed. We set 

(3.8) <A = (r(<P o Er,1)) o Fih 

on Gl7j, i = 1, ..., k(h). According to Lemma 3.2 we obtain 

(3.9) ^eW2>2(Gih), 

(3.10) i// = <p , ^~= <£ih ~^~ on dGih 

ovih dvih 

for i = 1, ..., k(/?). By virtue of the definition of Vh and Remark 1 we derive four 
assertions concerning the smoothness of \j/: 

a) With the aid of (3.10) we can easily prove the following fact: Let us denote 
I — Gihf) Gjh, i =j= j . Let ga and ga be the traces of functions {Da \j/(x, y), [x, y] e Gih} 
and {Da \J/(x, y), [x, y] e Gjh} on the boundary dGih and <5GJ7J respectively. Then 
ga = ga a.e, on I for |a| rg 1. Using this fact, (3.9) and the integration by parts we can 
easily derive 

f \j/Da(p dx dy = ( - l ) w £ f D>(p dx dy = 
JG <=1JG,h 

-{-,rL \fjcp áxáy 
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for each <p e D(G), |a| S 2. Since the generalized derivative Da\jj belongs to L2(G) 
for |a| ^ 2, it means \p e W2'2(G). 

b) Because of <p = 0 and ££ih(d<p\dvih) = 0 on dGl7j fl dG for ' = -5 •••> fc(h)> w e 

obtain (see (3.10) and the assertion above) ip e W0
2,2(G). 

c) i> G W0
2'2(O because of cp e JV0

2'2(F). 

d) According to (3.10) we obtain d\p\dx - &ih(d<p\dx) on 3GiA ( l A i = l k(h). 

Hence the function dij/fdx is piecewise linear and continuous on F. With respect to the 
boundary condition on dG we have dxjjjdx e WQ '2(F). 

Summarizing the properties a) —d), we can state ip e V Moreover, it holds 

\<P - ^\2,Gih = eh'1]]? o F~l - r(<p o F fV)||2 t R 

and 

\<P - |̂L2(G,h) = Ch\W ° F ^ ~ K<P ° ^ O H M R ) • 

With the aid of Lemma 3.2 we estimate: 

Ik o Fr*1 - r(<p o Fr^)lkR = c\<p ° FTSU.R 
Because of 

k o F . ^ k / R = Ch\<p\2,Gih 

we have 
k(h) k(h) 

\<p - ^k* = Z k - ^kc.-h = c Z k k G . h = c\<p\i,h 
i=i i = i 

and 

\<p - V\L2{G) = ch 2 kk„ • 

For each h e (0, 1) and <p e Vh we put rh<p equal to i// that is defined by (3.8). It has 
been verified that the operator rh posseses the required properties (3.5) —(3.7). This 
completes the proof. 

Lemma 3.4 If u e V is a solution of the problem (2.1) then 

(3.11) Eh(u,ę) = Җ<P - Ф) àx ày - ah(u, ę - ф) 

for <p e Vh, y/ = rh<p (for rh see Lemma 3.3), h e (0, 1). 

Proof . Using the formula (2.1) and the fact \j/ e V (see Lemma 3.3) we derive 

the identity 

» f n A ( w [ d2ud2xp f d2u d2xjj A 2 # dx dy - a(u, ip)= \ •— - ^ dy + — 5 - - d y . 
JG J r ^ y ' a y 2 )rdydxdydx 
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First, because of if/ — cp on T f\ dGih (see (3.5)), we have 

J r 5 / ^ 2 y~)rdy2dy2 y 

Further, since di/z/dx = ££ih(dq>\dx) on F f| 3Gl7_ evidently, we get 

Í, 
e> í_i!td ''£f iV,*U (,.»,,,. 

r r3v (3x (jy (3x " 2 ;=i Jm^Gfh^y \ dxj dy\ dxj 

If we recall the definition of the form Eh(u, q>) (see Theorem 3.1) then the assertion 
(3.11) will be a simple consequence of the three identities above. 

The following lemma was first proved by Ciarlet [2]. 

Lemma 3.5. Patch test. Let uh be a function on G which is a polynomial of the 
2-nd degree on each of Gih, i = 1, ..., k(h). Then 

(3.12) ah(uhi cp - ijf) = 0 

for (p e Vh, \\i = rh(p, h e (0, 1) where rh has been defined in Lemma 3.3. 

Proof . We have A2uh = 0 on each Gih9 i = 1, ..., k(h). Using the well known 
Green formula (see [6]), we obtain 

J* (AuhA(<p-il,) ___ Õ2ÜҺ Ô2(ę - ф) д2üh дx дy 
~г г- — ~ ~г -£ - ~~~ ~~——' ~ -

(3.13) 

where 

dx2 dx2 dx dy d2(cp - $) 

5"3 ^ 2 ; } e G l h \dvih dii/j 

Muh = Auh + ( ^ ( v < , | > ) - + 2 ̂ L v;.'>v!,2> + ̂  WY). 
\ox ox dy dyz J 

Let us denote the vertices of the rectangle Gih by A = [# i, a 2 ] , I? = [b1? a 2 ] , C = 
= [°i» c2], D = [#i> ^2]* «i < î> ̂ 2 < <?2. Then MSHIAB = MUHICD = const, and 

MW/./AD = ^ " / , / B C = const.*) 

If we verify that 

(3.14) f (^-^W+f (-̂ --̂ W-o 
JAB \dvih dvihJ JcoK^ih SvJ 

and 
(3.15) f (i^-iiW+f f^-f)d(T.o 

*( Muft = const, on AB (J CD and AD (J BC, respectively. 
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then the right hand side of (3A3) has to be zero. Summing (3A3) over i = ! , . . . , k(h), 
we reach the assertion (3A2). 

The left hand side of (3.14) satisfies 

iB\dvih dvihJ JCD\dVih dvihJ 

_ _ p j _ _ _ _ _ \ ^ + r/___*_\ dx_ 

According to the property (2.4) of Ari-Adini's polynomials, the function X(x) = 
= (d(p\dy)(x, c2) — (d(pjdy)(x, a2) is linear on the interval <a_, b,>. Using (3.5), 
we easily derive that (d\jj\dy) (x, c2) — (dif/jdy) (x, a2) is a linear interpolation of the 
function X. Hence the integrand of the last term vanishes and the identity (3.14) 
holds. The conclusion of lemma follows by observing that we can similarly prove 
the identity (3.15). 

Theorem 3.2. Let u and uh be a solution of the problem (2A) and (2.5), respectively. 
Let Wh = {w; vv e L2(G), w is a polynomial of the 2-nd degree on each Gih, i = 1, . . . 
..., k(h)}, fce(0, 1). Then 

(3.16) |||u - tt|k|||fc S C{M\\\u - cp\\\h + inf \u - uh\2th + h2} . 
<peVh uhe^lh 

Proof . In accordance with (3.1), (3.H) and (3.12) we obtain 

|||w - U*|||A -S C{ inf |||u - <p\\\h + sup [(2 f(q> - rh<p)dG -
<peVh <peVh J G 

(3.17) - inf ah(u - uh, (p - rhcp))] . |<p|_"j[} . 
iihWh 

The estimate (3.16) follows from (3.17) by using (3.6), (3.7) and the inequality 

\ah(u - uh,<p - rhcp)\ __ C\u - fi„|2f_ |<p - rA<p|2ffc . 

R e m a r k 2. The estimate (3.16) is valid also in the general case of the problem 
(2.1), i.e. without any restriction on the sets I and J. 

The problem of convergence turns into the problem of the best approximation 
to the solution u on the spaces Vh and 9Jl_,. 

4. CONVERGENCE 

Let us consider the model problem from the previous chapter. We introduce 
a class of regular solutions of the problem (2.1): 
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Let G1 and G2 be open rectangles, G = Gl UC2, G1 n C2 = ^ C' 0 r = 0, 
i = 1, 2. We define a set 

W {w; w є V, w є W3'2(Gl"), i = 1, 2, w є JV3'2(F)} . 

If M is a solution of the problem (2.1) and u e IV then we shall say that u is a regular 

solution of (2.1). 

Lemma 4.1. Let w be ati element of the space W. Then we can estimate: 

(4.1) 

(4.2) 

inf | | |w - (p\\\h S Ch(|w|3jG, + |w | 3 j G 2 + | w | 3 > r ) , 
<peVh 

inf |w - <p\2th S Ch(|w|3>Gi + | w j 3 ? G 2 ) . 
(peWh 

Proof . We shall only sketch the proof, because it is based on the well known 

technique (see [ l]) . We define interpolation operators Pi and Pi on Vh and fflhJ 

respectively. If w e IVthen Pl

hw e Vh interpolates the function w at all degrees of free

dom on the space Vh (i.e. Daw = Da(P^w) at each nodal point of the division GhJ 

\a\ g 1) and further P2w e $)lh is defined in the following way: Let us denote the 

vertices of a rectangle Glh by A, B, C, D — see the proof of Lemma 3.5. Then P2w/G.h 

is a polynomial of the 2-nd degree satisfying the condition P2w = w at A, B, C, D 

and Da(P2w) = D*w at A for |a| g 1. It is easy to verify that 

|W - P/.w|2,G.h ̂  Cfc|w|3fG.fc, 

|w - P2wL G | h = C/i|w|3jGih , 

w - Phw|2,meG,-h = Ch\w\3frndGih , 

= 0 fif,,f(w-Р» 
дy õx L2(rr\dGih) , 

so that 
fk(h) 

plĄV = ( L> - p > l i ^ + lw - pИ-.r + 

1 fc(А) 

2 І = I 
±Xmf(w-Plw) 
Óy VX L2(rndGih) 

= Cfc(|w|3fG, + IwU G2 + IwL r ) 

1/2 

and 

|w - P > | 2 

This completes the proof. 
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Theorem 4.1. Let u and uh be solutions of the problem (2A) and (2.5), respectively. 

Moreover, let u be regular. Then 

(4.3) | | |u - i i j , - 0(h). 

Proof . This is an easy consequence of (3A6), (4A) and (4.2). 

The main goal of this chapter is to prove the convergence u -> uh without an 

assumption of smoothness of the solution u. We must derive an assertion concerning 

density of the space W'm the space V(weak solution). 

Lemma 4.2 Let u be a solution of the problem (2.1). There exists a sequence 

{wH}%Lu wne W such that 

(4.4) lim \\\wn - u||| - 0 . 
n-* 00 

Proof. Because u e W0 (E) and dujdx e WQ '2(G), there exist sequences {<p0n}^= i > 

{<pln}?=i such that <p0„eD(T), cpine D(r), n = 1, 2,..., lim ||u - <p0„\\2,r = 0, 
n -» oo 

Jim \(dujdx) q>ln\ur = 0. For each integer n we introduce an auxiliary problem: 
F t - * OO 

To find w„e W22(G')(\ W2-2(G2) such that 

(4.5) A2w„ = / 

on G\ i = 1, 2 (in the distribution sense), 

dw„ 

O 

I ^ w я 
V Vп I CG'nГ ~ Я>0n > — " 

dGtndG ~ 0 

C n Г — Фln 

The weak solution wn of the problem (4.5) depends continuously on the boundary 

conditions (see [6]), i.e. 

K - W|2,G< - * 0 , i = 1,2. 

Since evidently wn e W0

 , 2(G), we obtain |wn — u|2>G -> 0 and finally 

|jj\v„ — u||| -> 0 for n -> oo . 

Taking into account the results of Kondratev [5], we can state that wne W3,2(Gl), 

i = 1, 2 for feL2(G). Hence w„ belongs to W. 

Lemma 4.3. The inequality 

(4-6) | |H| | t ^ C|||w||| 

holds for each h and w e V. 
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Proof. It is sufficient to show that 

|2 (4,) r {f-r.f iwr { î'd) 
J mien l ^ Sx\ J rní,C/Ii [<3x dyj 

holds independently of h and w e V. But this is a consequence of a Bramble-Hilbert 
lemma (see [1]), because 

where c is an arbitrary constant. 

Theorem 4.2. Let u and uh he solutions of the problem (2A) and (2.5), respectively. 
Then uh converges to u in the following sense: 

(4.8) |||tift - " | | | A - > 0 for h->0. 

Proof. Let {ww}*=, be a sequence whose existence is guaranteed by Lemma 4.2. 
Using the estimate (3A6) and the triangle inequality, we get 

UK - HII* = c ( i n f III" - H I I * + inf \u ~ ^k* + / ] 2 } = 
(peVh <peWh 

(4.9) ^ C{|||u - w„|||„ + inf |||w„ - <p\\\„ + \u - w„|2,„ + inf \w„ - q>\2th + h2} . 
<pzVh (peWlh 

In accordance with (4.4) and (4.6) we can state that 

\u - w„|2 ,„^ |||u - w j , ^ C|||u - w„ | | | ->0 , n - > o o , he(0,1) 

and (4.1) and (4.2) imply 

i n f HIww - <p\\\h -+ 0 
<peVh 

inf |wn - <p\2,h-* 0 

for /i -> 0 and each fixed integer n . 
The last three estimates together with (4.9) yield (4.8). 

CONCLUSION 

The main aim of this paper has been to verify the application of the nonconforming 
finite element method to a certain problem of a plate with ribs. This procedure is very 
advantageous especially when using smaller computer or minicomputers. 

In this paper the case of one rib has been discussed. Some more general problem 
will be studied in another work of the authors. When extending the results of the last 
chapter to the case I = {/,}"= i, n > 1, J = 0 the same technique as that of Lemma 
4.2 can be used. 
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NEKONFORMNI METODA KONEČNÝCH PRVKU 
V PROBLÉMU VETKNUTÉ DESKY SE ŽEBRY 

VLADIMÍR JANOVSKÝ, PETR PROCHÁZKA 

Tato práce se zabývá otázkami konvergence jedné nekonformní metody konečných 
prvků v problému, který se týká řešení deformace desky se žebry. Výchozí problém 
je formulován pro jistý typ funkcionálu simulujícího energii soustavy desky s koneč
ným počtem žeber. Konvergence navrhované numerické metody je dokázána pro 
případ jednoho žebra za předpokladu, že není nic známo o regularitě řešení výchozího 
problému. Rozšíření na případ konečného počtu nezkřížených žeber je, ve smyslu 
poznámky v závěru práce, snadné. 

Aut/tors' address: RNDr. Vladimír Janovský, CSc, MFF UK, Malostranské nám. 25, 118 00 
Praha 1. Ing; Petr Procházka, DP Metroprojekt, 120 00 Praha 2, Na Slovanech. 
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