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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

SOME RANK TESTS OF INDEPENDENCE AND THE QUESTION 

OF THEIR POWER-FUNCTION 

MILAN KRISTAK 

(Received July 10, 1970) 

The paper deals with the problem of testing independence of a pair of random 
variables X9 Yhy locally most powerful rank tests. Theorem 1 gives a solution to this 
problem. A similar theorem is proved in [2] (II.4.11) under the assumptions thatf' 
and g' are continuous almost everywhere, whereas we suppose only integrability of 
the derivatives f and g\ Theorem 2 gives the derivative of the powerfunction of the 
S-test at the point A = 0. 

Two locally most powerful rank tests of independence for double-exponentially 
and normally distributed random variables Wand W*, which are based on general 
results of the first section and [2], are introduced. The power-functions of the U-test 
in a neighborhood of the point A = 0 for both cases are given numerically. 

1. LOCALLY MOST POWERFUL RANK TEST OF INDEPENDENCE 

Let (Xl9 y x), ..., (XN9 YN) denote a random sample from a bivariate population. 
We shall test a composite hypothesis 

H0: P(Xi ^ xb y . l y ^ - l J » ) - n -=•*(*.) G*(y^ 
1 = 1 

where F*, G* are arbitrary continuous distribution functions of the random variables 
Xi9 Yi9 i = 1,..., N. This hypothesis will be tested against a simple alternative 
HA: The density of the simultaneous distribution of the 2N-dimensional random 
variable (X, Y) = (Xl9 Yl9...9 XN9 YN) equals 

N 

PA&y) = I[hA(xi9yt) 
i-1 

where 

(1) hл(xt, yi) = Г f(xt - Azt) g(yt - Az) dM(z,) , i = 1,..., JV, 
J —oo 
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A > 0 denotes a real parameter and M(z) is an arbitrary distribution function of the 
random variables Zi9 i = 1, ..., N, with a positive and finite variance <x2, i.e. 

/•oo / r°° \ 2 

0 < z 2 dM(z) - í z dM(z) j = ď < 00 . 

We shall assume that both f and g are on finite intervals absolutely continuous densi­
ties of known types of the random variables 

(2) Wf = Xi ~ AZt and W* = Yt - AZ(, 

i.e. that for arbitrary — o o < a < b < o o there exist functions f and g' such that 

f f ' ( t ) d t = f ( b ) - f ( a ) and [g'(t) dt = g(b) - g(a) , 

and let furthermore 
/•oo /»00 

(3) \f'(t)\ dt < co and |«j(f)| dr < oo. 
J - oo J — 00 

R e m a r k 1. Under the alternative we suppose that 

Xt = Wt + AZ,- and yf = IV* + AZf, i = L ..., N , 

where lVf, W^* and Z f are mutually independent random variables. Thus we have 

cov(X,,y-) = A2var(ZI.)? 

hence we shall test the null hypothesis A = 0 against the alternative hypothesis A > 0. 
Let R = (Ru ..., Ktf) be the random vector of ranks of the random variables 

Xl9..., XN in their ordered sequence X(1) < ... < X(N\ i.e. 

Xt = X^\ i = l , . . . , N , 

and let D = (Dl9 ..., DN) denote the inverse permutation to (Rl9..., RN). Thus D 
is the vector of antiranks of the random variables Xl9..., XN, i.e. 

x{i) = xDi, i = l , . . . , N . 

Similarly let g = (Ql9 ..., Q^) be the vector of ranks of the random variables 
Yl9 ...9YN in their ordered sequence y ( 1 ) < ... < Yw

9 i.e. 

Yi = Y^\ z = l , . . . , N . 

Now denote F_1 and G " 1 the inverse functions of the distribution functions of the 
random variables W and TV* respectively, and similarly as in [2] (1.2.4) define for 
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X 6 (0, 1) the functions 

(4) ^ = .Af-W) and ^)--g'<G7A ) ) . 
U n ; / (E- ' (A)) n ) g(G~\X)) 

Introduce the following scores 

(5) at = E cp(C{i)) and bt = £ iA(C(i)) 

where C(1) < .. . < Cw is an ordered sample from the uniform distribution on (0, i) . 

Definition 1. Let {pA}, A ^ 0 is a set of densities, and suppose that p0eH0. 
Then a rank test will be called a locally most powerful rank test for H0 against 
A > 0 at some level oc, iff it is uniformly most powerful among all rank tests at the 
level a for H0 against pA, A e (0, S) for some S > 0. 

Considering this definition we shall construct for some right-hand neighborhood of 
the point A = 0 a uniformly most powerful rank test of the hypothesis H0 against HA. 
We shall consider the least favourable particular null hypothesis, which is nearest to 
the alternative hypothesis HA that the distribution of the random variable (X, Y) is 
determined by the density fA(x) gA(y), where 

f*(x) = f f(x ~ ^ ) d M ( z ) and gA(y) = f g(y - Az)dM(z) . 
J — 00 J — 00 

Now we can formulate the following main theorem. 

Theorem 1. The locally most powerful rank test for H0 against HA at the level <xk 

is, under the above assumptions, the test with the critical region 

(6) S = S(R, Q) = % aRibQi ^ k , 
i=l 

where cck equals the probability of the event (6) under H0. 

In the proof of this theorem we can use the same procedure as in the proof of 
theorem II.4.11 from [2], only instead of the assumption thatf' and g' are continuous 
almost everywhere, which is used for proving (10), p. 77 in [2], we directly use the 
property of their integrability. First, we introduce the following definition. 

Definition 2. A point x will be called Lebesgue's point of the function f iff f(x) 4= 
4= ±oo and 

l imìf |/(í)- /(x)|dt = 0. 
*-o ҺJX 
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For z Ф z* we hawe 

—1— [/(* - Az) - f(x - Az')] = — J - — f~" /'(') dt, 
.d(z-z') J ( z - z ' ) J » - j , . 

furthermore for each Lebesgue's point x of the function / ' is 

lim — - — f вlf'(t)dt=f'(x), 
*1=M2 

and similarly for g'. Thus, in each Lebesgue's point of the funktion /', or g\ 
formula (10) in [2] holds. 

Since the theorem 5, IX, §4 in [3] holds clearly also for the whole real line, in 
view of (3) almost every point of the interval (-co, oo) is Lebesgue's point of the 
functions/' and g\ consequently (10) in [2] holds almost everywhere. 

The remainder of the proof is the same as the proof of theorem II. 4.H in [2]. 

Note that for arbitrary fixed ranks R{ = rt, Qt = qt, i = 1, ...,N, according to 
the last relation in the proof of the quoted theorem from [2] we have, under the 
alternative HA, 

P(R =-= r, Q = qJHA) = [1 + A2 a2 S(r, q) + O(A2)] (N!)~2 

where lim O(A2) = 0. 
J-->0 

We can consider the critical region of the S-test, say Sf9 which is given by (6), as 
a subset of the pairs of permutations (r, q). Consequently, for the power-function of 
the S-test in a sufficiently small right-hand neighborhood of the point A = 0 it 
holds 

(7) P((R, Q) 6 alH4) = I [1 + A2a2 S(r, q) + O(A2)] (N !)" 2 . 
(r,q)e9 

By (7) we immediately obtain the following theorem. 

Theorem 2. The derivative of the power-function of the S-test at the point A = 0 
equals 

(8) J- P((R, Q) e 9JHA) = (N!)-- *2 I S(r, q) . 
CA (r,q)e® 

Remark 2. If the subset Q is defined by the rank statistic 

S(t) = iaJb,J 
j=i 
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where tj = qdj, then we can consider ^ a s a subset of the permutations t = (tu . . . 
..., tN). The derivative of the power-function of this test is by (8) equal to 

(9) - ^ p ( r e ^ / ^ ) = ( N ! ) - i ^ Z s ( f ) . 
dAz t<=9 

We shall use these results in subsequent sections. 

2. TWO RANK TESTS OF INDEPENDENCE FOR DOUBLE-EXPONENTIAL 

AND NORMAL DISTRIBUTIONS 

We first suppose that the random variables FVand W* have the double-exponential 
density, i.e. 

(10) j(x) = g(x) = ie- l* 1 . 

It is easily seen that all assumptions from the first section are satisfied, and the 
functions (4) are equal to 

(4a) 9(A) = ^(A) = s g n ( A - i ) . 

If we now introduce the scores 

(5a) af = bt^ Esgn(C^ -i) 

where C(i) have the same meaning as in (5), then, by theorem 1, the locally most 
powerful rank test of H0 against HA at the respective level can be based on the 
statistic 

S, = £ £[sgn (C<«'> - i)] £[sgn (Cf«'» - i ) ] . 
i = l 

If we introduce the function 

u(x) = i(sgn x + 1), 

then for the scores (5a) holds 

(5aa) 

at = bt = E[2u(C™ - i) - 1] = 2ZY^)(i)* - 1 = 1 - 2M^){ir9 

i = 1,... ,N. 

We are able to calculate the scores (5aa) with the aid of the tables [4], These scores 
are given in table 1 for the sample size N = 6. 

416 



According to IL4.3 and III.6.1 in [2] we can say that an approximate locally most 
powerful rank test of H0 against HA can be based on the statistic 

St = £ sgn (R- - i(N + 1)) sgn (Qt - | (N + 1)) . 
i = l 

If we now introduce the statistic 

u = i «[(*, - W + 0) (C« - K!v + i))]. 

i = l 

then according to the definition of the function u we can write 

S* = 2U - N. 

Consequently, the statistic U represents the same test as the statistic Sf. 

Further, if the random variables Wand W* have the standardized normal densities f 
and g, then also all assumptions from the first section are satisfied. The functions (4) 
are then equal to 

(4b) <p(l) - m = <P-\X) 

where # ~ 1 denotes the inverse function of the standardized normal distribution 
function. The locally most powerful rank test of H0 against HA can be based on the 
statistic 

N 

Si = E aRibQi 
i = l 

with 

(5b) at = b% = F(V(i)) = B ^ - 1 ^ 0 ) ] , 

V(,) and C(i), i = 1, . . . , N, being the ordered samples from the standardized normal 
and from the uniform on (0, 1) distributions, respectively. These values (5b) are also 
shown in table 1 for N = 6. The test S2 is introduced in [2] as the Fisher-Yates 
(normal scores) test. According to (2), IIL6.1. in [2], for the correlation coefficient q 
of the random variables X, 7 holds 

A2 

Q = 
1 + Л2 

hence for O -> 0 and for arbitrary fixed ranks R = r, Q = q the following relation 
holds: 

(11) ~ P(R = r, Q = a/H,) = ^ « = t.e = «/H.) • 
OQ oA 

417 



3. THE POWER-FUNCTION OF THE ff-TEST 

Now we shall study the test of H0 against HA based on the statistic 

^ = i: «[(»* - K-v + 0) (T, - K-V +1))] 
i=i 

where T, = QDi. 
If we denote the critical region of this test by 

Qx = { T = t; U = I7(r) ^ 2 k } 

where k is determined by the required level of significance a, i.e. 

(12) P(U ^ 2k/H0) _S ̂  , 

then by (9), under the assumption a2 = 1, 

(o) A p ( r e ^ ) = (N!)^s( () 
cA tea i 

where 

(14) S(Y) = ! > , & „ . 
j = l 

The statistic U for even sample sizes N = 2n equals the number of pairs (Xb Yt) in 
their correlation diagram, which have both coordinates simultaneously either above, 
or below, of their sample medians. According to (3) in [1], or problem 4, IV, in [2], 
we can write the left-hand side of (12) 

Accordingly we can determine the number k for given a for the size N = 2n. 
If the random variables Wand W* have the double-exponential distribution, then 

the scores in (14) are determined by (5aa). We can in this case calculate the sums (14), 
36 

which are denoted by St(t). We have £ Sx(t
j) = 102,141 2 for N = 6, where the 

1=i 
vectors of the ranks t for which U = 6 are denoted by t\ j = 1, ..., 36. We can 
approximately determine the power-function of the U-test (for A -> 0) for the level 
a = 0,05 and the size N = 6 as follows: 

P(U = 6\HA) s P(U = 6) + A2 [ " A P(u = 6 / H , ) ^ ^ = 

36 

= 0-05 + ( N . ) - 1 A 2 £ S 1 ( ^ ' ) = P,. 
1=i 

The values P, for A2 = 015; 0-10; 005; 0-03; and 0-01 are shown in table 2. 
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If the random variables Wand W* have the standardized normal distribution then 
the derivative of the power-function in a neighborhood of O = 0 of the U-test of 
the hypothesis O = 0 against the alternative O > 0 has, according to (11) and (13), 
the following form: 

f J^Te .*./(? ^ - ( i V . Y ' E S2(f) 
CQ te&i 

where S2(t) are given by (14) with the scores (5b). In this case for N = 6 we have 
36 
y, S2(t*) — 106,034 8, The approximation of the power-function of the U-test in this 

i = i 
case is 

P(U = 6/O > 0) s P(U = 6/O = 0) + O | — P(U = 6/O > 0)1 
YPQ X-o 

36 

= 0'05 + ( N ! ) - 1 O X S 2 ( ^ ) = I>i/. 
i = i 

The values Pu for Q = 0*15; 010; 0-05; 0-03; and 0-01 are given in table 3. 

Table 1 

Î | , 2 3 4 5 6 

at = 0^ 
(5aa) 

-0*969 

І 
-0-781 -0-313 0-313 0-781 0-969 

a,. =- bi 
(5b) 

! 
i -1,27 
! 

-0-64 0-20 0-20 0-64 1-27 

Table 2 Table 3 

A2 л e Л i 

015 0-071 3 0 1 5 0-072 1 
0 1 0 0064 2 0 1 0 0064 7 
0-05 0057 1 005 0057 4 
0-03 0-054 2 003 0-054 4 
0 0 1 0051 4 0 0 1 0051 5 

We see that the values P- and P/7 differ relatively little although the U-test was 

constructed for the double-exponential distribution. 
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S ú h r n 

NIEKTORÉ POŘADOVÉ TESTY NEZÁVISLOSTÍ 

A OTÁZKA ICH SILOFUNKCIE 

MILAN KRIŠŤÁK 

V článku sa rieši problém testovania nezávislosti dvojíc náhodných veličin X = 
= W + AZ, Y = W* + AZ pomocou lokálně najsilnejších pořadových testov v okolí 
bodu A = 0. Veta 1 je uvedená za trocha slabších predpokladov než je v [2] veta 
II.4.H (vynechává sa předpoklad o spojitosti funkciíf' a g' skoro všade). Veta 2 dává 
tvar derivácie silofunkcie takýchto testov v bode A = 0. Pre dvojne-exponenciálne 
a normálně rozdelenie náhodných veličin Wa W* sú uvedené takéto testy. Mediánový 
U-test je pre dvojne-exponenciálne rozdelenie pri parných rozsahoch N = 2n po­
dobný s modifikovaným U-testom, ktorým sa zaoberá R. Elandtová v [ l ] , ale pre 
nepárne rozsahy sú to rózne testy. Numericky sú vypočítané hodnoty siolofunkcií 
oboch našich testov v okolí bodov A = Q = 0. 

Authoťs address: Milan Krišťák, Katedra matematiky a dg. na Stavebnej fakultě SVŠT v Bra­
tislavě, Gottwaldovo nám. 2. 
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