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ON THE FORMULATION OF THE TRACTION PROBLEM
FOR THE FLOW THEORY OF PLASTICITY

JINDRICH NECAS

(Received June 22, 1972)

1. INTRODUCTION

In this paper, an abstract ordinary differential equation with retarded argument is
deduced. This equation is a model of incremental, rate independent strain theory.

The considerations are based on the incremental stres-strain relations, see K. Was-
hizu [1] To solve the boundary-value problem for increments, an abstract variational
problem is solved with a quadratic functional.

The definition of the experience of the body is fundamental. .

The behaviour of the abstract ordinary differential equation is such that the
methods of contractive mappings, compact mappings or weakly continuous mappings
are not applicable. The author will try to solve a regularized model in another paper,
basing his considerations on the paper of J. Kratochvil, O. W. Dillon [2] where the
flow theory of plasticity is shown to be a singular limit of the theory with internal
state variables.

This paper had its rise after discussions in the seminar of mechanics held at the
University in Prague and it is my pleasure to thank ing. M. Hlavacek, ing. V. Kafka
_ and dr. J. Kratochvil for their suggestions.

2. STRESS-STRAIN RELATIONS

For the formulation of stress-strain relations, we shall suppose sufficient regularity
of displacements and of the stress tensor. We shall consider only bounded bodies € with
sufficiently regular boudary.

The deformation of Q is described by small displacement theory and the strain
tensor ¢;; is defined by

0x;  0x;
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The components of the strain tensor ¢;; are supposed once continuously differentiable
in time t € {0,1> with the exception of a finite number of points where the one side
derivatives are supposed to exist.

The usual symmetric stress tensor o;; is considered and ¢}, do;;/0x, are conti-
nuously differentiable in ¢ in the above sense.

Let F; be the components of the body-forces, once continuously differentiable in
time.

The equilibrium equation

0 '
(2‘2) 0 +F, =0, *)
0x;
as well as
(23) % 4 Fo=0
0x;
is valid.

Let us consider once continuously differentiable function f(g) of

o= (611’012r013a O -vos 033)€R9, Gij = 0ji,

such that f(¢) = 0, f(6) = 0 and

do;; 0o y;

S<c< .

(2.4)

Let h(c) be a continuous function, h(c) = 0, such that
(2.5) |h(o)] £ ¢ < .
Let xi(s), x5(s) be bounded, Lipschitzian-functions on the interval <0, co, such that
0<%(s) =1, #(0)=0, xi(s)=1 for s>&>0,
0<x5(s) <1, %50) =1, x(s)=0 for s=>¢>0.
Put n(o) (x, t) = max f(o(x, )) and call n(c): experience.
0=<t=t
If ,(s) =0 for 0<s<p,y(s)=1 for s> p,x,(0) = 1 and 0 elsewhere,
the incremental stress-strain relations are

(2.6) by = = = owdyy + by + (/1) 1a(n(o) — S(0)

h(o) E‘Zf- (o) r <% (o) 6, ,> ,

*) Throughout the whole paper, the summation convention is used.
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where
HA) = 4+ ]i]) and 0Zv<},0<E.

If we put
&, = 1:(/(0)) 22n(0) = S(0)) h(0) (f]00y;) (o) r (2f[001)) (o) 61.)

n(o) (x,1) = F < f Otaijéfj dr) ,

where F is an increasing positive function.

the experience is given as

3. SPACES C({0,1), L,(2)), C(0,1), Ly(2)), H{®'V (2 x (0,1))

Put Q0 = Q x (0, 1). Let us define H®"(Q) as the subspace of L,(Q) such that
for u e HO1(Q), dufot € L,(Q) in the sence of distributions.

Put

(3.1) oy = UQ<u2 + <%>Z)dxdz}m.

It follows from Theorem 2.2, § 2., Chap. 2, J. Necas [3] that u e H*V(Q) = u is
absolutely continuous in ¢ € <0, 1) for almost all x € Q. Let us define H*"(Q) as the
subspace of H'"(Q) such that u(x, 0) = 0.

The next lemma 3.1 follows as in Theorem 3.1, § 3, Chap. 2 of [3] and as in
Theorem 1.2, § 1, Chap. 1 of [3], if we define &,(Q), the space of infinitely differen-
tiable functions on Q equal to zero for t = 0:

Lemma 3.1. &(Q) is dense in HS"(Q) and for all t € {0,1):
(3.2) f uz(x, t) dx £ ¢ ”u“éo(o,x) .
2
Let C(€0,1), L,(2)) be the set of functions u(x, t) such that for every
te0,1> :j u?(x, 1) dx <
o
and such that u(", f) is continuous on <0,1) in the L, norm. Put

1/2
(33) ”“”C«o,w.Lz(m) = rri)ax <J u?(x, t) dx) .
te y Q

<0,15

Let C(Q) be the set of continuous functions on Q.
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Lemma 3.2. C(Q) is dense in C(<0,1), L,(Q)).

Proof. Let u e C(€0,1), Ly(®)). Clearly u(-, ) is uniformly continuous in t on
<0,1>. Let & > 0. Then there exists & > 0 such that [[p(t,) — o(t,)| < eif |t; — t,| <
<d.Leth=1[pandt; = jh,j=01,...,p, h <.

Let {v;}{2; be a set of continuous functions on @, orthonormal and complete in
L,(Q). For each j, let

w5 1)) = ‘;"i(“('a 1), vi)

where n; is such that [[u(-, ;) = w,(", 1))] L0 < &

Put

w5 0) = uy(cs 1)) + (0 = )0 (s t500) — wi( 1)) for 1, <t <10,
We have for
te iyt lus 1) = u(s )] =

< ((h = ¢+ 1)[h) [lu(s 1) = uCs Dl ooy + (0 = L)1) [l t541) = u(s )] ooy < 26
q.e.d.
We define

(1) = im ((u(, ¢ + B) = u( )

in L,(Q) and the space C1(<0,1), L,(R)) as the subspace of C(<0,1, L,(R)) such
that it € C(<0,1), L,(Q)) with the norm

lullecco1s.za@n + Jilleco.y Loy -

We define C§(<0,1>, L,(Q)) as the subspace of u from C(<0,15, L,(€)) such
that u(-,0) = 0. Let C§")(Q) be the space of continuous functions u on Q with
continuous derivatives du/dt on 0 and such that u(x, 0) = 0.

Lemma 3.3. C"(Q) is dense in C5”(0,1), L,(Q)).

Proof. Let u e C{V(<0,1), Ly(Q)). There exists h, € C(Q) by the preceding lemma
such that h, — 1 in C(¢0,1), Ly(2)).

Put
t

H,(x,1) = J

0

h,(x,7)dr and let J i(v, 1) dt

0

be the Riemann abstract integral. Since for every v e LZ(Q);

(u(s 1), 0)z, = (s 1), 0)r,s s (u(-, 4), 0),, =

= (J:u( 7) dx, v)Ll, u(, 1) = ﬂu( 7) dt

and H, — u in C(€0,1), L,(Q)), g.e.d.
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4. THE FUNCTIONAL FOR INCREMENTS AND THE FORMULATION
OF THE FIRST PROBLEM OF PLASTICITY

Let F;e C{(<0,15, Ly(Q)), g; € C6(<0,1>, L(69)).
We suppose

f[’,(x, 1) dx +f gx, 1)ds = 0,i=1,2,3,
0 o

f(F(x, 1) x x);dx —l—f (g(x, 1) x x);ds =0, =123,
0 o

where (F x x) is the vector product. Lef H'(2) be the Sobolev space of L, functions
with the first L, derivatives in the sence of distributions.

Let S be the subspace of ¢ € [L,(22)]° with ¢;; = ¢,; and the scalar product:

f o1, dx.
Q

Let K be the subspace of S defined by

ou ; ou
g = l_ i'i‘ + __EJ s MEGH'(Q),
2 Oxj Ox;

Let H be the orthogonal complement of K in S.

Lemma 4.1. K is closed and S = K + H.

Proof. Let u;e H'(Q) such that

Ju,-dx:O, f(u x x);dx =0.
2 2

For such u, we have Korn’s inequality:

@ u; Ou; dx Sc| gy e;dx,
0 0x; 0x; 2

see I. Hlavacek, J. Nedas [4] Therefore K is closed, because ¢;; = 0, i, j = 1,2, 3 iff
u =a+ (b x x), see the same paper, q.e.d.

Lemma 4.2. The operator o & n(c) is a Lipschitzian, bounded operator from

[Hﬁ,o’”(Q)]g NS b C(K0,1), Ly(2)) .
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Proof. Since o;,(x, 1) are absolutely continuous in ¢ € {0,1) for almost all x € 2,
the experience n(c) (x, ) is defined for almost all x € Q. Let ¢, < t,. We have

(n(0) (x, 12) = () (x, 12))* = max (f(o(x, 7)) = flolx, 1)))* =

(j (. ), df) = (1, - f Jo(x. D), de

hence n(o) € C(<0,1), L,(Q)). Since n(c) (x, 0) = 0 by the same argument as above,
we obtain that n(c) is a bounded operator.

We have
(n(os) (x> 1) = (o) (x, 1)* = max (f(o4(x, 7)) =
~ o, NP = e max o,(5,7) = oxs, ), =
< cjlljdl(x, ) — d,(x, r)”ig dr,
hence
(@) (1) = n(o2) (2 Do = cllor = o2]ngen0) »
q.e.d.

Remark. We have abso proved that Lemma 4.2 holds for the mapping o —»f(o*).

Let o € [C$V(€0,1), Ly(Q))]°. We define for every t € <0,1) the operator G(o) = %
from [C{V(€0,1>, L,(Q))]° to [L,(2)]°, where # is an element satisfying the following
conditions for every u € H'(Q):

(4.2) 0=f i ,Jdv—JFiuidx—J‘ gau;ds 1)
o 2 o0

| (Ou; = Ou;
gj=—(— 4+ —1
2\dx; Ox;
and for every h eH:

(4.3) J:Q [“ "E” Tkk(x)hkk(x) + E u(x)hu(x) +
+ (ol 1) xi(n(ff) (x.1) = f(o(x. 1) h(o(x. 1)
7 (o ) 15) (o, ) fu(X)]dx ~0. 3

1y (4.2) are equations of equilibrium fulfilled in the sense of virtual stresses.
2) (4.3) means the stationary value of the functional of complementary energy.
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Since

(4.4 [ [ 0w b oot -

=) ) (L o) Jox 2 2 s,

we obtain

Theorem 4.1. There exists a unique solution of (4.2),(4.3) and, independently of o:

(4.5) [t = (| Fliop + [9]iaon) -

Proof. We can find 6° € [C§(<0,1), L,(®))]° as the solution of the linear problem
(4.2), (4.3) where h(g) = 0; such solution exists and is unique, see for example 1. Hla-
vagek, J. Ne€as [4]. But if we put © = ¢° + z, we obtain a unique z from the Riesz
theorem; (4.5) is obvious, g.e.d.

Theorem 4.2. G(0) (-, *) € [C(€0,1), Lo(Q))]°.

Proof. Let t, € (0,1) and t, — t,, t, € <0,1). But all functions
1G1(/(0) (x, 1)), x”z(n(a) (x, 1,) = f(o(x, 1)) »
h(a(x, t )) (a(x 1))

Oij
are such that (we shall write it for example for

%(a(x, t,) : %—( (x, 1,)) > T(G(X )

Oij ij

almost everywhere in Q after choosing a subsequence of t,, if necessary. Because of
(4.4) and (2.4), we obtain easily (for details see Proposition 6.2, § 6, Chap. 3, J. Netas

[3]) that G(c) (-, 1,) — G(d) (+, t,), q.e.d.
Put

L'G(a) (-, 7) dr

to be the Riemann abstract integral.

The first problem of “regularized” plasticity (because of X3, 13) is to find

o e [C5(<0,1), L(Q))]°
satisfying the equation

(4.6) o+, 1) = J;G(a) (-, 7) de
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or the equivalent differential equation
(4.7) o(-,1) = G(o) (-, 1), o(+,0) = 0.

Let us consider the non-regularized case: let, as above, ¢ € [L,(Q)]° be the solution
of (4.2), (4.3) for o € [HY"(Q)]°. As above, we obtain Theorem 4.1.
We have

Theorem 4.3. 1(x, 1) € [Ly(Q)]° and
(4.8) Itliza@e = (c max [F|L,e) + max ¢]i,00) -
te(0,1) 1e(0,1)
Proof. Let us define yj(s) =0 for 0 <s < p — & xi(s) = (s — (p — ¢))e for

—e<s=<pand yi(s)=1fors=p. x5(s) =1 — s/e,0 < 5 < ¢, x5(s) =0 for
=< 5. We have for example

™

lim | |x2"(n(o) — f(0)) — 15(n(e) — f(0))] dx =0

n— o0 Q

by the Lebesgue theorem on the integrable majorant. Thus we obtain by Proposition
6.2, § 6., Chap. 3, J. Necas [3] ®) that for every t € €0,1) : 1,(t) > #(1) in L,(Q). Hence
by the Lebesgue theorem on the integrable majorant, (4.5) implies:

1
J [t.(1) = #(1)|* Loy dt > O for n— oo,
0

therefore € [ L,(Q)]° and (4.8) follows as above, g.e.d.
If we put 7(x, 1) g [o#(x, 5) ds, we obtain te [H"(Q)]° and we can formulate
the first problem of plasticity as follows: to find o € [HY"(Q)]° such that

(4.7) o(x, 1) = JIG(J) (x,7)dt

0
for almost all
xeQ, te0,1).

Let us remark that we can define  replacing (4.3) by

L} [_ ‘;:fkkhkk + 1’%‘1 tiihi; + x(f(0)) 22(n(o) —

= f(9)) h(ff)-a-a% (o) hyr <£% (o) r'k,)] dx = 0.

3) We apply this theorem to the uniformly elliptic bilinear forms (4.3) the coefficients of which
have limit in measure and are uniformly bounded which implies 'En(t) - 7(1) in L,(9).
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It follows from the relation (4.7) that both definitions are equivalent: for almost all
x € Q, 7;; is absolutely continuous in ¢ and therefore for almost all ¢ we have

U (o)) s 1) 2 0 if (o) (. 1) = f(o(x. 1)

001y

and ¢ is a solution of (4.7).
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Souhrn

FORMULACE PRVEHO PROBLEMU
V PRIRUSTKOVE TEORII PLASTICITY

JINDRICH NECAS

V praci je odvozena abstraktni oby&ejna diferencialni rovnice se zpoidénym argu-
mentem, ktera je matematickym modelem pfiristkové teorie plasticity. Je zaveden
pojem zkuSenosti materialu, veli¢iny udavajici zpevnéni.

V praci neni podan dtikaz existence ¢i unicity feSeni odvozené rovnice, protoZe tato
rovnice se vymyka dosud studovanym typim. Tyto otazky zistavaji otevieny.

Author’s address: Doc. Dr. Jindiich Necas, Dr. Sc., Matematicky ustav CSAV v Praze, Zitna 25,
115 67 Praha 1.
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