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1. INTRODUCTION AND SOME NOTATIONS

At first let us introduce some notations which are used in the paper.
Let Q be a plane bounded domain and Q be its closure, i.e. @ = Q U 0Q where 0Q
is the boundary of Q. Then

W(Q) is the Sobolev space of all functions which together with their generalized

derivatives up to the kth order inclusive belong to L,(Q). For u e Wi() the norm
4]0 is defined by

k
[l = X lulfo. where uljo = ¥ [Dlulia .
Jj= [ij=J

Diu = ot i=(pq), l|l=p+aq.

C™(Q) is the set of all functions having in @ continuous derivatives up to the kth
order inclusive, C(Q) is the set of all functions which are continuous in Q.

W‘Z"’(Q) is a subspace of W(Q) which we get by completing in the norm ||. [ o
the set of functions from C*(Q) with compact support in Q.

By a polygonal domain we understand every plane bounded domain Q the boudary
of which consists of a finite number of simple closed polygons I';, j = 0,1,...,s;
I, rI,,...,TIliinside Iy and do not intersect.

By a triangulation 7 of a polygonal domain Q we understand a covering of the
closure Q by a finite number of arbitrary closed triangles such that the union of all
triangles is © and any two triangles are either disjoint or have a common vertex
or a common side. When we wish to express that h is the length of the greatest side
and 9 is the magnitude of the smallest angle of all triangles of the triangulation T we
write t(h, 9).

146



A polygonal domain Q is said to be rectangular polygonal if each of the polygons
forming the boundary of Q has the sides paralles to the axes of a Cartesian coordinate
system.

By a partition g of a rectangular polygonal domain Q we understand a covering of
the closure @ by a finite number of arbitrary closed rectangles such that the union
of all rectangles is @ and any two rectangles are either disjoint or have a com-
mon vertex or a common side. If we wish to express that 4 and A are, respectively,
the lengths of the greatest and of the smallest sides of all rectangles of the partition g,
we write o(4, 4).

¢ is said to be a partition of a polygonal domain Q if é defines a partition ¢ of
a rectangular polygonal domain Q, = Q 1) and a triangulation 7 of the set Q, =
Q- Q9 2) provided that the intersection of an arbitrary rectangle of the partition ¢
with an arbitrary triangle of the triangulation 7 is either void or is their common side
or their common vertex. The rectangles of the partition ¢ and the triangles of the
triangulation 7 are called the rectangles and the triangles of the partition §, respec-
tively.

Let A and 4 be, respectively, the lengths of the greatest and of the smallest sides
of all rectangles of a partition J of the given polygonal domain @, and § be the mag-
nitude of the smallest angle of all triangles of é. A collection # of partitions of the
domain Q is said to be regular if there exist two positive constants o, and 3, such
that 4 = ood, 3 = 8, for all 6 € 4.

In [1] the hierarchy of interpolation polynomials on the triangle is defined in the
following way:

Let T be a triangle. Let P;l;, v;, j = 1, 2, 3, and P, be its vertices, sides, normals
to the sides and center of gravity, respectively. Further, let the points Qﬂ-g No=1,
2,...,r, divide the side 1; (j = 1, 2, 3) into r + 1 equal parts. Finally, let m, x be
non- negatwe integers, 1 < % < 4. Under these hypotheses to each fe Cm+1)(T)
(forx = 1,2 it is sufficient if f € C(z"')(T)) there is assigned a polynomial p of degree

at most n = 4m + x such that

(1) Dip(P,) = D'f(P)), j=1,2,3,
(2) DkP(PO) = Dkf(Po) s
s (o,r) Asp( ne.r)
(3) CpQT) N i3 o= 12,
v} v’

1) For different partitions of the domain Q the corresponding rectangular polygonal domains
2, may be different.

2) The set Q, is cither void or is the union of a finite number of disjoit polygonal domains.

147



and for n = 4m + x the indices i, k, r, s are determined by (4,,):

4) il £2m klsm—2, s=r=12..,m,
(4,) i| £2m, k|sm—1, s=r—1, r=012..,m+1,
(4) | £2m+ 1, |k =m, s=r=12..m,
(4)  ijs2m+ 1, |K=m+1, s=r—1, r=12..,m+1,

The existence and uniqueness of just introduced interpolation are assured by
Theorem 1 of [2] and the error estimate (in Sobolev’s norm) is given by Theorem 2
of [2]. If Qis a polygonal domain, 7 is any triangulation of @ and fe CCem+1y(g),
then the piecewise-polynomial function f, coinciding on each triangle of the triangu-
lation t with the polynomial determined by the conditions (1)—(4,)?) belongs to
cm(Q).

Making use of the above described piccewise-polynomial interpolations for solving
linear elliptic boundary value problems of order 2(m + 1) by the finite element me-
thod (see e.g. [2]), it is necessary to use polynomials of degree not smaller than
4m + 1. Then, of course, to get an approximate solution we must compute the values
and the derivatives of this solution not only at the vertices of the triangles of a trian-
gulation 7 of the considered polygonal domain, but also on the sides and at the centers
of gravity of the triangles of t (see conditions (2) and (3)). However, the normal deri-
vatives on the sides of the triangles are not necessary in applications and their evalua-
tion prolongs the computation. For that reason Bell proposed in [5] a “reduced”
polynomial of the fifth degree. We get it from the polynomial p(x, y) of the fifth degree
of the above described hierarchy (m = x = 1) if we eliminate the values op(Q4'*")/dv;,
Jj =1,2,3, by imposing on p(x, y) the condition that dp[dv,, j = 1,2, 3, be cubic
polynomials on the sides of the considered triangle (see Section 2, Theorem 1
for m = 1). In this case the highest order of accuracy for the finite element method
applied to the fourth order boundary value problems is the third order (see Theorem
15 for m = 1), whereas if we used the polynomial of the fifth degree from the above
described hierarchy (m = » = 1) the highest order of accuracy would be the fourth
order (see [2], Theorem 4), but this fact is not so essential for practical use. Likewise
it is possible to save the computer time by ecliminating the parameters prescribed
at the center of gravity by imposing some restrictions on the polynomials. That was
why Zlamal in [6], for solving second order boundary value problems, proposed
a “reduced” cubic polynomial p*(x, y). If T'is a triangle with vertices P}, j = 1,2, 3,
and with the center of gravity P, then p*(x, y) is on T uniquely determined by nine
parameters D'p*(P;), j =1, 2, 3, |i| £ 1, in such a way that the tenth parameter
p*(P,) is a certain linear combination of the above nine parameters. We apply the
just mentioned devices of Bell and Zlamal to the hicrarchy of the polynomials deter-

3) We say that the function f; is generated by the interpolation (1) — (4).
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mined by the condition (1)—(4,) and thus we come to a hierarchy of reduced inter-
polation polynomials which are, moreover, also especially suitable to a combination
with the reduced Hermite polynomials of [4]. This combination is carried out in
Section 3.

When solving a second order boundary value problem by the finite element method
and making use of the polynomials of the fifth degree, either determined by 21 para-
meters (relations (1) —(4,) for m = 1) or reduced by Bell (18 parameters), the appro-
ximate solutions have continuous derivatives of the first order on the closure Q of the
considered domain Q even when the exact solution does not belong to C(Q). In this
case it would be apparently far better to use a polynomial of the fifth degree defined
on a triangle with the vertices P;, j = 1, 2, 3, and with the center of gravity P, by
these 21 parameters (see [3]): D'p(P;), |i| < 2,j = 1,2, 3, DX(P,). [k| < 1. Following
the just mentioned idea we come to interpolation polynomials with “concentrated”
parameters. By the concentration, roughly speaking, we mean such a choice of para-
meters uniquely determining an interpolation polynomial on a triangle, that as many
parameters as possible are prescribed at the vertices and at the center of gravity while
only as many parameters (or conditions) as necessary for obtaining the desired
smoothness of the piecewise-polynomial interpolation in the domain considered are
prescribed on the sides. A combination of the just mentioned polynomials with the
polynomials of [4] is again carried out in Section 3. In the last section the piece-
wise-polynomial interpolations of Section 3 are used for solving V-elliptic boundary
value problems.

2. REDUCTIONS AND CONCENTRATION OF PARAMETERS
OF INTERPOLATION POLYNOMIALS ON THE TRIANGLE

At first we are going to decal with a reduction of parameters of the interpolation
polynomials determined by the conditions (1) ( ). This reduction is also mentioned

in [2].

Theorem 1. Let T be a triangle. Let P, Liyvis j =1, 2.3, and P, be its vertices,
sides, normals to the sides and center of gravity, respectively. Further let m be
a non-negative integer. Then to each fe C”'"’(T)“) there exists exactly one poly-
nomial p of degree at most 4m + 1 such that

(3) D'p(P;) = D'f(P;), j=1,2.3. |i|<2m.
(6) DkP(Po) kf Po) ]/\] = -2,

(7)  on the side 1,(j = 1,2, 3), the normal derivatives &'p[0v}, r = 1,2,....m, are
polynomials o] degree at most 4m + 1 — 2r. %)

I

II

+) Obvxously the existence of the derivatives D'f; |i] == 2m, on T'is sufficient.

5) We leave out the conditions (6) or (7) if m = 0, 1 of m = 0, respectively.
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Proof. Let f(x, y) = 0 and let p(x, y) be a polynomial of degree at most 4m + 1
satisfying the conditions (5)—(7). If I,(x, y) = 0, j = 1, 2, 3, are the equations of the
sides of Tand I(x, ¥) = I;(x, ) I5(x, ) I5(x, y) then, according to (5) and (7),

plx, ¥) = 1"""(x, p) a(x, y) »

where g(x, y) is a polynomial of degree at most m — 2. With respect to (6) D*q(P,) =
= 0, |k| < m — 2. Then, of course, g(x, y) = 0and hence also p(x, y) = 0 which was
to be proved.

Theorem 1 may be considered to be a consequence of Theorem 1 of [2] if we
take into account that by (7) the parameters 0"p(Q@")/ov} in the interpolation (1)
to (4,) are now given as certain linear combinations of the parameters D'p(P;),
j =1.2,3, ]i] £ 2m. The error estimate for the piecewise-polynomial interpolation
generated by the interpolation of Theorem 1 is given by

Theorem 2. Let Q be a polygonal domain and let ©(h, 8) be any triangulation of Q.
Further, let m be a non-negative integer and let f € W{(Q), k = 2m + 2. Finally,
let the function f, coincide with the polynomial p described in Theorem 1 on each
triangle of the triangulation © and let 1 = min (k, 3m + 2). Then f.e C"™(Q) and
for0O=n=m+1

K
- Q=TT ht=" Jles
(8) Hf fTH", = (sin 9),, lfl B

where the constant K depends neither on Q nor on f.

Proof. The stated smoothness of f, follows from the fact that on each side of any
triangle T of 7 the values of f, together with its derivatives up to the order m inclusive
are given merely by the values Df, |i| £ 2m, at the vertices of T lying on the consi-
dered side. The error estimate could be proved in a similar way as the estimate (15)

in [2].

Further reduction of parameters will be carried out in such a way that the parame-
ters D"p(PO), k| < m — 2, will be given as certain linear combinations of the para-
meters D'p(P;), j = 1, 2, 3, |i| £ 2m. However, a practical way is to retain the para-
meters D*(P,) and use the method of condensation of internal parameters (see [9]
or [10]).

If p(x, y) is a polynomial of degree at most 4m + 1 and x = x(s), y = y(s)
is such a parametric representation of the median t; (j = 1, 2, 3) conrecting the vertex
P; with the center of gravity P, that the values s = 0, 3, 1 correspond to the vertex P,
to the center of gravity P, and to the center of the side [; (lying opposite the vertex P;),
respectively, then each of the polynomials

7P(s) = D*Pp(x(s), y(s)), a+B=r, 0<r<m-2,
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is of degree at most 4y + 1 — r. Let us approximate the polynomial T‘tg“"”(s) by
a Hermite polynomial ng.“'/”(s) of degree at most 3m + 1 — 2r determined in this way:

Din{=P(0) = D'EM(0), 0<i=2m—r,

D¥rl=h(1) = DRP(1), 0 <k <=m—r.°)

If the polynomial p(x, y) satisfies the condition (7) then the values D'z{*#(0), 0 <
<i<2m -, Dkﬁ;“"“(l), 0<k<m-—vr, a+ f =r are linear combinations
of the parameters D'p(Pn), n = 1,2,3, il £ 2m, hence the same is true for the values

(), j=1,2,3, 0Sa+pf<m—2.

Now, with respect to the just performed consideration, the following theorem is an
immediate consequence of Theorem 1.

Theorem 3. Let T, P, I;, v;, Py be the notation of Theorem 1 and let m = 2
be an integer. Then to each f e C(Z'")(T) there exists exactly one polynomial p of
degree at most 4m + 1 such that

(9) D'p(P;) = Df(P;), j=1,2,3, |i| <2m,

3
(10) DEPp(Py) =4 nM(3), 0<a+p<m—2,

n=1

where the values n{**)(3) are linear combinations of the parameters D'p(P)),

j=1,2,3,1il £2m, by the above described construction,

(11)  on the side I; (j = 1,2, 3) the derivatives (',?’p/év;., r=1,2,...,m, are poly-
nomials of degree at most 4m + 1 — 2r.

From the construction of the parameters D¥(P,), |k| £ m — 2, it is clear that the
interpolation polynomial for the function f determined by the conditions (9)—(11)
agrees with fif f is any polynomial of degree at most 2m + 3, while the polynomial
of Theorem 1 agrees with f if f is any polynomial of degree at most 3m + 1.
This fact implies, as follows from comparing Theorem 2 with the next theorem, that
for m = 2 and sufficiently smooth functions the error estimate for the interpolation
(9)—(11) is worse than that for the interpolation (5)—(7).

Theorem 4. Let Q be a polygonal domain and let «(h, 9) be any triangulation
of Q. Further, let m = 2 be an integer and let fe Wi(Q), k = 2m + 2. Finally,

let the function f, coincide with the polynomial p described in Theorem 3 on each
triangle of the triangulation t© and let | = min (k, 2m + 4). Then f.e C"™(Q) and

®) D'l Ps) = d'z'#P(s)/ds'.
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for0<n<m+1

(12) ”f Jr”n Q = hl'n If]l,Q s

K
(sin 9y
where the constant K depends neither on Q nor on f.

Proof. The stated smoothness of the function f, follows from the definition of f,

as in Theorem 2. The error estimate could again be proved in a similar way as the
estimate (15) in [2].

Turning to the concentration of parameters determining the interpolation poly-
nomials we begin with an interpolation of [3], which is very important for our
further considerations. This interpolation is given by

Theorem 5. Let T be a triangle with the vertices P;,j = 1,2, 3, and with the center
of gravity Py, and let m be a natural number. Then to each f € C™~ (T ) there exists
exactly one polynomial p of degree at most 2m — 1 such that

(13) Dip(P;) = D{f(Pj), j=1023, li<m-1,
(14) D*p(P,) = D*/(Py), |k =m —2.)
The error estimate for the piecewise-polynomial interpolation generated by the

interpolation of Theorem 5 is given in the following theorem (see [3], Theorem 4).

Theorem 6. Let Q be a polygonal domain and let t(h, §) be any triangulation
of Q. Further, let m be a natural number and let fe W(Q), k = m + 1. Finally,
let the function f, coincide with the polynomial p described in Theorem 5 on each
triangle of the triangulation © and let 1 = min (k,2m). Then f.e C(Q) and for
n=0,1

(15) . “f f”nﬂw—(—— h'~ "[f]uz,

where the constant K depends neither on Q nor on f.

While the function f, of Theorem 6 is, in general, only continuous, the interpo-
Jations introduced by the following theorem generate piecewise-polynomial inter-
polations of higher smoothness.

Theorem 7. Let T, P}, I;, v; and P, be the notation of Theorem 1. Further, let
the points Q¥", ¢ = 1,2, ..., r, divide the side I; into r + | equal parts. Finally,
let m, k be non-negative integers. Then to each fe CP™*M(T) there exists exactly

7) If m = 1 no condition is given at P.
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one polynomial Pk of degree at most 4m + 1 + 2k such that
(16) Dipmi(P;) = Df(P), j=1273, lil <2m + k,

(17) D pur(Po) = Df(Py), |s| £ m =2 for k=0,
|

|
|s] =m+k—1for k>0,

arplrl,k(Qggvr)) = 67(Q.(]Q‘r)) j - l 2 3

o=12,..,r,
ov'; ov5

(18)

r=12,....,m,
(19) PuiRY) =f(RY), 0=1,2,..., k=1, j=12..,m,

where RY) £ Py, 0 = 1,2, ..., k — 1, are distinct points lying inside T on
a straight line d; (j = 1,2, ...,m) which passes through the center of gravity
and does not pass through any vertex of T.

It is necessary to add that from (17)—(19) we leave out those condition which
have no sense for given m and k. Thus, for example, we leave out the condition
(19) when k < 1 orm = 0.

Proof. Suppose m > 0 and k > 1 since for k < 1 or m = 0 the interpolations
were already considered. Let f(x, y) = 0 and let the polynomial p,, x(x, y) of degree
at most 4m + 1 + 2k satisfy the conditions (16)—(19). Let I,(x, y) = Oand t/(x, y) =
=0,j = 1, 2, 3, be the equations of the sides and of the medians of T, respectively,

and let I(x, y) = I,(x, y) L(x, y) ls(x, »), t(x, ») = t,(x, y) t2(x, y) t3(x, ¥). Then, by
virtue of (16) and (18),

Pua(Xs ¥) = I""H(x, y) alx, ¥)

where ¢(x, y) is a polynomial of degree at most m + 2k — 2 which, according to (16),
(17), (19), satisfies the conditions

Dig(P) =0, j=1,2,3, i < k-2,
D*q(Py) = 0, |S|§m+k—1,
R =0, j=1,2,...,m, o=1,2..,k—1.

Hence

alx.y) = i(x.3) h(x. ).

where h(x, y) is a polynomial of degree at most m + 2k — 5 satisfying the conditions

(16) D'h(P) =0, j=1,273, lil <k -3,
(17) D*h(Py) =0, |[s|<m+ k-4,
(19') h(RY) =0, j=12,...m, o=12.,k—1.
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If k = 2and m = 1, then /i(x, y) is a constant and by (19") h(x, y) = 0. Therefore,
assume k + m > 3. If d(x, y) = 0 is the equation of the straight line d; (j = I,
2,...,m) and d(x, y) = d(x, ¥) dy(x, y) ... d,(x, ¥) then, with respect to (17) and
(19’), the polynomial h(x, y) is divisible by d(x, y). Hence for k =2 h(x, y) =0
and for k > 2

h(x, y) = d(x, y) z(x, y) ,
where z(x, ) is a polynomial of degree at most 2k — 5 which satisfies
Diz(P) =0, j=1,23, |ijsk-3,
Dz(Py) = 0, M =k-4.

Then, of course, applying Theorem 5, we have z(x, y) = 0 and hence h(x, y) = 0
again. Thus in all cases p,, ,(x, y) = 0 and the proof is complete.

Let us underline that between the parameters determining the polynomials p,, .
there are normal derivatives of order at most m only and that the piecewise-poly-
nomial approximation generated in a polygonal domain Q by these polynomials
belongs to C™(@). Further, let us note that for k = 0 or k = 1 we obtain the hierar-
chy of the interpolation polynomials (1)—(4,) or (1)—(43), respectively, and for
m = 0 we have the interpolation of Theorem 5. If k > 1 and m > 0 then, accord-
ing to (19), the conditions determining the polynomials p,, , are not symmetric (with
respect to the triangle T) which is a great disadvantage of these interpolations. For
some k > 1 and m > 0 it is possible to replace the condition (19) by a symmetric
condition. For example, to each fe C'®(T) there exists exactly one polynomial pf ,
of degree at most 13 satisfying (16)—(18) for m = 1, k = 4 and

WEAS) _US) g,
Ot; O¢;

J

(19%)

where S; is the center of the line segment P;P, and ¢; is the no.rma] to P;P,. The
parameters of this polynomial may again be reduced in the sense of Theorem I.
Thus we obtain a polynomial p, 4 of degree at most 13 which is uniquely determined
by the conditions

(16”) D'p, 4( ) if(Pj)a j=123, M§6,

(177) Dp, 4( 0) = Dsf(Po) IS] =4, ‘

(18") on the side 1,(j = 1,2,3) the normal derivative dp, 4/0v; is a polynomial
of degree at most 11,

(19") on the median PP, (j = 1,2, 3) the normal derivative 0P, 4|0¢; is a poly-
nomial of degree at most 11.
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3. COMBINATIONS OF THE INTERPOLATIONS OF SECTION 2
WITH THE REDUCED HERMITE INTERPOLATIONS OF [4]

In [4] reductions of some parameters of Hermite interpolations of [7] were
performed. These reduced interpolation polynomials are treated in the following
Theorems 8 —11.

Theorem 8. Let R bea rectangle with the vertices P, j = 1,2,3,4,the sides of which
are parallel to Cartesian coordinate axes and let m be a natural number. Then to
each fe C™Y(R) there exists exactly one polynomial p(x, y) of degree at most
2m — 1 in each variable,

2m—-1

P(X, J’) = Z “ijxi}’j s

i,j=0

e s [Tz

D'p(P;) = Df(P}), j=1,2,3,4, |ii<m~—1.

such that

Theorem 9. Let Q be a rectangular polygonal domain and let o(4, 4), 4 = o4,
be any partition of Q. Further, let m be a natural number and let fe W{NQ),
k = m 4+ 1. Finally, let the function f, coincide with the polynomial p described in
Theorem 8 on each rectangle of the partition ¢ and let | = min (k, 2m). Then
f,€ C(Q)and for n = 0, 1 -

(20) If = Tolne =

| =

Al——" l.f’l,!} 5

n

Q

where the constant K depends neither on Q nor on f.

Theorem 10. Let R be a rectangle with the vertices P;, j = 1, 2, 3, 4, the sides of
which are parallel to the coordinate axes and let v; be the normal to the side I;
(j=1,2,3,4). Further, let m be a non-negative integer. Then to each fe C*™(R)
there exists exactly one polynomial p of degree at most 4m + 1 in each variable,

4m+1

p(x, y) = Z Xy

i,j=0
such that
;=0 for i,j=2m+1),

D'p(P;) = Df(P;)), j=1,2,34, |i|<2m,

8) [e] is the whole part of the number c.
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on the side 1; (j = 1,2, 3,4) the normal derivatives 0'p[ov}, r = 1,2,...,m, are
polynomials of degree at most 4m + 1 — 2r.9)

Theorem 11. Let Q be a rectangular polygonal domain and let o(4, 4), 4 = o4,
be any partition of Q. Further, let m be a non-negative integer and fe Wi°(Q),
k = 2m + 2. Finally, let the function f, coincide with the polynomial p described in
Theorem 10 on each rectangle of the partition ¢ and let | = min (k, 3m + 2). Then
f,eC™(Q) and for0 <n <m + 1

(21) w—&wnggmﬂmm,

where the constant K depends neither on Q nor on f.

The combinations of the interpolations of Section 2 with the interpolations
of [4] are now given in the following theorems. Thus, the combination of Theo-
rems 6 and 9 gives

Theorem 12. Let Q be a polygonal domain and let  be any partition of Q2 determi-
ning a partition o(4, 4), 4 = a4, of a rectangular polygonal domain Q, = Q and
a triangulation t(h, 8) of the set Q, = Q — Q. Further, let m be a natural number
and let fe W¥(Q), k = m + 1. Finally, let the function f; coincide with the poly-
nomial of Theorem 5 on each triangle of the triangulation © and with the poly-
nomial of Theorem 8 on each rectangle of the partition ¢, and let] = min (k, 2m).
Then fye C(Q) and for n = 0. 1
(22 I = foln < E 477 [floay + = 270

(sin 9)"

where the constants K, and K, depend neither on Q nor on f.

Upon combining Theorem 2 with Theorem 11 we find

Theorem 13. Let Q, 6, Q,, Q,, (4, 4), o,t(h, 3), m be the notation of Theorem 12
and let f e W(Q), k = 2m + 2. Further, let the function f, coincide with the poly-
nomial of Theorem 1 on each triangle of © and with the polynomial of Theorem 10
on each rectangle of o, and let | = min (k, 3m +2). Then f; e C™(Q) and the error
estimate (22) is valid for 0 < n < m + 1.

4. APPLICATION TO V-ELLIPTIC BOUNDARY VALUE PROBLEMS

To give some applications of the preceding error bounds, let us consider the
Galerkin method for approximating the solutions of V-elliptic boundary value pro-
blems with homogeneous stable boundary conditions.

°) For m = 0, p is a bilinear polynomial determined by the values at the vertices of R.
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Let Q2 be a polygonal domain. Let V be a Hilbert space consisting of all functions
from W$(Q) for which all given stable boundary conditions are homogeneous, i.e.

(23) W)« Ve Wi Q),

with the norm induced by W{(Q). Let a(u, v) be a complex functional on W5(Q) x
x WiM(Q) which is linear in u, antilinear in v, bounded and V-elliptic, i.e. for some
positive constants M, o
(24) |a(u, v)|

(25) la(v, v)] = «|v]ia VveV.

IIA

M Han,Q Hu“,,’Q Vu,ve WP(Q),

Finally, let F(v) be an antilinear bounded functional on V. Then a function u e V
is said to be a solution of the boundary value problem (with the homogeneous stable
boundary conditions) if

(26) a(u,v) = L(v) VveV.

Under the above hypotheses, the problem (26) has a unique solution by the Lax-
Milgram Lemma (see [8], p. 38).

We consider Galerkin’s procedure for obtaining an approximate solution of (26).
More precisely, let S be any finite dimensional subspace of V. Consider the approxi-
mate problem of finding a w € S such that

(27) a(w,v) = L(v) VveS.

It is easy to show that the problem (27) has a unique solution. Moreover, if u e V
is the solution of (26), then

(28) |l = wllao < M”ll — 0,0 VvevV,
a«

where M and o are the constants from (24) and (25), i.e. independent of S (see
[7]. p. 252).

Let Q be a polygonal domain and let § be any partition of Q determining a partition
o(4, 4), 4 = o4, of a rectangular polygonal domain Q; = Q and a triangulation
w(h, 9) of the set Q, = Q — Q,. Let to each function f belonging simultaneously
to both C™~ (@) and V, Wi(Q) « V « Wi(Q), there be assigned a function f,, ;
which coincides with the polynomial of Theorem 8 on each rectangle of the parti-
tion ¢ and with the polynomial of Theorem 5 on each triangle of the triangulation .
The set G§' of all in this way obtuined piecewise-polynomial functions is a finite dimen-
sional subspace of V. In a similar way, let to each function f belonging simultaneously
to both C™(Q) and V, W{(Q) = V < WE(Q),n < m + 1, be assigned a function
Jm.s which coincides with the polynomial of Theorem 10 on each rectangle of the
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partition ¢ and with the polynomial of Theorem 1 on each triangle of the triangu-
lation 7. The set Hj of all in this way obtained piecewise-polynomial functions again
is a finite dimensional subspace of V.

When solving the problem (27) for S = G} and estimating the right-hand side of
Céa’s inequality (28) by Theorem 12, we obtain

Theorem 14. Let Q be a polygonal domain and let (23)—(25) be valid for n = 1.
If the solution u of (26) belongs to Ws(Q), k = m + 1,u} is the solution of (27)
Jor S = GY and | = min (k, 2m), then

(29) Hu —uf]0 < K[l— A1 [ul,,gl + —fL h'l[u[,,m]
o sin 3

where the constant K is independent on the functions u and uj.

In a similar fashion, combining the inequality (28) with Theorem 13 we have

Theorem 15. Let Q be a polygonal domain and let (23)—(25) be valid. Let
m =n — 1 and let the solution u of (26) belong to Wi*(Q), k = 2m + 2. If uf
is the solution of (27) for S = HY and | = min (k, 3m + 2), then

(30) e = o < K [‘ A g+ |u|,,92]
" (sm 3y

where the constant K does not depend on the functions u and uj.

In the case when Z is a regular collection of partitions of Q (see Section 1) let us
assign to each § € # determining a partition o(4, 4) of a rectangular polygonal do-
main Q; = Q and a triangulation t(h, 9) of the set Q, = Q — Q, the parameter
% = max (h, 4). It is clear that if in Theorem 14 ¢ € 2, then

Hu - u§'||1,9 <K't ]u],,Q,

and if in Theorem 15 0 € #, then

Ju = 4o = Ko™ ulo,

where the constants K,, K, are independent on the functions u and uj. These ine-
qualities give an asymptotic estimate of the rate of convergence of the approximate
solutions uj' of the problem (26) under the assumptions that the exact solution u of
(26) is sufficiently smooth. The following theorems, however, guarantee the conver-
gence of the approximate solutions uj to the exact solution u even in the case that u
belongs only to WZ""(Q)_
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Theorem 16. Let Q be a polygonal domain and let # be a regular collection of
partitions of Q. Let (23)—(25) be valid for n = 1 and let u be the solution of (26).
Finally, let for each 6 € R the function uj be the solution of (27), where S = GY.
Then

Hu —uj|l;e—>0 as x—0.

Proof. The set of all functions belonging simultaneously to both ¥ and W{*™(Q)
is dense in V. This fact, combined with Theorem 12, implies that to every ¢ > 0 there
exists v € Gy such that [u - vH 1,0 < €assoon as x < x,, where », depends only on .
Then, of course, by (28) |lu — uj¥||, o < (M/a) ¢ and the convergence is demonstrated.

Theorem 17. Let Q be a polygonal domain and let Z be a regular collection of
partitions of Q. Let (23)—(25) be valid and let u be the solution of (26). Finally,
let for each 6 € Z the function uj be the solution of (27), where S = Hy, m + 1 > n.
Then

“u — u;"“,,’Q —0as %—0.

Proof. When noting that the set of all functions from V belonging to WZ(Z’"”)(Q)
is dense in ¥ and using Theorem 13, the proof is exactly analogous to that of the
preceding theorem.
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Souhrn

PO CASTECH POLYNOMICKE INTERPOLACE V METODE
KONECNYCH PRVKU

STANISLAV KOUKAL

V ¢lanku uvadime nékteré redukce parametrl, kterymi je uréen interpolaéni poly-
nom nad trojuhelnikem v [1]. Dale se zabyvame koncentraci parametrii urdujicich
interpolaéni polynom nad trojihelnikem. Pfitom koncentraci, zhruba feceno, rozu-
mime takovou volbu parametra urcujicich interpolaéni polynom nad trojihelnikem,
Ze maximalni pocet té€chto parametri je zadan ve vrcholech a v té€zisti trojuhelnika,
zatimco na stranach trojuhelnika je zadino pouze tolik parametri (nebo podminek),
aby po trojuhelnicich polynomicka funkce, ztotoznujici se nad kazdym trojahelnikem
triangulace dané polygonalni oblasti Q s interpolaénim polynomem uvazovaného
typu, mé&la v Q spojitost poZadovaného fadu. Ziskané interpolace, jak s redukovanymi
tak i s koncentrovanymi parametry, jsou kombinovany s redukovanymi hermitov-
skymi interpolacemi ze [4] a t&chto kombinaci je uZito k FeSent eliptickych okrajovych
tloh metodou koneénych prvku.

Author’s address: Dr. Ing. Stanislav Koukal, katedra matematiky VAAZ, 602 00 Brno.
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