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SVAZEK 15 (1970) APLIKACE MATEMATIKY ČÍSLO 2 

SOLUTION OF THE HALL FIELD BOUNDARY VALUE PROBLEM 
BY FOURIER SERIES 

JAROSLAV SCHILDER 

(Received September 4, 1968) 

1. INTRODUCTION 

The two-dimensional current density field when respecting the Hall effect is 
characterized by an isogonal system of equipotential and flow lines (i.e. not by an 
orthogonal one, as in classical problems on the current density field). Thus, owing 
to the Hall effect, the solution of the current density field, brought by technical 
applications, leads to an unusual boundary value problem. 

A way has been already shown of solving this problem by means of conformal 
mapping [1, 2, 3]. In the present paper, a way is shown how to solve this problem 
by developments into Fourier series. The problem will be explained on the case of the 
field in a semiinfinite strip (semi-slab), its frontal side being represented as an equi­
potential plane. In this case, the problem can be reduced to very simple reiatilons 
for the coefficients of the Fourier series. 

New methods of complex variable functions are used for the calculation of the 
Fourier coefficients. In comparison with conventional calculations of the Fourier 
analysis, our treatment is less toilsome, and we shall show its further advantages 
in future papers when dealing with regions for which the calculation by the conformal 
mapping would be substantially more complicated. 

2. BASIC EQUATIONS 

Consider a two-dimensional current density field corresponding to a semiconduct­
ing plate in a uniform magnetic field (Fig. 1). We assume that the material of the plate 
is homogeneous and isotropic. We shall employ the following symbols: 

J current density R Hall constant 
£ electric field intensity B magnetic field intensity 
a conductivity d thickness of the plate 

(for the zero magnetic field) I current along the plate 
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0 Hall angle 
\x mobility 
<p electric field potential 

b width of the semi-strip 
k unit vector in z-direction 

The presence of the Hall effect causes that the vectors of the current density J 
and the electric field intensity £ are not parallel but make the angle 0 (Fig. 1) obeying 
the relations 

£ = IJ + R(J x B) 

Fig, L Geometry of basic quantities. 

(0 
(2) 

Of course, Maxwell equations 

<xE = J + tg (J x k) 

t g © = (7R|ß| = џ\B\ 

cur l£ = 0 ; divj = 0 

must be satisfied; therefore, the electric field has a scalar potential and a vector 
potential may be defined for the current density field. The two-dimensionality of the 
problem enables us to use the complex variable z = x + iy and to employ properties 
of the complex potential defined by a regular function [4, 5] 

F(z) = U(x, y) + iV(x, y) . 

Two functions U(x, y) and V(x, y) forming a regular function are harmonic con­
jugate. They fulfil the Cauchy-Riemann conditions and both satisfy the Laplace 
equation for two variables. The imaginary part of the function F(z), i.e. V(x, y) will 
be named "fictitious potential" defined by the relation 

(3) ; = - g r a d V . 

The lines of the constant fictitious potential are thus perpendicular to the vector J. 
The electric potential cp is defined by the relation 

(4) £ = - g r a d cp . 

If we neglected the Hall effect, the electric and fictitious potential would be identical. 
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Taking the Hall effect into account, the equations (3) or the equations (5), (4) and (1) 

yield the relations 

(5) J = Jx + ІJУ 

ÕV ÕV - - , - ) . -„Ңг) 

- a grad ę = J + tg (J x k) 

= (1 - itg O) (Jx + Uy) = -i<x[(l + i tg 0) F'(z)~] . 

(The bar over a complex number means the operation of complex conjugation.) Thus, 
whilst the fictitious potential is 

V(x, y) = Im {F(z)} , 

the electric potential is given by the relation 

<p{x, y) = Im {(1 + i tg 0) F(z)} = 

= tg 0U(x, y) + V(x, y) . 

The function 

U(x, y) = Re {F(z)} 

is identical with the so-called vector potential of the current density field. Using it 
we may express the current density by the relation 

J = o curi U = 
ÍÔU .ô 

a I i — 
\ðy д дx) 

All these quantities are illustrated in Fig. 2. A section of the current density field 

(with two marked points, A and B) is shown schematically; the flow lines are repre-

Fig. 2. Scheme of the current density field 
near to the front of the semi-strip. The dashed 
curves represent the electric equipotentials 
and the dotted curves corresponding to con­

stant values of the fictitious potential. 

108 



sented by full curves provided by arrows; the dashed lines and the dotted lines re­

present the electric and fictitious equipotentials, respectively. The quantities illustrated 

in Fig. 2 have the following meaning: 

is the potential difference between the points A and B; 

is the current related to the unit height of the plate, passing between the 

points A and B. It its value is positive, the current flows from the left to the 

right side passing through the hypothetical line oriented from B to A; 

is the difference of the fictitious potential which means a non-measurable 

voltage drop corresponding to the resulting current density field. 

А(рАв 

елилв 

лv. 

3. FORMULATION AND SOLUTION OF THE BOUNDARY VALUE PROBLEM 
FOR THE SEMI-STRIP 

Consider the semi-strip oriented as shown in Fig. 3a. Let us assume, first, that its 

width is equal to n (later this assumption will be omitted). For such a semi-strip, it is 

convenient to write 

F(z) = c0z + c + Z cne
inz . 

n=l 

Our task consists in expressing the coefficients cn in dependence on the current I 

and the angle 0. The function F(t) has a part which — if continued out of the semi-

strip — is periodic with the period 2n. We shall bear in mind the analytical continua­

tion of F(z) over the whole upper complex half-plane assuming that a semiconducting 

plate (of the same material as the original plate with the finite width) extends over 

the whole half-plane. The boundary (y = 0) of this plate is one electrode, the second 

electrode being at infinity (y -> oo). To provide physical grounds for the analytical 

Я 

Fig. 3. Construction of the analyti­
cal continuation of the solution on 

the half-plane. Q . 

continuation, we assume that the plate is situated in a perpendicular magnetic field 

of constant magnitude which, nevertheless, changes its sign in a semi-strips of width n 

as shown in Fig. 3b. 

In such a case, both potentials U(x, y) and V(x, y) satisfy the Laplace equation. 

The electric potential (p(x, y) is then also a uniquely defined and continuous function, 
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but it cannot be expressed in the whole complex half-plane by a single harmonic 
function. On the boundary where the magnetic field changes its sign, the vector £ 
possesses a non-zero surface divergence. Introducing Dirichlet's factor sgn (Bz), 

we may express the electric potential, for instance, by the integral 

(8) 

<p(z) = <p(z0) - H E . ds = <p(z0) - T i m {[(1 + i sgn (Bx) tg 0) F'(zJ] dz} . 
J zo J zo 

The required solution is interesting only in the section of the complex half-plane, 
namely in the semi-strip with the same direction of the magnetic field. In view of the 
physical nature of the problem, the solution exists and is unique. It must fulfil the 
condition 

U(±nn, y) = Re {F(±H7r, ; ; ) } = + — 

do-

demanding that the parallel lines y = ±nn (where n is integer) represent the current 

lines, and the total current flowing out of one semi-strip equals I. 

The second boundary value condition demands the boundary of the half-plane to 
be equipotential. The integral (6) taken along the real axis must be thus identically 
zero: 

<p(x, 0) - cp(x0, 0) - J Im {[1 + i sgn (Bz) tg <9] F'(z)} dx = 0 . 

Therefore, the integrand must be zero: 

Im {[1 + i sgn (Bz) tg 6>] F'(z)}yst0 = V'(x, 0) + sgn (Bz) tg © U'(x, 0) = 0 

which means that 

V'(x,0) „ ,n. 

However, as it is well known, the quantity 

V'(x, 0) г ^, Ч 1 a г c t gr7^Г~7v; = Þ г g f ( z ) l=o U'(x, 0) 

represents the argument of the derivative withr espect to the complex variable. With 

the aid of this relation, we may write the boundary value condition for the real axis 

in the form 

[ a r g F ( z ) ] ^ 0 = -Osgn(Bz). 

Thus, the argument of F'(z) changes by jumps at those points of the boundary of the 

complex half-plane where the magnetic field changes its sign, and its is constant 

along the segments between these points. 
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This condition can be expressed within the framenwork of the theory of the con-
formal mapping. The function F(z) is to mediate the mapping of the upper half-plane 
onto the region whose boundary is given by the piece-wise linear line in Fig. 4a,b. The 
points 0, ±2nn are mapped onto the points of refraction with the vertex angle 

Fig. 4. Formulation of the boundary value 
condition by conformal mapping. 

n + 20, and the points and the points ±{2n — 1) n onto the remaining points of 
with the vertex angle n — 2(9. As it is proved in the theory of complex variable [4, 5] 
in order that the function F'(z) have the above mentiored property, it is necessary 
for it to have poles or zeros at the points of refraction. The function In F'(z) may be 
characterized at these points by the so-called logarithmic residuum, i.e. the residuum 
of the function 

F"(z) 
[ I n Ғ ( z ) ] ' 

F(z) 

which possesses only poles of the first order at the points of refraction. The value of 
the logarithmic residuum q is connected with the refraction angle a measured on the 
internal side of the region in question by the relation 

If we value of the logarithmic residuum is positive (negative), the order of the cor­

responding zero point (pole) of the function F'(z) is determined by it. 
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(7) 

In our case, the function F'(z) has zero points at the points 0, ±2nn of the order 

20 
q = 

whilst it has poles of the same order at the points (2n — 1) n. Except the points just 
consistered, the function F'(z) has no other singular points, as it is regular at the 
infinity. 

Let us introduce a new variable t by the relation 

(8) / = e,: 

Thus, the upper complex half-plane is mapped into a Riemann surface with infinitely 
many sheets within the unit circle (Fig. 5). One sheer of the Riemann surface cor­
responds to the vertical semi-strip of the width 2n and the circumference of the 
unit circle corresponds to the real axis. The points 0 and 2n are mapped into the 
point 1 of the plane t, the point n into the point — 1. 

It folows from the definition of the logarithmic residuum that by the conformal 
mapping its value does not change at the points where the mapping is regular. There­
fore, the function 

(9) G'(t) = F'(-i\nt) 

Fig. 5. Transformation of the half-plane from Fig. 4a 
by the mapping function t = eiz. 

has the same logarithmic residue as F'(z) at the corresponding points. The function 
In G'(t) must have first-order poles at the points 1 and —1 with residua q and — q, 
respectively. 

This is fulfilled by the function 

ln G'(t) = q ln (1 - t) - q In (1 + í) + ln c, 0 = ln c0 (- ] 
\1 + tj 

= ln Г7Í)1 + , a г s K îŤ7) l 
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where q is related with 0 by (7). Therefore 

do) cX.)-c0(L^j. 

In Fig. 5, the numerator and denominator are given in the complex t-plane. We may 
find out that the function G'(t) possesses the argument — (9 on the upper half-circle 
and the argument 0 on the lower half-circle. The constant c0 in the expression (10) 
is therefore real. 

Substituting into (9) (10) from relation (8) we obtain 

F'{z) = c0 t g « | . 

The function G'(t) may be developed into a series with respect to t in the interior 
of the unit circle. Both the numerator and the denominator can be developed accord­
ing to the binomial theorem: 

(-r-.-(I). + («)^(;)^...-|.(-.)r(j)-. 
<' + o-=.+(7).+(7)^(7).» + ...=i(7)-

The binomial series converge absolutely and uniformly so that the development of the 
function Gf(t) may be obtained by multiplying both the preceding series. The coef­
ficient at the 7i-th power will be 

(10 cn = i(-if(q. 
je=o \kj \n — k 

and thus the development of G'(i) into the power series will be 

G'(t) = c0 £ c'nt". 
n = 0 

Let us take into account the substitution (8): 

00 

(12) F'(z) = c0^c'nei" XПZ 

JГ 

n = 0 

Now, generalizing our consideration to a semi-strip of a general width b and intro­

ducing a new variable 

zb 
w = — 

71 
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we determine the constant c0 from the current density at the point y -> oo; to this 
purpose we consider only the absolute term in the development (12), i.e., the current 
density field is homogeneous and has the current density 

iyj}>-»°o -
bd 

Taking into account the relation (12), we obtain the expression 

I 
Cn = 

abd 

As the series (12) converges within the semi-strip uniformly, we may obtain the 
function F(w) by integrating the series term by term. If we rearrange the formula (11) 
for the Fourier series coefficients then F(w) will be 

(13) ^ - - - 1 Ž ( ! ) ( " 9 J ( - 1 T . 
n n k=o \k/ \n — k 

l / . b -S / nny\ V . nnx . nnx~\ 
F\w) — " (x + iy + c-]— 2_ucn e x P I I s i n l c o s — 

abd Ҡ и = l 

The constant c depends on the choice of the zero boundary value of the complex 
potential. Let us examine the field in the semi-strip x e <0, b), and choose the com­
plex potential at the origin equal to zero. This choice means that the electric potential 
will be zero on the boundary of the semi-strip and the solution will be 

F(w) = — ( x + fy + - S cn v + exP 
abd \ 7tn=i I 

For the potential in the semi-strip we have 

(14) 

nny\ V . nnx 
— - sin 

b JI b 
ì cos-

v(x>y) = -—\xtg® + y + - Y,cn 
abd \ 7i n=i 

1 — exp 
( 

{-7} 
f nлx ^ 

cos I + 

cos 0 

Similarly, for the vector and fictitious potential in this semi-strip, we have 

(15a) U(x, y) = — (x + - X cn exp í - — J s i n -
abd Лn=l 

<-» ^ ^ K i Л ^ Ч т Ь т ] ) -
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As it can be proved, the solution of the field converges in the whole region of the 
semi-strip including its boundary except the point (b, 0). The value at this point may 
be found as a limit of an arbitrary series converging to this point from inside of this 
region or along its boundary, e.g. as a limit from the left 

cp{b, 0) = lim cp(x, 0) . 
x-+b 

In the Institute of Technical Kybernetics of the Slovak Academy of Sciences 
a computing programme has been designed in GIER-ALGOL language for the 
computation of (p(x, y, 0). In this programme n Fourier coefficients have been cal­
culated, limited by the condition \cn\ > (9/150. According to this condition the vali­
dity of this solution was verified by checking its boundary condition on the frontal 
side of the semi-strip (y = 0). The solution was computed for <9 = 71/I6, 7i/8, 7r/4, 
3~/8, 7.-/16, 15nj32. The convergence gets, worse with increasing 0. The computer 
took into account n = 10, 16, 29, 63, 103, 138 Fourier coefficients. The solution 
converges most slowly near to the point (b; 0). For (0,98b; 0), the angle 0 = 15nj32 
gave the maximum relative error z1cp/A(pHALL approximately 3%. The relative error 
of the value of q> was less then 10~2. 

The calculation of the values of the potential in the whole region is the most 
difficult task comparing with similar problems. The physical constants connected 
with the integral form of the field, e.g. the effect of magnetoresistence, can be deter­
mined with a much greater accuracy. 

4. CONCLUSION 1 

The aim of this article is to show the possibility of solving the boundary value 
problem occuring in problems on the current density field respecting the Hall effect. 
The method suggested in the article was applied to a semiinfinite strip for which 
the problem leads, after using a transformation, to a fieild with two singular points, 
which is the minimum number of singular points in problems of this kind. The 
advantages of this method can be appreciated mainly in more complicated problems. 
The number of singular points will be greater and it will be necessary to work with 
Laurent series. In the future, we intend to publish papers where this method will 
be applied to a general symmetric Hall generator and to the Hall generator in a step­
like magnetic field. Problems of this kind are of importance in the solutions of slotted 
surfaces of electric machines [6]. Geometric shapes similar to a parallelogram appear 
in the solutions of anisotropic materials. 

The author wishes to express his acknowledgement to Mr. PODHAJECK^ from the 
Institute of Technical Kybernetics of the Slovak Academy of Science for valuable 
discussions on this theme and for the programming and calculation concerning this 
work. 
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S ú h r n 

RIEŠENIE OKRAJOVEJ ÚLOHY HALLOVHO POEA 
FOURIEROVÝMI RADMI 

JAROSLAV SCHILDER 

V článku je opísaná metoda umožňujúca riešenie okrajovej úlohy Hallovho póla 
Fourierovými radmi. Metoda používajúca funkcie komplexnej premennej je ilustro­
vaná na příklade Hallovho pofa na okraji polopásu. 
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