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VARIATIONAL FORMULATION OF THE CAUCHY PROBLEM
FOR EQUATIONS WITH OPERATOR COEFFICIENTS

IvaAN HLAVACEK

(Received July 30, 1970)

PREFACE

It is an old idea, to formulate the boundary-value and mixed problems of mathema-
tical physics in terms of equivalent variational problems. The variational formulation
(principle) may be then applied in three ways: first, to the definition of weak solutions;
second, to the dimensional reduction (e.g. if the three-dimensional domain under
consideration has one or two prevailing dimensions); third, to other approximate
methods of solution (e.g. Ritz, Galerkin, finite elements a.0.).

In the present paper, several variational principles are suggested, which are equiva-
lent to initial-value (Cauchy) problems for equation of the first and second order in
time coordinate. Their coefficients are linear operators, acting in the space L,(I, H)
of square-integrable mappings of a time interval I into a Hilbert space H. In particular,
the theory includes some classes of partial differential equations and of integro-
differential equations. In Section I, the “convolution scalar product” is introduced as
the basic concept of the following variational principles and its properties proved.
Section 2 involves three variational principles for equations of the first order in time,
Section 3 another four variational principles for equations of the second order.
Some kinds of a ‘“‘convolution symmetry” of the operator coefficients are required
in all the variational principles. In the papers [3] and [6], some of those principles
were employed for the definitions of weak solutions of particular integro-differential

equations. \

1. CONVOLUTION SCALAR PRODUCT

Let a bounded interval I = <0, T) and a basic real Hilbert space H be given with
the scalar product (u, v) and the norm |u| = (u, u)'/?.

Definition 1. Let L,(I, H) denote the space of all measurable mappings u(t) of I

into H such that
T 1/2
lul; = (j |u(t)|? dt) < .
0
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Definition 2. Let L,(I) denote the space of real functions, which are square-
integrable on I. Let f, g € Ly(I) or g € L,(I, H) and u, ve Ly(I, H). The function

(f*g)(t) J‘ft—r)gr)dr

will be called the convolution of fand g.

The function
(u®v J(ut—‘c) r))dr
will be called the convolution scalar product of u and v.
Lemma 1. It holds
(1) [ ® v) ()] = lu]r - [o]+,
2 @@o)() =(@eu)()
for every pair of u,ve Ly(I, H) and tel.

Proof. Denote U(t) = u(t — 7). Then we may write

j (u(t = 7), o)) de < j (), o) de < j 0@ o) de =

([l o) " ([0 o) = bl

because of the relation

J;lU(T)IZ dr = J(:lu(t —17))Pdr = ﬂl“(é)lz de < Jul?

which follows from the change of variables t — t = . The same transformation
leads also to the formula (2).

IIA

Lemma 2. Let f(f) € L,(I) and u € L,(I, H). Then also
t
3) (F* u) (1) = f £t = 1) u(x) de e L1, H).
[¢]
If u(t) is continuous on I, I(t) = 1 then

(4) (% (1= u) = u(t)
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holds for all tel (for t = 0 and t = T from the right and left, respectively) and
(I'% u)(t) is continuous on 1. Moreover,

(5) (l * (l * u)) (t) = (t * ll) (1)
holds on I.

Proof. We have (see [1], Th. 2.7)

f}(t — 1) u(7) dr‘ < Jﬁf(t = 7). Ju(r)] dr <

= ([t -9 dr>)”2 ([l dr)’”g 1wyl :

consequently (f = u) (t) is bounded on .
In order to prove (4), denote
t

(1) = (L) (1) = f u(t) de .

0

We may write

= < max Ju(t) — u(t)] - 0
Ctottay

f () — (] de

1
o t

" (el + o) = =(0) = u(0)

foroa > 0,1el, t + ael. Hence dz/dt = u(r) follows for t e I.
By virtue of (4) and the continuity of u(t), also (I * u) is continuous on I (see [1]
Th. 1.5). The formula (5) follows from the Fubini theorem, because

J:dr J‘ Otu(s) ds = f;ds f :u(s) dr = f 0’(; — 5)u(s)ds .

Lemma 3. Let f(t) € L,(I), and u, ve L,(I, H). Then
(F*u)@v)(1) = (f*(u @) (1)
holds for every tel.

Proof. Changing the order of .integrationy we may write

(Fu) ® o) (1) = f( = e = uls)ds. U(T)>df _

_ L ( f :f(t — Yuly - 1) dy,ov(r)o) dr = Ltdf j:f(t — ) (uly — 7). o(x)) dy =
- j Otdyf(t — ) j :(u(y — o). o(1) de = (£ + (u @ 0)|(1),
using also the transformation s = y — .
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Lemma 4. Let W € L,(I, H) and a sequence {v,} = L,(I, H) be such that
lim |v, — W[z = 0.

Then
lim (w ® v,) (1) = (w ® W) (1)

holds for every we Ly(I, H) and t e I.

Proof. Choose an arbitrary t €[ and we L,(I, H). Then, by virtue of Lemma 1,
we may write

(v ® v,) (1) = (w @ ®) (O] = [(w @ v, = ®) (] = [wlr - [ow = %] > 0.

Definition 3. Denote u'(t) = du/dt, €, the linear manifold of continuous mappings
of I into H and €, the linear manifold of mappings u(t) of I into H, which possess
continuous derivatives u'(t) € €.

Lemma 5. Let u’ € €, and let v(t) € Ly(I, H) be continuous for a point t € I. Then
d ’
5, @ ®0) (1) = (W ®0) (1) + (u(0), (1))
holds at this point (with the derivative from the left, if t = T and from the right

ift=0).

Proof. Note, that u’ € €, yields that u € €, (see [1] Th. 15), consequently, u(0)
exists. We may differentiate with respect to the parameter ¢, to obtain

%Jot(u(t — 1), (7)) dt = J:(u'(t — 1), v(1)) dT + (u(0), v(7)) .

Lemma 6. Let we %, be such that
(w® ) (1) = 0

holds for every ve M, and let M be dense in Ly(I, H). Then w(t) = © for every
tel.

Proof. Introduce a function w € %, by means of the relation
w(T — 1) = W(t)
for t e I. There exists a sequence {v,} = .# such that

lim [v, — W[y = 0.

n— oo
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Using Lemma 4, we obtain

0 = lim(w® t,) (T) = (w ® W) (T) =IT(W(T 0. w(0) di = frl‘¢*(t)|z ar

n—=w

By virtue of the continuity of |w(f)| on I, we conclude that w(t) must vanish on I.

2. THE CAUCHY PROBLEM FOR EQUATIONS OF THE FIRST ORDER

Let us consider the equation
d
(6) d—(Bu) + Au = f
t

and the initial condition

(7) u(0) = u,,

where A and B are linear operators in L,(1, H) such that

(8) (Au ® v)(T) = (u ® Av)(T) for u,veD,,

9) (Bu ® v)(T) = (u ® Bv)(T) for u,veDy.
Assume that

(10) (Bv)(0) = @<= 1(0) = O,

(11) fe%,, uoeDyn D, and Bu,e%,.

Definition 4. Let A" denote the linear manifold of mappings u e €,, for which
ue Dy Dy, Bue %, Au€ by, u(0) € Dy. Define the functional

(12)  F(u) = ([Bu + L= Au] ® u)(T) — 2([1 *f + (Buy) (0)] ® u)(T)

\

on A .

Theorem 1. Let A be dense in L,(I, H) nad let (8) till (11) hold. Then
(13) 8Fu)=0 on X
if and only if u € A satisfies the equation (6) on I and the initial condition (7).

Remark 1. It is sufficient to assume the density of " in the subset ¥, = L,(/, H),
because %, is dense in L,(1, H) (see e.g. [2], Lemma 1V.8.19).
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Proof. In the following, we shall omit the notation (7). Denoting éu = v, We have
0F(u) = ([Bv+ 1 xAv] @ u) + ([Bu + 1 * Au] ® v) —
~ 215 f + (Buy) (0] © ).
Using (9), (8), (2) and Lemma 3, we obtain
([Bo+ 1xAv] @u) = (Bu®v) + 1 *(Au @ v) =

= ([Bu + 1+ Au] ® v).
Therefore we may write

(14) 8F(u) = 2(w ® v),
where
(15) w=Bu + 1% Au — 1 *f — (Buy)(0).

By virtue of Definition 4 and Lemma 4, w belongs to %,. Consequently, We may
apply Lemma 6 to obtain that (13) yields w(t) = © for every t e I. Inserting 1 < (,

we have
w(0) = (Bu) (0) — (Buo) (0) = [B(u — uo)](0) = 6.

From the assumption (10), u(0) = u, follows. As the element w has a continuous
time derivative, we have also

w'(t) = d(Bu)/dt + Au — f = O

for every t € I. Thus we have proved, that (13) implies (6) and (7).
On the contrary, let u e o satisfy (6) and (7). Integrating the equation (6), we
obtain
(Bu) (1) — (Bu) (0) + 1 % Au = L xf.

By virtue of (10) and the initial condition (7)

[B(u — uo)] (0) = (Bu) (0) — (Buy) (0) = @,

consequently w(r) = @ in (14) for every t € I. Then (13) holds, as follows from (14)
and (1).

Remark 2. The condition (13) was employed for the definition of weak solutions
in a particular case of the Cauchy problem (6), (7) in [3], where the existence,
uniqueness and continuous dependence of the weak solution on f and u, have been
proved.

Remark 3. In case of parabolic differential equations with time-independent
coefficients, Theorem 1 corresponds with the “a-integral convolution principle”,
introduced in [4].
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Theorem 2. Let (8), (10), (11) and
d d
16 2B =SB _
(19 % (o s = L (50 @ s

hold. Assume that the set 'y = {ve A", o(T) = O} is dense in Ly(I, H) and the set
of u(T) dense in H, if ve A .
Define the functional

(17)
F'(u) = ([(Bu) + Au] @ u)(T) — 2f ® u)(T) + ((Bu) (0) — 2(Bu) (0), u(T))-

Then
(18) 3F()=0 on A
if and only if ue A" satisfies the equation (6) on I and the initial condition (7).")
Remark 4. Again, the density of &, in %, is sufficient (cf. Remark 1).
Proof. Denoting du = v, we have
57/(u) = ([Bo) + Ae] ® u) (T) + ([(Bu) + Au] @ o) (T) —
— 2 @ 0) () + ((Be) 0), lT)) + ((Bu) (0) — 2(Buro) (0, (T)

Using Lemma 5, we derive

((Bo)” ® ) (T) + ((Bv) (0), u(T)) = (%(Bv ® u)l=r

((BuY @ ) (1) + ((B) (0), 7)) = - (B @ 0] -

Therefore we may write, making use of (8) and (16),

(19)  67'(u) = 2{([(Bu) + Au — f] ® v) (T) + ((Bu) (0) — (Buo) (0), o(T))} -
Denoting \

(20) w = (Bu) + Au — f,

we have
6F'(u) = 2(w ® v) (T)

for every ve A, Obviously, we %,, consequently (18) and Lemma 6 yield that
w(t) = @ for tel, ie., (6) is satisfied. Inserting this result into (19), we obtain

55"(u) = 2(Bu) (0) — (Buo) (0). (T)) = 0
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for every v e A . From the density of v(T) in H,

(21) (Bu) (0) — (Buo) (0) = @
follows and (10) yields the initial condition (7).

On the contrary, let u € & satisfy (6) and (7). Then (21) holds by virtue of (10),
and (18) follows from (19). The proof is complete.

Restricting the domain of the functional #(u) to the functions, satisfying the initial
condition (7) a priori, we are led to a modified

Theorem 3. Let (8), (10), (11) and (16) hold. Assume that the set Ay = {ve X,
v(0) = O} is dense in Ly(I, H). Denote A, = u, @ Ay and define the functional

@) Fi) = [(Be) + Au - 2] @ u) (T) — (Bug) (0). (T)).
Then
(23) 0F(u)=0 on x,,
if and only if u € A", satisfies the equation (6) on I.
Proof. In the same way, as previously, we derive (for anyue X ,and ve A,)

67 (u) = ([(Bo) + Av] @ u) (T) + ([(Bu) + A4u] ® v) (T) — 2(f ® v) (T) —
= ((Buo) (0), o(T))

((Bv) ® u) (T) = %(Bv ® u)]i—r»

((B4Y @ 0) (1) = < (Bu © 0)]s=1 — (Bug) 0). oT) .
using (8) and (10). By virtue of (16),
((BY) ® u) (T) = (BuY ® &) (T) + ((Buo) (0), o(T))
and consequently, using also (8), we obtain
(29) 5% 1(u) = 2([(Bu) + Au — 11 @ ) (T).

If we denote again by w the expression in (20), w € €, and therefore the equation (6)
on I follows from (23) with the use of Lemma 6. On the contrary, let u € %", satisfy
(6). Then (23) holds, because of (24).

) In the case of parabolic equations with time-independent coefficients, Theorem 2. cor-
responds with the *‘ g-differential convolution principle”, introduced in [4].
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Remark 5. Let us denote
(T — 1) = ou(T — t) = o(t),
so that ¢(T) = v(0) = © in Theorem 3. Assume that B = I (identity operator),
(Au) () = A(t) u(r), A(T —t) = A%(t) forevery tel,

where A*(t) denotes the operator adjoint of A(t). Then the symmetry (8) holds and
T

25)  (Au®v)(T) = (u ® Av)(T) = j (A(T = 1) o(T = 1), u(t)) dt =
0

- [ty 4 oy ar

With regard to (24) and (25),
for{(u'(t)’ (1) + (u(t). 4%(1) o(1)) = (1), o(1))] dt = 0

follows from the condition (23) for every ¢(f) such that o(T — 1)e A", o(T) = O.
This condition corresponds with the definition of the generalized Problem 2.1 in [5],

because
(T —1t)edt = {peb,, p(t) € Dauyy, AX1) o(1) € 6y}

for every t € I. Integrating the first term by parts, and inserting the initial condition,
we derive the relation

T T
CO) [ 1000 4°0) 000) — (0. ')} 0 = [ (0 00) 1 + (1 0(0) .
0 0
which corresponds with the generalized Problem 2.2 in [5] (except for the condition

u € A,). In case of differential operators A, the product (u(t), 4*(f) ¢(t)) may often
be extended continuously to a bilinear form a(t; u(t), ¢(t)) (see [5] p. 44 and [4]).

\

3. THE CAUCHY PROBLEM FOR EQUATIONS OF THE SECOND ORDER
Let us consider the equation
d ’ ’
(27) —(Cu') + Bu' + Au = f
de
with the initial conditions
(28) u(0) = uy, u'(0) = v,,
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where A4, B and C are linear operators in L,(I, H) such that
(29) (Bv)(0) = © <= v(0) = O,
(30) (Cv) (0) = O = v(0) = O.
Furthermore, assume that f € €, uy€ Dc N Dg, vy € D, Cug € €, and Bugy € €.

Definition 5. Let 4 denote the linear manifold of functions ue %,, for which
ueD,n Dgn De;u € Dy Dg; Bu' € 6y; Cu’ € €5 Au, Bu, Cu e %,.

Theorem 4. Let 4" be dense in Ly(I, H) and assume that (29), (30),

(31) (t *(Av @ u))(T) = (t *(Au ® v))(T) for u,veD,,
(32) (1 «(Bv®u))(T) = (1% (Bu @ v))(T) for u,ve Dy,
(33) (1=(Cvo @ u))(T) = (1 *(Cu @ v))(T) for u,veDc,
(34) (Bv ® u) (T) = (Bu ® v)(T) for u,ve Dy,
(35) (Cv ® u)(T) = (Cu ® v)(T) for u,ve D¢,
d d .
(36) a(Bu ® v)|i=r = a(u ® Bo),=r  for u,ve Dy,
. d d . e
(37) 5 (Cu @ v)|,=1 = 5 (4 ® Cv)|,=r  for u,ve D¢

hold. Define the functional

F(u)=(Cu+ 1 *xBu + txAu] ® u)(T) —

= 2[t*f + Cuy + 1% Buy + 1(Cvp) (0)] ® u)(T).
Then

(3%) 0Fu)=0 on A
if and only if u e A satisfies the equation (27) and the initial conditions (28).
Remark 6. Obviously, (31) till (37) hold, if
(40 ® u) (1) = (4u ® v) (1),
(Bv @ u) (1) = (Bu @) (1),
(Co® ) (1) = (Cu @) ()

hold for every tel and u, ve D,, Dg, D, respectively, and the derivatives in (36)
(37) exist. Again, the density of " in ¥, would be sufficient.
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Proof of Theorem 4. Setting du = v e A", omitting (T) and using (31), (32), (35),
we may write
0F(u) = ([Co+ 1% Bv + t* Av] @ u) + ([Cu + 1% Bu + t » Au]| @ v) —

= 2([t*f + Cug + 1% Bug + (Cvo) (0)] ® v) = 2(w ® v),
where

w=Cu+1*Bu+t*Au——t*f~Cuo—1*Bu0*l(CUO)(0)'

From (38) w(t) = © on I follows, with the use of Lemma 6 and the continuity of w.
Inserting t = 0, we obtain

(Cu) (0) = (Cuo) (0) = [Cu — u)](0) = @,

which yields
(39) u(0) = u,,
because of (30). As w(t) vanishes everywhere on I, we have

(w®v) (1) =0
for every t eI and v € A", consequently
g .
—(w®v),=r=0.
S 0@ olr
Using (37), Lemma 5, (39) and (35), we derive

(40) & ([Cu = Cur] @ vl = S (Clu = ) @ D]-r =

d
= a—t(“ — U ® Cv)lt=T =
— (W ® Co) (T) + (4(0) — o, (Co) (T)) = (Cu’ © ) (7).

By virtue of (40), Lemma 5 and Lemma 2, we have

g—t(w ® v)|=1 = (W; ® v) (’I:) forevery ve X,
where
(41) w; = Cu + Bu + 1xAu — 1 = f — Buy, — (Cv,) (0) .
As w, € ,, we may apply again Lemma 6 to obtain wy(tf) = © on I. Consequently

(42) w(0) = (Cu) (0) — (Co) (0) + (Bu) (0) — (Bu) 0) =
=[O = 0] 0) + [Bu — up)] (0) = ©.
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The second term vanishes because of (39) and (29). Using (30), we obtain
(43) u'(0) = v, .

Repeating the consideration, we conclude that
d
a(wl ® U)|t=T =0
for every v e A. By virtue of Lemma 3, (36), (39) and (34), we may write

(44 (LB = Bus] ® )lr = L (Blu = ) © )1 =

d
dt
=S (= 10 ® Bo)l -y = (' @ B) (T) = (Bu’ @ ) (T).
Then using Lemma 5, Lemma 2, (44), (30) and (43), we obtain
(01 @ Omr = (w2 ® ) (T) = 0

for every v e A", where

(44) w, = (Cu')Y + Bu' + Au — fe %, .
Hence w,(t) = © on I follows with the use of Lemma 6. Thus (38) yields both (27)
and (28).

On the contrary, let u € A satisfy (27) and (28). Then (w, ® v)(z) vanishes for
every t € I, consequently
(1% (w, ® v))(T) =0

for every v e #". Lemma 3, (32), (34) and (28) yield that

(45) (1 *Bu') ® v)(T) = ([Bu — Bu] ® v)(T).
Using (30), we derive

(46) (1= (Cu’)) ® v) (T) = ([Cu’" = (Cvo) (0)] ® v)(T) .
Therefore

(1% (w2 ® ) (T) = (w, ® 0) (T) = 0
for every v e A, consequently wy(t) = © on I. Then
(L% (wy ® ) (T) = 0.
By virtue of Lemma 3, (33), (35) and (28), we have
(1% Cu') ® 0) (T) = ([Cu ~ Cug] ® o) (T)
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therefore
(1+ (w, ® 6)) (T) = (v ® ) (T) = 165 () = 0

and the proof is complete.
Theorem 5. Let (29), (30), (32), (34), (35), (36), (37) and

(47) (1% (Av @ u)) (T) = (1 * (Au ® v))(T)

hold. Assume that the set Ay = {ve A", (Cv) (T) = O} is dense in Ly(I, H) and the
set of (Cv) (T), where ve A, is dense in H. Define the functional

(48) F'(u) = ([Cu" + Bu + 1 x Au] ® u) (T) —

= 2[1 =f + Bug + (Cro) (0)] ® u) (T) + (u(0) — 2uo, (Cu) (T)).
Then
(49) 8F'(u) =0 on A

if and only if u e A" satisfies (27) and (28).

Remark 7. Obviously, (32), (34), (35), (36), (37) and (47) hold, if the conditions
of Remark 6 are satisfied.

Remark 8. Note, that
F'(u) = dF(u)/dT

follows from Lemma 5 and Lemma 2, because of (37), (35) and the relation
(g ® Cull 1 = (o, (Cu) (1)) = ((Cuo) © ) + ((Cuo)(0) (T)).
Proof of Theorem 5. Denote du = v e . Using (35), (37), we derive
(50) (€' @ u)(T) + (o0). (Cu)(T)) = (€’ © 1) (T) + (u(0). (C1) (7)) .
With the use of (34), (47), and (50), we obtain
(51 67 (u) = 2w, © ) (T) + 2u(0) = o (C0)(T)).

where w, is defined in (41). Hence (49) and Lemma 6 yield (for .# = o) that w,(r)
vanishes on I. Consequently

(52) OF"(u) = 2(u(0) — uy, (Cv)(T)) =0
for ve A and u(0) = u, follows from the density of (Cv) (T) in H. Inserting ¢ = 0,
we obtain
w1(0) = (Cu') (0) = (Cwo) (0) + (Bu)(0) — (Buo) (0) =
— [ ~ )] (0) + [B — u]] ) = 6.
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Using (29), (52) and (30), we conclude that
(53) u'(0) = v, .

As w(1) vanishes on I, we have
(wi ®0)(1)=0

for t e I and consequently

d
dt (w: ® U)It=r =0

for every v e . By virtue of (36), (52), (34) and Lemma 5, (44) holds. Then using
Lemma 5, Lemma 2, (44), (30), and (53), we obtain

(w,®0)(T)=0

for every v e A", where w, € €, is defined in (44’). Lemma 6 yields that w, vanishes
on I, i.e., (27) holds. Thus from (49) both (27) and (28) follow.

On the contrary, let u € # satisfy (27) and (28). Then (w, ® v)(¢) vanishes for
every t € I, consequently

(1% (w, ® ) () = 0
for every v € #. Using Lemma 3, (32), (28), (34), (30) and (51), we derive (sce also the
Proof of Theorem 4)
(1% (w, @ 0))(T) = (w;, @ v)(T) = 15F'(u).

Hence the variation vanishes on ", if (27) and (28) hold.

Restricting the domain of the functional #'(u) to the functions, satisfying the first
initial condition (28) a priori, we are led to a modified

Theorem 6. Let (29), (30), (32), (34). (35), (36), (37) and (47) hold. Assume that the
set # = {veA, v(0) = O} is dense in L,(I, H). Denote A", = u, ® #", and
define the functional

(54) Fi(u) = ([Cu' + Bu + 1% Au] @ u) (T) —

— 2([ % f 4+ Bugy + (Cvp) (0)] ® u)(T) — (up, (Cu)(T)).
Then
(55) 0F(u)=0 on X,

if and only if u € &, satisfies (27) and (28).

Remark 9. The condition (55) was employed for the definition of weak solutions
in a particular case of the Cauchy problem (27), (28) in [3], where the existence,
uniqueness and continuous dependence of the weak solution on f, uy and v, have
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been proved. Using the relation (45), the functional & {(u) of (54) can be modified
easily into that of [3].

Proof of Theorem 6. We have du = ve & ;. From (35), (37) and the definition
of A,, the relation

(56) (Cv' ® u)(T) = (Cu’ ® v)(T) + (1o, (Cv) (T))
follows. Making use of (34), (47) and (56), we obtain
8F ((u) = 2(w, ® v)(T),

where w, is defined in (41). Hence (55) and Lemma 6 (for # = #',) yield that w,
vanishes on I. Inserting t = 0 and making use of (29), we obtain

wi(0) = [C(u" = v9)] (0) = @,
consequently, by virtue of (30),
(57) u'(0) = v, .

Next we have
(w, ® v) (1) = 0
for t eI and therefore

d
@& (W @)=y =0

for every ve #,. From (34), (36) and Lemma 5, (44) follows. Then using Lemma 5,
Lemma 2, (44), (30) and (57), we obtain

(w2 ® v)(T) = 0

for every ve A" ,, where w, € €, is defined in (44') Hence wz(t) = @ on I follows
with the use of Lemma 6. Thus (55) yields both (27) and (28).

On the contrary, let u € ", satisfy (27) and (28). Then (w, ® v) (¢) vanishes for
every t € I, consequently

1+ (w2 ®0)(T) =0

for every v e ;. Using Lemma 3, (32), (34) and (28), we obtain (45) and using (30),
we derive (46). Hence

(1 (w, ®0))(T) = (w; @ v)(T) = 36F(u) = 0
and the proof is complete.
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Theorem 7. Let (29), (30), (34), (35), (36), (37) and
(58) (Au ® v) (T) = (v ® u) (T)

hold. Assume that the set # 5 = {ve A", v(0) = v(T) = O} is dense in L,(I, H) and
the set of v(T), where ve A, is dense in H. Define the functional

(59) F{(u) = ([(Cu')y + Bu' + Au — 2f] @ u)(T) +

+ (€0} 0) = 2(Co) (0), u(T)) = (g, (Bu) (T) + (Cuy (7)) .
Then
(60) 0F(u) =0 on AH=u,® A,

if and only if ue A, satisfies (27) and (28).
Proof. Denote du = ve A ;. Using Lemma 5, (34), (35), (36) and (58), we obtain
8F 1(u) = 2(w, ® v)(T) + 2((Cu’) (0) — (Cvo) (O), u(T)),

where w, € %, is defined in (44’). From (60), #"; = ", and Lemma 6 (for .4/ = '),
wy(t) = © on I follows, i.e. (27). Then

67 (u) = 2((Cu’) (0) — (Coy) (0), o(T))

for every v e . The assumption of the density of v(T) yields

(61) (Cu) (0) — () (0) = [Clu’ — 00)] (0) = ©
and using (30), we obtain u’(0) = v,. As u € A4 ,, u(0) = u, holds.
On the contrary, let u € o, satisfy (27) and (28). Then obviously
(w, ®0)(T) =0

for every v € A" and using (30), we conclude that also (61) holds. Consequently, the
variation § #(u) vanishes and the proof is complete.

Remark 10. Note that
Fi(u) = d F(u)/dT

follows from Lemma 5, (34) and the definition of J¢,.

Remark [ 1. The condition (60) was employed for the definition of weak solutions
in a particular case of the Cauchy problem (27), (28) in [6], where the existence,
uniqueness and continuous dependence of the weak solution on f, u, and v, have
been proved.
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4. GENERALIZATION OF THE CONVOLUTION SCALAR PRODUCT

The convolution scalar product (v ® v)(¢) in the preceding Theorems may be
replaced by any bilinear (with respect to the elements u, 0) function b(u, v f),
which possesses the following properties:

D b(u, v; 1) < coluly o] (with a constant ¢, independent of u, v, 1),
(1) b(u, v; 1) = blv. us 1),

(1) b(I = u, vy t) = (I * b(u, v; 1)) (1),
b(t * u, v 1) = (t % b(u, v; 1)) (1),

(1v) ;i(i b(u, v; ty = b(u’, v; 1) + b(ud, v; 1),
t

where the relation (1), (IT) and (III) hold for every u, ve L,(I, H) and t €1, (IV) for
u € ¢, and v(t) continuous at a point t €1, § is the Dirac function

(V) an operator # in %, exist such that

b(u, Bu; T) = 0=>u = O
holds for every u € %,.

Then the Lemmas 1 till 6 and their proofs hold again, if we substitute (u ® v) (1)
by b(u, v; 1), w(t) = w(T — 1) by (#w)(t). Modifying Theorems 1 till 7 and their
proofs in the same way, we are led to a wider class of Cauchy problems, which can
also be formulated by means of a variational approach.
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Vytah

VARIACNI FORMULACE CAUCHYHO PROBLEMU
PRO ROVNICE S OPERATOROVYMI KOEFICIENTY

IvaN HLAVACEK

V ¢lanku je navrzeno né€kolik variaénich principt, které jsou ekvivalentni pocatec-
nim (Cauchyho) problémiéim pro rovnice prvniho a druhého fadu v asové soufadnici.
Koeficienty rovnic jsou linearni operatory v prostoru L,(I, H) zobrazeni Casového
intervalu I do jistého Hilbertova prostoru H, integrovatelnych s kvadratem. Teorie
zahrnuje nékteré tfidy parcidlnich diferencialnich a integro-diferencialnich rovnic.
Zakladem vSech uvedenych variaénich principl je pojem ,.konvoluéniho skalarniho
soutinu‘‘. Na operatorové koeficienty jsou pak kladeny podminky jisté symetrie
ve smyslu tohoto soudinu. Nékteré z principt byly pouzity autorem k definici slabych
feSeni integro-diferencialnich rovnic [3], [6].
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