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UNIQUENESS OF THE SOLUTION OF THE BOUNDARY-INITIAL VALUE
PROBLEM FOR A LINEAR ELASTIC COSSERAT CONTINUUM

MirosLAV HLAVACEK

(Received May 29, 1970)

1. INTRODUCTION

Assuming positive definitness of elastic energy one can prove the uniqueness of the
static boundary value problem for a bounded Cosserat continuum via a method ana-
logous to Kirchhoff’s proof in classical elastostatics. For unbounded regions Kirch-
hoff’s proof may be extended under the assumptions that the displacements u;,
rotations ¢, stress tensors 7;; and couple-stress tensors p;; satisfy the conditions

ufx) =c¢; +0(r"), ofx) =d; +0(r™ "),
1(x) = ¢;; + O(r72), py(x) =d;; + O(r~?) for r—- oo,

Il

where r is the distance of the point x from the origin of Cartesian coordinates,
¢, d;, ¢;;, d;; are prescribed constants. In the case of exterior domains?) these a priori
assumptions concerning the behaviour of u;, ¢, 7;;, y;; in the neighbourhood of
infinity may be obviated. In [10] M. Hlavagek and M. Kopackova proved that the
boundary value problem for exterior domains is unique provided

tif(x) = cij +o(1), mylx) = di; + o(1),

i.e. 1;;, u;; converge at infinity uniformly to the given constants, and further, provided
the resultant force and couple acting on the region boundary are also prescribed.
In the second boundary value problem this last condition may be omitted. The
uniqueness proof consists in the examination of the behaviour of biharmonic functions
in the neighbourhood of infinity, as it was done by M. E. Gurtin, E. Sterberg in [12],
and further, in the properties of functions satisfying Helmholz’s equation.

1) Exterior domains are unbounded regions whose boundary is composed of a finite number
of bounded regular (in the sense of [14]) non-intersecting surfaces.
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The uniqueness of problems in elastodynamics of Cosserat continua can be proved
in a more general way and by methods not applicable to elastostatics.

By a procedure analogous to that employed in classical elastodynamics by R. J.
Knops, L. E. Payne in [1] and in elasticity with microstructure [9] by K. S. Edelstein
in [8] we shall prove the uniqueness of the boundary-initial value problem for
a bounded anisotropic Cosserat continuum in which no restrictions are imposed on
the anisotropy tensors except for certain symmetry. There is therefore no need to
assume positive definitness of strain energy density.

This method of the uniqueness proof can also be used in elastodynamics with
couple-stresses and constrained rotations of particles as well as for non-simple mate-
rials of the second grade taking into account gradients of deformation tensors.

Using the generalized energy identity we shall prove a certain uniqueness theorem
for an unbounded isotropic Cosserat continuum. This is the method adopted by S.
Zaremba [13] for the wave equation, and by L. T. Wheeler, E. Sternberg [2] for
equations of classical elastodynamics. We shall prove the uniqueness of the mixed
boundary-initial value problem for a certain class of unbounded regions with
boundaries not necessarily bounded, i.e. for -egions more general than exterior
domains. As far as material constants are concerned, it is necessary to assume two
other restrictive inequalities in addition to the inequalities expressing the positive
definitness of strain energy density.

2. BOUNDED REGIONS

In this Section we shall prove the uniqueness theorem of the mixed boundary-
initial value problem for a bounded anisotropic nonhomogeneous Cosserat con-
tinuum.

The equations of dynamic equilibrium of a Cosserat continuum are in the form [3]

(1) T, + fi = oii,,
Hji ;o + €T + gi = 0JjP; -

Here 7,(x, t) and ,uij(x, 1) denote the stress tensor and the couple-stress tensor,
respectively. x is a point of the bounded region R = E; whose Cartesian coordinates
are x; (i = 1,2,3), t is the time; u,(x, t) represents the displacement vector, @(x, t)
the (micro)-rotation vector independent of u;. fi(x, ) and g,(x, f) are the vectors of
volume forces and volume couples, respectively, while g(x) is the mass density
and j(x) the micro-inertia [3]. ¢, denotes the unit antisymmetric tensor. A dot above
a quantity signifies partial differentiation with respect to time, a prime followed by
an index partial differentiation with respect to the corresponding Cartesian coordinate.
Summation of pairs of identical indices is implied.
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The constitutive equations are in the form [5]

(2) T = Ejjvia + Kije

Hij = Kklijykl + M.‘jkt%kt P
where
(3) Yer = Uik = EkimPm s ¥kt = Pr -

. The anisotropy tensors E;j(X), K;j(x), M ;,(x) are assumed to meet in R the condi-
tions of symmetry

(4) Eij(x) = Eqif(x), Mij(x) = Migi(x) -

We shall now tackle the formulation and the proof of the theorem of the uniqueness
of the solution of the mixed boundary-initial value problem:

Theorem 1. Let R be a bounded region in E;, the boundary of which is composed
of a finite number of closed, non-intersecting regular (in the sense of [14]) surfaces.
Let o(x), j(x). Eij(x), Kijua(x)s Mijui(x) be given functions continuous on R, and let
o(x) > 0, j(x) = 0 and (4) be satisfied in R. Further let the volume forces f{x, t)
and the volume couples g{(x, t) be given on R x (0, T). Let uj(x, t), ¢(x, 1), t},(x, 1),
puif(x, t) and ui(x, 1), ¢i(x, 1), ti(x, 1), pi{(x, t) be two sets of vectors of displacement,
rotation, stress tensors and couple-stress tensors with the following properties:

a) uj, ¢}, ui, 07 eC** in R x (0, T).,?)
uj, @5 ui, 97 CV' in R x [0, T7,

Tij Mij» Tip» Wi; are continuous on R x [0, T] ;
b) each set satisfies Eqs. (1) to (3) in R x (0, T);
c) u; =uj, ¢;= ¢} in S; x [0, T],

Tl = Ty, Wy = ping in S, x [0, T],
where S; U S, =S, S, NS, =0, S is the boundary of R and n; the outer unit
normal to S;

8) ui(x. 0) = wi(x.0), ¢i(x,0) = gi(x.0),

lim a(x, t) = lim @(x, 1), lim ¢}(x, t) = lim ¢{(x,t} in R.
t—0+ t—=0+ =0+ =0+

2y C™"in R X (0, T) denotes the class of real functions that have in R X (0, T) continuous
partial derivatives with respect to x; (i = 1, 2, 3) up to and including order m (m = 0) and conti-
nuous partial derivatives with respect to 7 up to and including order n (n = 0).

C™" in R X [0, T] denotes the class of real functions that moreover have these derivatives
continuously extensible on R x [0, T].
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Then it is in R x [0, T]

”

r__ " v ’ ”
Uy =Uij, Q;=0Q;, Ty =Ty, W;=u.

Proof. Let v, ;€ C'"" in R x (0, T) and v;, ¥/, be continuous in R x [0, T].
For te [0, T], Egs. (1) yield

J: R[(Tﬁ.j + fi = i) v; + (wje; + epti + g, — jps) ] dVdr = 0.
Applying Green’s theorem and (3) we have for t € [0, T
(5) J‘RQ(ﬂiv. + joab;)dv = J: J‘R{Q(diei + o) — [oipive ¥) +
+ wii (V)] + (fo; + gap)} dVde + J" J‘ nftiv; + pi;)dAdr .
ods

Let us write (5) once for quantities uj, ¢}, ti;, u;; and once for quantities u, ¢},
T4 Mij» in either case choosing
’ "

— —_uy" =1. =0 — 0= Q.
Vj = uj ujy =uj, l‘bl Pj Q=9

and subtract the two equations. Assumptions c) of this Theorem imply for ¢ e [0, T
3
(6) J' Q(ﬁii_‘ +j¢i(5i) dv = j J {Q(l—‘iﬁi + j(.ﬁi(‘ﬁi) - (fiﬁu + ﬁij’?ij)} dVdr
R 0JR

where §,;, %;; are given by Egs. (3) with the use of u;, ¢; and similarly, 7,;, i,; are
obtained from Eq. (2) making use of 7,;, ;.

Let us furthermore write (5) once for quantities u, ¢}, Ti;, f;; and once for u,, etc.
in either case choosing

and subtract the ensuing equations. Applying assumptions c), d) and Eq. (2) we get
for t e [0, T]

(7) j {(fiﬁij + ﬁijiij) + Q(’:—‘iﬁi + ]@@)} dar=0.
R
Define for ¢ € [0, T] the function
(3 F(r) = f o(#:dt; + jG ;) 4V -
R

We have

F(r) = 2'[ o(igi, + jg,¢.)dV

R
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and hence by means of (6)
FO) =2 [ folaii + 76) = (i + ) OV
R
After a rearrangement

F() E() - [FOT = 4 { j

o(ii; + jo;p;) dV—f oiiii; + j¢,p5) dV —

R R

2
- I:'[ Q(ﬁiai + I@,@J) dV:I } - 2-[ Q(i_iﬂi + j(ﬁj(ﬁj) dV'J (Qﬁiai +
R R R

+ Qj('ﬁj(;_)j + 77 + ﬁijiij) dv.
From the above formula using (7) and Schwarz’s inequality we get for 1 € [0, T]
) FO) () — [FO 2 0.

The theorem will be established by proving that F(t) = 0 for t € [0, T]. However, as
demonstrated in [1], this follows from (9) and thus the proof is complete.

Note 1. While the classical Neumann’s proof applied to Cosserat continuum [3]
was based on the non-negativity of the strain energy density, it is here sufficient to
assume merely a certain symmetry (4) for the anisotropy tensors.

Note 2. Had we chosen F(r) in the form
F(1) = f oi;ii; dV
R

rather than in the form (8) (that is to say, in the same way as the authors of [1] for
classical elastodynamics did), we should have similarly deduced the uniqueness of
the mixed boundary-initial value problem for elastodynamics with couple-stresses and
constrained rotations of particles (refer e.g. to [6] for the fundamental equations of
this model) as well as for non-simple bodies taking intc account gradients of the
deformation tensor (refer e.g. to [7] for the fundamental equations of that model).

3. UNBOUNDED REGIONS

We shall confine our considerations to an isotropic Cosserat continuum with
constitutive equations in the form [3]

(10) . Ty = Aydi; + (0 + %) vy + w0y
Wb + P + vy

|

It

Hij
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The material constants will be assumed to satisfy the inequalities

(11) 3 +2u+x%x>0, 2u+%x>0, x>0,
30+ B+y>0, y+B>0, y—B>0,

which is equivalent [4], [11] to the positive definitness of the strain energy density

(12) A(')’ij, %ij) = %[l)’kﬁu + (p + %) YiiVii + Wiy +
+ sty + Py + yrie]

We shall confine our attention to regions that are called regular and defined as
follows [2]: Region R (bounded or unbounded) is regular provided there exists such
8o > 0 that for each 8 > §, the set R N Q, (where Q; denotes an open sphere with
radius & centred at the origin of the coordinates) is continuous and its boundary is
composed of a finite number of non-intersecting closed regular (in the sense of [14])
surfaces. An unbounded region thus defined is more general than an exterior domain
because its boundary need not be bounded.

We shall first deduce a lemma that is a counterpart to Lemma 2.1 in [2] for
a Cosserat continuum.

Lemma (Generalized energy identity). Let R be regular (bounded or unbounded).
Let uy(x, t), ox, 1), 1,(x, 1), p;(x, 1), fi(x, 1), gx, t) have the following properties:

a) u;, ;€ C*»?* in R x (=0, T), u;, 9, € C*"" in R x (—o0, T, 14, pis» f1r g; are
continuous in R x (— o0, T]

b)u;=¢,=fi=9,=0in R x (—o0,0]
c) Egs. (1), (3), (10) are satisfied in R x (— oo, T).
Let further be given a function t(x) € C' in R such that the set
{x|xeR, 1(x) > 0}
is bounded.
Then

Wx)
(13) J j [is(x, ©) ti(x 1) + @i, 1) mi(x, 1] de dA +

0

+ f i 1) £ 1) + 016 1) gi(x, 0] di AV =

0

= f {A(Gy(x), Kiy(x)) + dini(x, 7(x)) hilx, o(x)) [o(x) = (2 + 20 +

+ %) 1,,(x) 7,(x)] + 1ei(x, °(x)) @i(x, (%)) [e(x) j(x) = (x + B +
+ 1) (%) T (x)] + HA + p) et (x, (%)) T(x) Emiti(x, U(x)) Tm(X) +
+ ¥« + B) 8ijk¢j(x’ 1(x)) Tsk(x) EimPi(X, r(x)) T’m(x)} av,
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where
Gij(x) = vis(x. w(x)) + 11(x, o(x)) 7.(x) ,
Kij(x) = ai5(x, 7(x)) + @,(x, 7(x)) 7.x) ,
L= MTyy, Mp = M,

A(Gyj, K;j) signifies the form (12), S is the boundary of region R, n; the outer unit
normal to S.

Note 3. If we set 7(x) = t, expression (13) represents the familiar energy identity
of elastodynamics of Cosserat continuum.

Proof. Define on R the vectors

0

oi(x) = J e )i (6 ) dt, wi(x) = J ;"’uij(x, ) o(x 1) dt .

Using (1), (3) we get after rearrangement

by (%) + wi(x) = J :x’[ri,.?,.,. T gy — (s + g9)] dt +

+ 3o(x) [ix, (x)) adx, w(x)) + j(x) @,(x, 2(x)) ¢,(x, 1(x))] +

+ [ri(x, o(x)) 11(x, (%)) + pilx, 1(x)) @(x, (x))] 7.4(x)

and further, using (10),
(14) 0;,(X) + wi (%) = A(G(x), Kiy(x)) — A(oryj(x), Biy(x)) +
3009 i, <) i, 1) + 70 05,9 5 €] = [ 1+ g,
where A is the form (12) and

2(%) = (% 1(x)) (%) s Bilx) = @i(x, (%)) wi(x) -

For the sake of brevity we refrain here from the explicit indication when a function
simultaneously depends on x and ¢, i.e. write t;;, etc. in place of 7;;(x, 1), etc.

As the assumption a) of Lemma implies, v/(x), w/(x) € C in R, and C° in R. From
here and from the assumptions concerning t(x) it follows that v,(x) and w(x) are of
bounded support on R and consequently, v; (x) + w; (x) is properly integrable on R.

Using the vector identity
(a;a;) (bb)) = (abi)? + €114;b1Eimn@mba »

integrating (14) over region R and applying Green’s theorem we get (13), and the
proof is complete.
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We shall now formulate and prove the theorem of uniqueness of the solution of the
mixed boundary-initial value problem for unbounded regions.

Theorem 2. Let R be a regular unbounded region in E5. Let be given functions
o(x), j(x), fi(x. 1), gdx, 1) and two sets of functions ui(x, 1), @i(x, 1), T}(x, 1), pifx, t)
and ui(x, 1), ¢i(x, 1), i}(x. 1), ui(x, t) with the following properties:

a) uj, uj, ¢}, @i € C*? in R x (0, T),
uj, ui, @i, i € C*' in R x [0, T];

b) i, 5} wijs ip [ i are continuous in R x [0, T], o, j are continuous in R and
it is o(x) > @o > 0, j(x) > jo > 0 where go, j, are constants;

c) each of the two sets, ui, ¢}, 1j;, ui; and uj, ete. satisfies Egs. (1), (3), (10) on R x
% (0, T), and in addition to inequalities (11) it holds

(15) A+uz0, o+ B20;

d) uy=uj, ¢;= ¢} in S; x [0, T], tjn; = tijn;, pyn; = pin; in S, x [0, T]
where S is the boundary of R, S;u S, =S5,S;,n S, = 0;
e) uj(x, 0) = uj(x, 0), ¢i(x, 0) = ¢} x, 0),

lim ay(x, 1) = lim aj(x, 1), lim @i(x, 1) = lim ¢j(x, 1).
=0+ =0+ -0+ -0+

Then in R x [0, T]

" '

ro__ b o '’
Uy =u;, @;=0Q;, Tij= Ty, MNij= Hj-

The proof of Theorem proceeds similarly as the proof of Theorem 2.1 in [2]:
Define on R x [0, T]

’ ” -

— ’ " ' " = v
i T Ui Q=@ — @, T = Ty Tijs K = T Ry

and on R x (— o0, 0)

U; =u

Uy = @; = 7 =

=0.

=i

ij

Then for zero volume forces and couples, #;, @;, T;;, j1;; satisfy conditions a) to ¢) of
Lemma, and on S x [0, T]

It

Ui, + ¢m; =0,

where i; = (ti; — 1) n, m; = (uj; — pj;) n;. Choose a fixed point (y,t)e R x
(0, T) and define 7(x) in (13) in the form

Vi = x)0i=x) | g

x€R,

(16) o(x) =1t—
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where c is a real finite constant such that in R

A+2
2> u+ % cz>a+ﬁ+v

O ox)jx)

Then 7(x) € C' in R = y, 7(x) is continuous in R and it holds

(17) o(x) = (A + p + %) 1,(x) 7,,(x) > 0,
o(x)j(x) = (x + B + 7) 1.(x) ,,(x) > 0.

Choose 8, > 0 in such a way that the spherical surface @, (y) = R. (@Q;,(y) denotes
a closed sphere with radius d, centred at y). Write (13) for an arbitrary 6 (0 < 6 <
< &), for functions i, @;, T, fi;; and f; =g, =0 in R x (0, T), and for the
region R; = R — Q,(y) using (16). After passing to the limit for & — 0 we get

(18)
[ (A0 R0+ i ) s ) L) = 0 200 ) )0 ¢
300709 305 70 [e)100) = (2 + B + ) 50 2] +
+ 34+ p) et (x, (%)) TalX) epmit (X, o(x)) Tm(X) +
+ Yo + B) eiju®@i(x, (%)) Tu(X) eim@i(x, 7(x)) T,m(x)} AV = 0,
where
Gij(x) = Gij(x) — Gi(x), Kij(x) = Kij(x) — Kij(x).

In view of (11), (15) and (17) all the terms of the integrand in (18) are non-negative
and therefore

ufx, 1(x)) = ¢{(x,f(x)) =0 for xeR = y.
Consider the limit x — y; then (x) — ©(y) = t and therefore
uy. t) = @y, 1) = 0.

In view of the arbitrariness of (y, t)

and consequently

which was to be proved.
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Souhrn

JEDNOZNACNOST RESENI DYNAMICKE OKRAJOVE ULOHY
PRO LINEARNI PRUZNE COSSERATOVO KONTINUUM

MirosLAv HLAVACEK

V praci se dokazuji dvé véty o jednoznacnosti feSeni smiSené dynamické okrajové
ulohy pro pruzné Cosseratovo prosttedi. Prvni z nich se tyka anisotropniho materialu
a odvozuje se pro omezené oblasti. Kromé jisté symetrie neni tfeba Zadnych omezu-
jicich pfedpokladt o tensorech anisotropie. Druhé véta se tyka isotropniho materidlu
a je formulovana pro jistou tfidu neomezenych oblasti. Pro materidlové konstanty je
tfeba kromé& nerovnosti, jeZ jsou nutné a staéi pro positivni definitnost hustoty pruzné
energie, pfedpokladat dalsi dvé omezujici nerovnosti.
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