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SVAZEK 16 (1971) A P L I K A C E M A T E M A T I K Y ČÍSL01 

VARIATIONAL FORMULATION OF THE CAUCHY PROBLEM 
FOR EQUATIONS WITH OPERATOR COEFFICIENTS 

IVAN HLAVACEK 

(Received July 30, 1970) 

PREFACE 

It is an old idea, to formulate the boundary-value and mixed problems of mathema­
tical physics in terms of equivalent variational problems. The variational formulation 
(principle) may be then applied in three ways: first, to the definition of weak solutions; 
second, to the dimensional reduction (e.g. if the three-dimensional domain under 
consideration has one or two prevailing dimensions); third, to other approximate 
methods of solution (e.g. Ritz, Galerkin, finite elements a.o.). 

In the present paper, several variational principles are suggested, which are equiva­
lent to initial-value (Cauchy) problems for equation of the first and second order in 
time coordinate. Their coefficients are linear operators, acting in the space L2(L H) 
of square-integrable mappings of a time interval I into a Hilbert space H. In particular, 
the theory includes some classes of partial differential equations and of integro-
differential equations. In Section 1, the "convolution scalar product" is introduced as 
the basic concept of the following variational principles and its properties proved. 
Section 2 involves three variational principles for equations of the first order in time, 
Section 3 another four variational principles for equations of the second order. 
Some kinds of a "convolution symmetry" of the operator coefficients are required 
in all the variational principles. In the papers [3] and [6], some of those principles 
were employed for the definitions of weak solutions of particular integro-differential 
equations. 

1. CONVOLUTION SCALAR PRODUCT 

Let a bounded interval I = <0, T> and a basic real Hilbert space H be given with 
the scalar product (u, v) and the norm |w| = (u, u)]/2. 

Definition 1. Let L2(1, H) denote the space of all measurable mappings u(t) of I 
into H such that 

J / 2 

< GO . ( J > w | 2 d ' У 
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Definition 2. Let L2(l) denote the space of real functions, which are square-
integrable on I. Let f, g e L2(l) or g e L2(L H) and u, v e L2(1, H). The function 

( / * « ) ( ' ) = ľ д t - т ) a ( т ) d т 

will be called the c o n v o l u t i o n o f / a n d g. 

The function 

(u ® v) (t) = (u(t - т), v(т)) dт 
Jo 

will be called the c o n v o l u t i o n sca lar p r o d u c t of u and v. 

Lemma 1. It holds 

(0 |("®»)(0I = Mr-NT, 

(2) (u ® v) (t) = (v ® u) (t) 

for every pair of u, v e L2(I, H) and t e I. 

Proof. Denote U(T) = u(t — x). Then we may write 

í> (ř - т), v(г)) dт ѓ ľ'|(U(т),i>(т))|dт^ ľ'|U(т)| . K т ) | dт ^ 
J 0 J 0 

( Í J ^ *)([;«* dT ) ^ \u\T . |v | r , 

because of the relation 

í |U(T)|2 dT = í \u(t - T)|2 dT = i |u(^)|2 d^ ^ \u\ 
Jo Jo Jo 

which follows from the change of variables t — T = £. The same transformation 
leads also to the formula (2). 

Lemma 2. Let f(t) e L2(l) and u e L2(1, H). Then also 

(3) ( / * u) (t) = [lf(t - T) u(x) dT e L2(I, H). 

If u(t) is continuous on I, l(t) = 1 then 

(4) — (/ * u) = ы(f) 
df w 
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holds for all tel (for t = 0 and t = Tfrom the right and left, respectively) and 

(I * u) (t) is continuous on I. Moreover, 

(5) 

holds on I. 

(l*(l*u))(t) = (t*u)(t) 

Proof. We have (see [ l ] , Th. 2.7) 

[f(t-z)u(x)dx\s [\f(t - T)| . | « ( T ) | d 
J o J J 0 
ft \ l / 2 / ft 

f2(t~x)dx)j (jj"W|2d 
1/2 

ІT < L2(I) \Щт 

consequently (f * u) (t) is bounded on I. 

In order to prove (4), denote 

z(t) = (1 * u) (t) = u(т) dт . 

We may write 

[ 1 
\ûí 

(z(t + a) - z(t)) - u(t) 

Ĺu(т 

l-Г+"[«(т)-«(ř)]di < max |м(т) — u(t)\ -^ 0 
<t,t + xУ 

for a -> 0, t e I, t + a e I. Hence dz/dt = u(t) follows for l e I. 

By virtue of (4) and the continuity of u(t), also (/ * u) is continuous on I (see [ l ] 

Th. 1.5). The formula (5) follows from the Fubini theorem, because 

dT u(s) ds = ds u(s) dr = (t — s) u(s) ds . 
o j o J o J.s J o 

Lemma 3. Let f(t) e L2(l), and u, v e L2(I, H). Then 

((f*u)®v)(t) = ( f * ( u ® v ) ) ( f ) 

holds for every tel. 

Proof. Changing the order of integrations we may write 

t / (*t-т 

((/ * и) ® v) (t) = I M /(ř - т - s) M(S) ds , У(Т) j dT = 

f ( f / ( ' ~ З') "(^ - )̂ dy, <t)) dr = Г dr í'f(t - y) (u(y - T), I<T)) áy = 

= f dy f(t - y) [\u(y - x), v(x)) áx = (f*(u® v))\(t), 
Jo Jo 

using also the transformation s = y — x. 
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Lemma 4. Let w e L2(l, H) and a sequence {yn} c L2(l, H) be such that 

lim \vn — w\T = 0 . 
n->oo 

Then 

lim (w ® vn) (t) = (w ®w) (t) 
n-+ oo 

holds for every w e L2(l, H) and t e I. 

Proof. Choose an arbitrary t el and w e L2(I, H). Then, by virtue of Lemma 1, 
we may write 

\(w ® vn) (t) - (w ® w) (t)\ = \(w ®vn-w) (t)\ = \w\T . \vn - w\T ~> 0 . 

Definition 3. Denote u'(t) = du/dt, ^ 0 the linear manifold of continuous mappings 
of I into H and %\ the linear manifold of mappings u(t) of I into H, which possess 
continuous derivatives u'(t) e ^>0. 

Lemma 5. Let u' e <€0 and let v(t) e L2(I, H) be continuous for a point t el. Then 

— (u®v) (t) = (uf ® v) (t) + (u(0), v(t)) 
dt 

holds at this point (with the derivative from the left, if t = T and from the right 
ift = 0). 

Proof. Note, that u' e <€0 yields that ue^0 (see [1] Th. 15), consequently, u(0) 
exists. We may differentiate with respect to the parameter t, to obtain 

d_ 

dt 
- (u(t - т), v(т)) dт - (u'(t - т), v(т)) dт + (u(0), v(t)). 
t J 0 J 0 

Lemma 6. Let w e%?0 be such that 

(w ® v) (T) = 0 

holds for every v e M, and let Jt be dense in L2(l, H). Then w(t) = 0 for every 
tel. 

Proof. Introduce a function w e <^0 by means of the relation 

w(T - t) = w(t) 

for t e I. There exists a sequence {v,,} c Jt such that 

lim \vn — w\T = 0 . 
n-+ oo 
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Using Lemma 4, we obtain 

0 = lim (w ® v„) (T) = (w ® w) (T) = J (w(T - t), w(t)) dt = J |w(r)|2 d t . 
»-*oo J 0 J 0 

By virtue of the continuity of |w(t)| on I, we conclude that w(t) must vanish on I. 

2. THE CAUCHY PROBLEM FOR EQUATIONS OF THE FIRST ORDER 

Let us consider the equation 

(6) - (Bu) + Au = / 
dt 

and the initial condition 

(7) u(0) = u0 , 

where A and B are linear operators in L2(I, H) such that 

(8) (Au ® v) (T) = (u ® Av) (T) for u, v 6 D4, 

(9) (Bu ® v) (T) = (u ® Bv) (T) for u, v e DB . 

Assume that 

(10) (Bv) (0) = Q o v(0) = Q , 

(11) fG^0, u0e DBr\ DA and Bu0e
{ 

i * 

Definition 4. Let J f denote the linear manifold of mappings u e^0, for which 
u e DA n D#, Bu e # l 9 Au e ^ 0 , u(0) e DB. Define the functional 

(12) J*"(u) = ([Bu + 1 * Au] ® u) (T) - 2([1 * f + (Bu0) (0)] ® u) (T) 

on JT. 

Theorem 1. Let JT be Jeuse in L2(l, H) nad let (8) till (l 1) ftOlL/. Then 

(13) 5^(u) = 0 on J f 

if and only if u e Jf satisfies the equation (6) Ou I u/?J the initial condition (7). 

Remark 1. It is sufficient to assume the density of J f in the subset (€0 c; L2(ly H), 
because ^ 0 is dense in L2(I, H) (see e.g. [2], Lemma IV.8A9). 
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Proof. In the following, we shall omit the notation (T). Denoting Su = v, we have 

bfW(u) = ([Bv + 1 * Av] ® u) + ([Bu + 1 * Aw] ® v) -

- 2 ( [ l * f + ( B u 0 ) ( 0 ) ] ® v ) . 

Using (9), (8), (2) and Lemma 3, we obtain 

([Bv + 1 * Av] ® u) = (Bu ® v) + 1 * (Au ® v) = 

= ([Bu + 1 * Au] ® v) . 

Therefore we may write 

(14) 8^(u) = 2(w ® v) , 

where 

(15) w = Bu + l * A u - l * f - (Bu0) (0) . 

By virtue of Definition 4 and Lemma 4, w belongs to ^ 0 . Consequently, we may 
apply Lemma 6 to obtain that (13) yields w(t) = 0 for every tel. Inserting t =a. o, 
we have 

w(0) = (Bu) (0) - (Bu0) (0) = [B(u - u0)](0) = 0 . 

From the assumption (10), u(0) = u0 follows. As the element w has a continuous 
time derivative, we have also 

w'(t) = d(Bu)/dt + Au - / = 0 

for every t el. Thus we have proved, that (13) implies (6) and (7). 
On the contrary, let u e JT satisfy (6) and (7). Integrating the equation (6), we 

obtain 
(Bu) (t) - (Bu) (0) + 1 * Au = 1 *f. 

By virtue of (10) and the initial condition (7) 

[B(u - u0)] (0) = (Bu) (0) - (Bu0) (0) = 0 , 

consequently w(t) = 0 in (14) for every tel. Then (13) holds, as follows from (14) 
and (1). 

R e m a r k 2. The condition (13) was employed for the definition of weak solutions 
in a particular case of the Cauchy problem (6), (7) in [3], where the existence, 
uniqueness and continuous dependence of the weak solution on f and w0 have been 
proved. 

Remark 3. In case of parabolic differential equations with time-independent 
coefficients, Theorem 1 corresponds with the "a-integral convolution principle", 
introduced in [4]. 
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Theorem 2. Let (8), (10), (11) and 

(16) — (flu ® v)\t=T = - (flv ® u)|^T 

dt dt 

hold. Assume that the set /JT0 = {v e Jf, v(T) = 0} is dense in L2(l, H) and the set 

of v(T) dense in H, if v e Jf. 

Define the functional 

(17) 

#"'(u) - ([(flu)' + Au] ® u)(T) - 2(f ® u)(T) + ((flu) (0) - 2(flu0) (0), u(T)) . 

Then 

(18) b^'(u) = 0 on X 

if and only if u e J f satisfies the equation (6) on I and the initial condition (7).1) 

R e m a r k 4. Again, the density of Jf0 in ^ 0 is sufficient (cf. Remark 1). 

Proof. Denoting bu = v, we have 

b^'(u) = ([flv)' + Av] ® u) (T) + ([(flu)' + Au] ® v) (T) -

- 2(f ® v) (T) + ((flv) (0), u(T)) + ((flu) (0) - 2(flu0) (0), v(T)). 

Using Lemma 5, we derive 

((Bv)' ® u) (T) + ((flv) (0), u(T)) = - (flv ® u ) | f = T , 

((Bu)' ® v) (T) + ((flu) (0), v(T)) = - (flu ® v)|f=T . 
dt 

Therefore we may write, making use of (8) and (16), 

(19) b^'(u) = 2{([(flu)' + Au - f] ® v) (T) + ((flu) (0) - (flu0) (0), v(T))} . 

Denoting 

(20) w = (Bu)' + Au -f, 

we have 
b^'(u) = 2(w ® v) (T) 

for every v e .vT0. Obviously, w e ^ 0 , consequently (18) and Lemma 6 yield that 
w(t) = 0 for tel, i.e., (6) is satisfied. Inserting this result into (19), we obtain 

b^'(u) = 2((Bu) (0) - (flii0) (0), v(T)) = 0 
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for every v e Jf. From the density of v(T) in H, 

(21) (Bu)(O)-(Buo)(O) = 0 

follows and (10) yields the initial condition (7). 

On the contrary, let u e X* satisfy (6) and (7). Then (21) holds by virtue of (10), 
and (18) follows from (19). The proof is complete. 

Restricting the domain of the functional ^(u) to the functions, satisfying the initial 
condition (7) a priori, we are led to a modified 

Theorem 3. Let (8), (10), (11) and (16) hold. Assume that the set Jf\ = {ve Jf, 
v(0) = 0} is dense in L2(I9 H). Denote X2 = u0 © Jf\ and define the functional 

(22) #~i(u) = ([(Bu)' + Au- 2f] ® u) (T) - ((Bu0) (0), u(T)) . 

Then 

(23) h&'x(u) = 0 on X 2 , 

if and only if u e JT2 satisfies the equation (6) on I. 

Proof. In the same way, as previously, we derive (for any u e JT2 and v e Jft) 

d^[(u) = ([(Bv)' + Av] ® u) (T) + ([(Bu)' + Aw] ® v) (T) - 2(f ® v) (T) -

-((Bu0)(0),v(T)), 

((Bv)'®u)(T) = ^ ( B v ® u ) | , = r , 
dt 

((Bu)' ® v) (T) = 1 (Bu ® v)|f=r - ((Bu0) (0), v(T)) . 
dt 

using (8) and (10). By virtue of (16), 

((Bv)' ® u) (T) = ((Bu)' ® v) (T) + ((Buo) (0), <T)) 

and consequently, using also (8), we obtain 

(24) b&\(u) = 2([(Bu)' + Au - f] ® v) (T). 

If we denote again by w the expression in (20), w e %>0 and therefore the equation (6) 
on I follows from (23) with the use of Lemma 6. On the contrary, let u e J f 2 satisfy 
(6). Then (23) holds, because of (24). 

i) In the case of parabolic equations with time-independent coefficients, Theorem 2. cor­
responds with the "^-differential convolution principle", introduced in [4]. 
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Remark 5. Let us denote 

V(T - t) = Su(T - t) = cp(t), 

so that (p(T) = v(0) = 0 in Theorem 3. Assume that B = I (identity operator), 

(Au) (t) = A(l) u(t) , A(T - f) = A*(t) for every t e I , 

where A*(t) denotes the operator adjoint of A(t). Then the symmetry (8) holds and 

(25) (Au ® v) (T) = (u ® Av) (T) = J (A(T - t) v(T - t), u(t)) dt = 

= f (u(0,-4*(0<l>(0)d^. 

With regard to (24) and (25), 

{(u'(t), cp(t)) + (u(t), A*(t) cp(t)) - (f(t), <?('))} dt = 0 Í 
follows from the condition (23) for every <p(t) such that cp(T ~ t)e JT, cp(T) = 0. 
This condition corresponds with the definition of the generalized Problem 2.1 in [5], 
because 

cp(T - t) e JT => {<p e <gu cp(t) e DA*(t), A*(t) cp(t) e %0} 

for every tel. Integrating the first term by parts, and inserting the initial condition, 
we derive the relation 

(26) f {(u(t), A*(t) cp(t)) - (u(t), cp'(t))} dt = f (f(t), <p(t) dt + (u0, ^(0)) , 
Jo Jo 

which corresponds with the generalized Problem 2.2 in [5] (except for the condition 
u e JT2). In case of differential operators A, the product (u(t), A*(t) <p(t)) may often 
be extended continuously to a bilinear form a(t; u(t), (p(t)) (see [5] p. 44 and [4]). 

3. THE CAUCHY PROBLEM FOR EQUATIONS OF THE SECOND ORDER 

Let us consider the equation 

(27) —(Cuf) + Bu' + Au=f 
dt 

with the initial conditions 

(28) u(0) = u0 , u'(0) = v0 , 
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where A, B and C are linear operators in L2(I, H) such that 

(29) (Bv) (0) = G <= v(0) = O , 

(30) (Cv) (0) = 0 o v(0) = 0 . 

Furthermore, assume that fe <€0, w0 e Dc n DB, v0 e Dc, Cw0 e ^ 0 and Bw0 e ^ 0 , 

Definition5. Lct J f denote the linear manifold of functions ue%>x,for which 
ue DAn DBn Dc; u' e DB n Dc; Bw' e ^ 0 ; Cw' e C€ X; AU, BU, CU e <€0. 

Theorem 4. Let JT he dense in L2(l, H) and assume that (29), (30), 

(31) (t * (Av ® w)) (T) = (t * (Au ® v)) (T) for u,veDA, 

(32) (1 * (Bv ® w)) (T) = (1 * (Bw ® v)) (T) for u,veDB, 

(33) (1 * (Cv ® w)) (T) = (1 * (Cw ® v)) (T) for u,veDc, 

(34) (Bv ® u) (T) = (Bw ® v) (T) for u, v e DB , 

(35) (Cv ® u) (T) = (Cw ® v) (T) fOr w, v e Dc , 

(36) — (Bw ® v)\t=T = — (w ® Bv)|f = r fOr w, v e DB , 
dt dt 

(37) —- (Cw ® v)\t = T = _ (w ® Cv)|f=r for u, v e Dc 
dt dt 

ZiOW. Define the functional 

#"(u) = ([Cw + 1 * Bu + t * Aw] ® u) (T) -

- 2([t * f + Cu0 + 1 * Bw0 + t(Cv0) (0)] ® u) (T) . 

Then 

(38) (5#"(u) = 0 on Jf 

if and only if u e JT satisfies the equation (27) and the initial conditions (28). 

R e m a r k 6. Obviously, (31) till (37) hold, if 

(Av ® w) (t) = (Aw ® v) (t) , 

(Bv ® w) (t) = (Bw ® v) (t) , 

(Cv ® w) (t) = (Cw ® v) (t) 

hold for every tel and w, ve DA, DB, Dc, respectively, and the derivatives in (36) 
(37) exist. Again, the density of JT in <€0 would be sufficient. 
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Proo f of Theorem 4. Setting Su = v G Jf, omitting (T) and using (31), (32), (35), 
we may write 

b^(u) = ([Cv + 1 * Bv + t * Av] ® u) + ([Cu + 1 * Bu + t * Au] ® v) -

- 2([t * / + Cu0 + 1 * Bu0 + t(Cvo) (0)] ® v) = 2(w ® v) , 
where 

w = Cu + 1 * Bu + t * Au - t * / - Cu0 - 1 * Bu0 - t(Cv0) (0) . 

From (38) w(t) = 0 on I follows, with the use of Lemma 6 and the continuity of w. 
Inserting t = 0, we obtain 

(Cu) (0) - (Cii0) (0) - [C(u - w0)] (0) = 19 , 
which yields 

(39) u(0) = u0 , 

because of (30). As w(t) vanishes everywhere on I, we have 

(w ® v) (t) = 0 

for every t e I and v e Jfy consequently 

- ( w ® v ) | t = r = 0 . 
dt 

Using (37), Lemma 5, (39) and (35), we derive 

(40) — ([Cu - CUQ] ® vL = T = — (C(u - u0) ® v)\t=T = 
dt dt 

= ~ (u - u0 ® Cv) | f = T = 
dt 

= (u' ® Cv) (T) + (u(0) - u0, (Cv) (T)) = (Cuf ® v) (T ) . 

By virtue of (40), Lemma 5 and Lemma 2, we have 

— (w ® v)|r=T = (wx ® v) (T) for every v e J f , 
dt 

where 

(41) Wj = Cu' + Bu + 1 * Au - 1 * / - Bu0 - (Cv0) (0) . 

As w1 e ^0>
 w e m a y aPP jy ag a in Lemma 6 to obtain wx(t) = 0 on I. Consequently 

(42) Wl(0) = (Cw') (0) - (Cv0) (0) + (Bu) (0) - (Bu0) (0) = 

= [C(u' - v0)] (0) + [B(u - u0)] (0) = 0 . 
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The second term vanishes because of (39) and (29). Using (30), we obtain 

(43) u'(0) = v0 • 

Repeating the consideration, we conclude that 

T(w1 ® v)\t=T = 0 
at 

for every v e Jf. By virtue of Lemma 3, (36), (39) and (34), we may write 

(44) - ([Bu - Bu0~\ ® v)\t=T = - (B(u - u0) ® v)\tssT = 
dt dt 

= — (u - u0 ® Bv)|f=r ={uf ® Bv) (T) = (Bu' ® v) (T) . 
dt 

Then using Lemma 5, Lemma 2, (44), (30) and (43), we obtain 

T ( w 1 ® v ) | r = r = ( w 2 ® v ) ( T ) = 0 
dt 

for every v e JT, where 

(44') w2 = (Cu ')' + Bu' + Au - fe V0 . 

Hence w2(t) = G on I follows with the use of Lemma 6. Thus (38) yields both (27) 
and (28). 

On the contrary, let u e j f satisfy (27) and (28). Then (w2 ® v) (t) vanishes for 
every t e I, consequently 

(1 * (w2 ® v)) (T) = 0 

for every v e Jf. Lemma 3, (32), (34) and (28) yield that 

(45) ((1 * Bu') ® v) (T) = ([Bu - Bu] ® v) (T) . 

Using (30), we derive 

(46) ((1 * (Cu')') ® v) (T) = ([Cu ' - (Cv0) (0)] ® v) (T) . 

Therefore 

(1 * (w2 ® v)) (T) = (wi ® v) (T) = 0 

for every v e %\ consequently wx(t) = 0 on I. Then 

(1 * (wt ® v)) (T) = 0 . 

By virtue of Lemma 3, (33), (35) and (28), we have 

((1 * Cu') ® v) (T) = ([Cu - Cu0] ® v) (T) , 
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therefore 
(1 * (Wl ® v)) (T) = (vv ® v) (T) = i8&(u) = 0 

and the proof is complete. 

Theorem 5. Let (29), (30), (32), (34), (35), (36), (37) and 

(47) (1 * (Av ® u)) (T) = (1 * (Au ® v)) (T) 

hold. Assume that the set JT0 = {v e Jf, (Cv) (T) = 0} is dense in L2(l, H) and the 
set of (Cv) (T), where v e Jf, is dense in H. Define the functional 

(48) &'(u) = ([Cu ' + Bu + 1 * Au] ® u) (T) -

- 2([1 * f + Bu0 + (Cv0) (0)] ® u) (T) + (u(0) - 2u0, (Cu) (T)) . 

Then 

(49) O^'(u) = 0 on Jf 

if and only ifueJf satisfies (27) and (28). 

R e m a r k 7. Obviously, (32), (34), (35), (36), (37) and (47) hold, if the conditions 
of Remark 6 are satisfied. 

R e m a r k 8. Note, that 
&'(u) = d^(u)l&T 

follows from Lemma 5 and Lemma 2, because of (37), (35) and the relation 

- (u0 ® Cu)\t = T = (u0, (Cu) (T)) = ((Cu0)' ® u) + ((Cii0) (0), u(T)) . 
dt 

P roo f of Theorem 5. Denote 5u = v e JT. Using (35), (37), we derive 

(50) (Cv' ® u) (T) + (v(0), (Cu) (T)) = (Cu' ® v) (T) + (u(0), (Cv) (T)) . 

With the use of (34), (47), and (50), we obtain 

(51) S^'(u) = 2(w1 ® v) (T) + ?(fi(0) - u0, (Cv) ( T ) ) , 

where Wj is defined in (41). Hence (49) and Lemma 6 yield (for . # = JT0) that w^t) 
vanishes on I. Consequently 

(52) b&'(u) = 2(u(0) - u0, (Cv) (T)) = 0 

for v e JT and u(0) = u0 follows from the density of (Cv) (T) in H. Inserting t = 0, 
we obtain 

Wl(0) = (Cu') (0) - (Cv0) (0) + (Bu) (0) - (Bu0) (0) = 

= \C(u' - v0)] (0) + [B(u - u0)] (0) = 0 . 

58 



Using (29), (52) and (30), we conclude that 

(53) u'(0) = v0 . 

As Wj(t) vanishes on I, we have 
(wt ® v) (t) = 0 

for / e I and consequently 

T(wi ®v)\t = T = 0 
dt 

for every v e X. By virtue of (36), (52), (34) and Lemma 5, (44) holds. Then using 
Lemma 5, Lemma 2, (44), (30), and (53), we obtain 

(w2 ® v) (T) = 0 

for every v e Jf, where w2 e ^ 0 *s defined in (44'). Lemma 6 yields that w2 vanishes 
on I, i.e., (27) holds. Thus from (49) both (27) and (28) follow. 

On the contrary, let u e J f satisfy (27) and (28). Then (w2 ® v) (t) vanishes for 
every t e I, consequently 

(1 * (w2 ® v)) (T) = 0 

for every v e X'. Using Lemma 3, (32), (28), (34), (30) and (51), we derive (see also the 
Proof of Theorem 4) 

(1 * (w2 ® v)) (T) = (wx ® v) (T) = \b$F'(u) . 

Hence the variation vanishes on Jf, if (27) and (28) hold. 

Restricting the domain of the functional ^'(u) to the functions, satisfying the first 
initial condition (28) a priori, we are led to a modified 

Theorem 6. Let (29), (30), (32), (34), (35), (36), (37) and (47) hold. Assume that the 
set J f j = {v£ Jf, v(0) = 0} is dense in L2(l, H). Denote JT2 = u0 © JTX and 
define the functional 

(54) ^{(u) = (\Cu' + Bu + 1 * Aw] ® u) (T) -

- 2([1 * f + Bu0 + (Cv0) (0)] ® u) (T) - (u0, (Cu) (T)) . 

Then 

(55) b^\(u) = 0 on JT2 

if and only if u e Jf*2 satisfies (27) and (28). 

R e m a r k 9. The condition (55) was employed for the definition of weak solutions 
in a particular case of the Cauchy problem (27), (28) in [3], where the existence, 
uniqueness and continuous dependence of the weak solution on f, u0

 a n d v0 have 
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been proved. Using the relation (45), the functional ^[(u) of (54) can be modified 
easily into that of [3] . 

Proo f of Theorem 6. We have bu = v e J f x. From (35), (37) and the definition 
of J f 2, the relation 

(56) (Cvf ® u) (T) = (Cuf ® v) (T) + (u0, (Cv) (T)) 

follows. Making use of (34), (47) and (56), we obtain 

8^[(u) = 2(wi®v)(T)9 

where wx is defined in (41). Hence (55) and Lemma 6 (for Jt = j f \ ) yield that wx 

vanishes on I. Inserting t = 0 and making use of (29), we obtain 

Wl(o) = \c(u' - v0)] (o) = e, 

consequently, by virtue of (30), 

(57) u'(0) = v0 . 

Next we have 
(wi ® v) (t) = 0 

for t E I and therefore 

~ - ( W l ® V)\t=T = 0 
dt 

for every v e J f x. From (34), (36) and Lemma 5, (44) follows. Then using Lemma 5, 
Lemma 2, (44), (30) and (57), we obtain 

(w2®v)(T) = 0 

for every v e J f 1? where w2 e ^ 0 is defined in (44;). Hence w2(t) = 0 on I follows 
with the use of Lemma 6. Thus (55) yields both (27) and (28). 

On the contrary, let u e Jf2 satisfy (27) arid (28). Then (w2 ® v) (t) vanishes foi 
every t e I, consequently 

(1 * (w2 ® v)) (T) = 0 

for every v e J f \ . Using Lemma 3, (32), (34) and (28), we obtain (45) and using (30), 
we derive (46). Hence 

(1 * (w2 ® v)) (T) = (w, ® v) (T) = \b&[(u) = 0 

and the proof is complete. 
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Theorem 7. Let (29), (30), (34), (35), (36), (37) and 

(58) (Au ® v) (T) = (Av ® u) (T) 

hold. Assume that the set Jf3 = {v e X', v(0) = v(T) = 0} is dense in L2(l, H) and 
the set of v(T), where v e Jf,, is dense in H. Define the functional 

(59) P'l(u) = ([(Cu1)' + Bu' + Au - 2/] ® u) (T) + 

+ ((Cu') (0) - 2(Ct>0) (0), u(T)) - (u0, (Bu) (T) + (Cu)' (Tj). 

Then 

(60) d^'[(u) = 0 on JT2 = u0 0 Jf j 

if and only if u e J f 2 satisfies (27) and (28). 

Proof. Denote Su = v e Jf\. Using Lemma 5, (34), (35), (36) and (58), we obtain 

S^'[(u) = 2(w2 ® v) (T) + 2((Cw') (0) - (Cv0) (0), v(T)) , 

where w2 G ̂ 0 is defined in (44'). From (60), J f 3 c 5 ^ t and Lemma 6 (for e# = JT3), 
w2(t) = Q on I follows, i.e. (27). Then 

^ i ' ( u ) = 2((Cu') (0) - (Cv0) (0), v(T)) 

for every v e J f \ . The assumption of the density of v(T) yields 

(61) (Cu') (0) - (Ct!o) (0) = [C(«' - t;0)] (0) = 0 

and using (30), we obtain w'(0) = v0. As u e Jf2>
 u(fy = uo holds. 

On the contrary, let u e JT2 satisfy (27) and (28). Then obviously 

(w2 ® v) (T) = 0 

for every v e J f t and using (30), we conclude that also (61) holds. Consequently, the 
variation d £F'[(u) vanishes and the proof is complete. 

R e m a r k 10. Note that 
&'[{u) = d ^\(u)\dT 

follows from Lemma 5, (34) and the definition of JT2. 

R e m a r k 11. The condition (60) was employed for the definition of weak solutions 
in a particular case of the Cauchy problem (27), (28) in [6], where the existence, 
uniqueness and continuous dependence of the weak solution on f, u0 and v0 have 
been proved. 
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4. GENERALIZATION OF THE CONVOLUTION SCALAR PRODUCT 

The convolution scalar product (u ® v) (t) in the preceding Theorems may be 

replaced by any bilinear (with respect to the elements u, v) function b(w, v; t), 

which possesses the following properties: 

(I) b(u, v; t) :g c 0 | u | r \v\T (with a constant c0 independent of u, v, t) , 

(II) b(u, v; t) = b(v, u; t) , 

(III) b(l * u, v; t) = (/ * b(u, v; t)) (t), 

b(t * M, v; t) = (t * b(u, v; t)) (t ), 

(IV) — b(u, v; t) = b(w/, v; t) + b(uS, v; t) , 
dt 

where the relation (I), (II) and (III) hold for every u, v e L2(l, H) and t e I, (IV) for 

ue(^l and v(f) continuous at a point t el, d is the Dirac function 

(V) an operator J* in ^ 0 exist such that 

b(u, @u; T) = 0 => u = <9 

holds for every u e ^ 0 . 

Then the Lemmas 1 till 6 and their proofs hold again, if we substitute (u ® v) (t) 

by b(u, v; t), w(t) = w(T - t) by (J*w) (t). Modifying Theorems 1 till 7 and their 

proofs in the same way, we are led to a wider class of Cauchy problems, which can 

also be formulated by means of a variational approach. 
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V ý t a h 

VARIAČNÍ FORMULACE CAUCHYHO PROBLÉMU 
PRO ROVNICE S OPERÁTOROVÝMI KOEFICIENTY 

IVAN HLAVÁČEK 

V článku je navrženo několik variačních principů, které jsou ekvivalentní počáteč­
ním (Cauchyho) problémům pro rovnice prvního a druhého řádu v časové souřadnici. 
Koeficienty rovnic jsou lineární operátory v prostoru L2(l, H) zobrazení časového 
intervalu I do jistého Hilbertova prostoru H, integrovatelných s kvadrátem. Teorie 
zahrnuje některé třídy parciálních diferenciálních a integro-diferenciálních rovnic. 
Základem všech uvedených variačních principů je pojem „konvolučního skalárního 
součinu". Na operátorové koeficienty jsou pak kladeny podmínky jisté symetrie 
ve smyslu tohoto součinu. Některé z principů byly použity autorem k definici slabých 
řešení integro-diferenciálních rovnic [3], [6]. 
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