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SVAZEK 15 (1970) APLIKACE MATEMATIKY ČÍSL01 

A METHOD OF INVERTING MATRICES 

OLGA POKORNÁ 

(Received Apríl 18, 1968) 

In the present paper a method of computing the inverse of a matrix is proposed 
by means of computing inverses of matrices having simpler form than the original 
matrix. In particular the case is discussed when the auxiliary matrix inverted in each 
step of the process is triangular and of a lower order than the matrix of the previous 
step. 

Let -A be a given square matrix of order n. Let us denote A = A0 and decompose 
the matrix A0 into the sum of two matrices 

(1) A0 = M0 + N0 , 

so that the inverse M0
l of the matrix M0 exists. Instead of (1) it is possible to write 

(2) A0 = M0(E + M0
1N0). 

It is clear that if A0 is regular then also (£ + M0
XN0) is regular, and 

(3) A,1 =(E + M0
1N0)-'M0

1 

holds. 

Let us denote 

(4) E + M0 X = A, 

so that 

(5) A,1 = A:1 Mo1. 

The matrix At can be similarly decomposed into the sum of two matrices, Ax = 
= Mx + Nl3 so that M71 exists. We obtain a relation similar to (3) for Ajf1: 

(6) A'1 = (E + Mr1N1)~1M1"1 . 



Using (6) for Ax

 x in (5) we obtain 

(7) 40-
1 = (E + /V.1-

1N1)-1Mr1!Mo 

If we continue in this manner, putting always 

(8) Ak = (E + / W ^ J V . ) 

and decomposing Ak into the sum of two matrices, 

(9) Ak = Mk + Nk 

(Mk regular), we obtain 

A;1 = (E + M^Nky
i Air1, 

and 

(10) Лõ1 = A Г Л л ť л V Л ... /иг1 /ИÕ 1 . 

If we manage to choose the matrices Mk in the decompositions (9) so that we could 
invert them easily, and if we reach after a certain finite number of steps a matrix Ak+1 

in (10), the inverse of which is also easily computed, then we can get, with the aid 
of relation (10), the inverse A~x = A0

X of the given matrix A. 
In the next paragraph a choice of matrices Mk (k = 0, 1,...) is described enabling 

us to find the inverse A'1 according to (10) for k = n — 1. 

2. 

Let us choose the decomposition of the matrix A = A0 = (a ( 0 )) into the sum of 
two matrices M0 and N0 in the following way: 

ł-'<!> N ^ 0 a ( 0 ) 

" 1 2 
a(0) 

" 1 3 
tf(0) 

... a l n 

\ 
4V 1 / 7 ( 0 ) -" 2 2 - 1 4°з} / 7 ( 0 ) 

. . . a2n „(0) 
" 3 1 a ( 0 ) 

" 3 2 
1 

• íJ 

, ^ 0 = 

V 

4°з } - 1 a(0) 
. . . a3 ł f 

a ( 0 ) 

" л l 
a(0) 

an2 
Z 7 ( 0 ) 

"иЗ • • íJ 

, ^ 0 = 

V 

4°з } - 1 

a(0) -
unn 

-1/ 

мn = 

Let us suppose a(0J 4= 0. (The case where this condition is not fulfilled will be in­
vestigated in the next paragraph.) Then the matrix M0 is regular, and it is relatively 
easy to find its inverse. In addition, the l's on the diagonal make the computations 
even simpler. The matrix M0

X is again a lower triangular one with its diagonal ele­
ments ljaffl, 1,..., 1. In the matrix N 0 = (n (0)) there is n{°l = 0. Thus the matrix 
M0

XN0 is a square matrix having as its first column a column of zeros so that the 



first column of the matrix A1 = £ + M^NQ equals to the first column of the iden­
tity matrix. 

In the decomposition of the matrix Ax = (a\^) into the sum A^ + Nx we choose 
Mx — (m(j}) and Nx = ( n ^ ) in such a way that there is m(.y = 1, i = 1, 3, ..., n, 
m22} = <&L%\ ^et us again suppose otQ + 0. Then M1 is regular with its first column 
equal (to the first column of Ax and therefore) to the first column of the identity 
matrix. The matrix M ^ 1 is again a lower triangular matrix with its first column equal 
to the first column of the identity matrix and with the diagonal elements 1, l/a2y, 1 , . . . 
. . . , 1 . 

As m^y = 1 = a^y and m^V = a2V, there is n^y = 0 and n^V = 0- Therefore the 
square matrix M1

1N1 has zeros in its first two columns in the diagonal and below, 
the matrix A2 = £ + M1

1N1 having its first two columns equal to the first two 
columns of the identity matrix with the exception of the overdiagonal element in the 
second column. 

In this way we proceed further. In general, in the k-th step we choose the matrix Mk 

in the decomposition of the matrix Ak = (a(/f) into the sum of two matrices Mk = 
= (m(,*}) and Nk = ( n ^ ) as follows: 

(11) m (^ = l , i = l, . . . , n , i + k + 1 , 

Kk+ i,k+i = 4k+1 ,k +1 (supposing a{
k
kluk+1 + 0) , 

mf> = a\f , i = 2 , . . . , n ; ; = 1, . . . , i - 1 , 

m (^ = 0 , i = l , . . . , n - 1 ; j = i + 1, . . . , n . 

Then the elements of the matrix Nfc fulfil: 

(12) n (^ = 0 , i = l , 2 , . . . , k + 1 , 

n (f = a ( f - l , i = k + 2 , . . . , n , 

n(y = a ( ^ , i = l , . . . , n - 1 ; ; = i + 1 , . . . , n , 

n(*} = 0 , i = 2 , . . . , n ; j = l , . . . , i - 1 . 

According to this choice of matrices Mk (k = 0, 1, 2 , . . . ) , the partition of the 
matrices A*, M^, Nk into blocks is possible as follows: 

Pк Q 

E* 

(iз) Л = 

(14) Лl, = 

< i 5 ) N'Ҷo,J:J' 



where 

(iб) 

(17) 

(18) 

/- a„...aft> \ 
1 . . . «_• 

1 «ľ-\л 

(triangular, order k) , 

7(fc) 
^i.fc+i a ( f c )\ " i . » 

Qk = I (rectangular, type k, n - k), 

*k,k+l 

la(k) n(k) \ 
' ak+l,k+ 1 ••• ak+l,n ' 

7(fc) 
*л,fc + l ... a 

(fc) 

(square, order n — k) , 

(suPP°sing a(

k

klitk+1 #= 0), On_fe and Ofc is the rectangular zero matrix of the type 
n — k, k and k, n — k, respectively. Ek is the identity matrix of order k, 

(19) 

/я ( f c ) 

/"fc+l, fc+l 

a(k) 1 
"fc + 2,fc+l 1 uл-fc 

\ 

(fc) 
(triangular, order n — k), 

«-i, fc+i ••• 1 

\a(k) n(k) 1 / 
W f c + 1 ••• an,n-l V 

(20) 

/o «?i ... aíV \ 
o 

Pfc — Pfc ~" Efc 

/ 7 ( f c ) 

"2fc 

V 
o в?2liк 

o 7 

^7 ( f c ) - 1 
"fc + 2,fc + 2 x 

tf(fc) 
ak+l,n 

a(k) 

ak + 2,n ( 0 a(k) 

u ak+l,k + 2 

<l-
For the inverse M'1 of the matrix Mfc of the form (14) we have 

(22) M, -i = /-* ofc 

Thus it is clear that for finding the inverse Mk * of the triangular matrix Mk of order 
n we need only to compute the inverse L~}k of the triangular matrix Ln_k of order 
n - k. Let us denote by bl7 the elements of the matrix L~}k. With respect to the form 



(19) of the matrix Ln_k, the matrix Ln}k will have the form 

/ i 

(23) L 1 

t-n-к 

Лk) 
aк+l,k+l 

" k + 2 , k + l -

\VП,к+l 

\ 

V 

For the product Mk

 1Nk we obtain, using (22) and (15), 

(24) M^Nk = (Ek °- V P - Q* W ? * Q* V 
\On-k L-n}J \On_k U„_J \On_k L~n}k U„.J 

Thus it is clear that for computing the product of the matrices Mk

 1 and Nk of order n 

it is sufficient only to compute the product of the (triangular) matrices L~lk and Un_k 

of order n — fc. According to (21), the first column of the product L~lkUn_k is 

a column of zeros. 

The matrix Ak+1, found by formula (8), will have — according to (24) and with 

the corresponding partition of the identity matrix into blocks, £ = ( fe fe ) — 
\On-kEn_J 

the form 

Ak+1 = £ + M~lNk = (Ek + Pk Q \ ) , 
'n-k En-k + 

i.e., with respect to (20), 

(25) "Чc+1 

'n-k *>n~k 

where Sn_k = En_k + LnlkUn_k. At the same time, the matrix Sn_k has the form 

(26) 

н a(k+i) 
1 aк+lfк+2 

Лk+1) 

,(k+l)\ 
lk+l,n) 
, ( * + ! ) 0 n { l c + 1 )

 n(k+i) 
u ak + 2,k+2 '•' ak + 2,n 

If we now change the matrix _Afc+ x in such a way that we shift in (25) the horizontal 

line of partition one row down and the vertical line one column to the right, we get — 

regarding the form (26) of the matrix Sn_k — 

(27) ^ k + l 
* k + l Q k + 1 

^ л - k - l ° л - Ы 



where the matrices Pk + 1, Qk+l9 * * „ - * - ! have the form corresponding to (16), (17) and 
(18), so that (27) corresponds to (13) when passing from fc to fc + 1. 

As can be seen from (25), the matrices Pk and Qk remain unchanged when passing 
from Ak to Ak+1 (i.e. they become parts of the matrices Pk + 1 and Qk + 1 of (27)). 
Thus we can rewrite (16) and (17) as follows: 

(D (1 a(

12 

1 

(160 

(170 

a ( 1 ) 

a l к 
Л2) 

a2к 

\ 

1 Л ( / C _ 1 ) 
1 aк-í,к 

7 ( D 
* l , f c + l 

2 ( 2 ) 
l2,к+í 

l ì 

Лк) ^ ( f c ) , lk,k+l -" uk,n/ 

From the form of Ak+1 in (27) it can be also seen that for fc = n — 1 there is 

A = P 
n n r n 9 

i.e. the matrix An is an upper triangular matrix (with all its diagonal elements equal 

to 1), and it is easy to invert it. 

Thus, through the mentioned choice of matrices Mk and using formula (10) for 
fc = n — 1, we reach the following expression of the inverse -A"1 of the given ma­
trix A: 

(28) AÍ = A;1M;_\M;_1
2...M-ÍM-

where Mk are lower triangular matrices of the form (14) and An is an upper triangular 
matrix with all its diagonal elements equal to 1. As it follows form the previous 
description, the computation of -A-1 according to (20) consists in the following 
three steps: 

(a) the successive computation of the inverses of lower triangular matrices of the 
form (19) and of order n — fc (fc = 0, 1 , . . . , n — 1), 

(b) the inversion of the upper triangular matrix An of order n and of the form (160, 

(c) the successive multiplication of these inverse matrices. 

It is also possible to stop the algorithm even at An_1, because this matrix, as can 
be seen from (27) for fc = n — 2, is an upper triangular one, and can be inverted 
easily as well. Then 

A - 1 = A „ - _ 1
1 M ; _ 1

2 . . . / V I 0 - 1 . 

Formula (28) shows the connection between the computation of the inverse matrix 



using the process just described and the computation with the aid of the so called 
Banachiewicz method. The latter method uses the decomposition of the given matrix 
A into the product of two triangular matrices so that one of them has all its diagonal 
elements equal to 1. (Essentially it is one of the variants of the elimination method.) 

If we denote P " 1 = A,,"1 and L"1 = M~}1 . . . M~lM~\ we obtain from (28) 

(29) A"1 = p-^L^ 

where P " 1 is an upper triangular matrix with all its diagonal elements equal to 1, 
and L"1 a lower triangular matrix. 

Thus for the matrix A there follows from (29) 

(30) A = LP, 

which corresponds to the Banachiewicz decomposition. 

The difference between both these methods consists in the fact that according to 
the Banachiewicz method we find at first the decomposition (30) of the matrix A 
by the successive computation of the matrices L and P, then we invert the matrices L 
and P, and the product of these inverse matrices equals to the desired A"1 . According 
to the method described in this paper we get by successive computations directly 
the decomposition (29) of the desired inverse matrix A"1 . 

Let us now investigate the case when for some k the condition a{
k
kl1)k+1 + 0 is not 

fulfilled. Let us suppose that we have reached, according to the described algorithm, 
the p-th step, 

(31) A0"* = A ; 1M;1X ...M^Mo1. 

Let in this step be ap
PlltP+1 = 0. Then for the matrix Mp from the decomposition 

Ap = Mp + Np, found according to the mentioned algorithm, the inverse does not 
exist. In this case we change the algorithm as follows: From the matrix Ap we proceed 
to the matrix 

(32) A„ = APT 

where Tx is a matrix interchanging (by multiplication from the right) the (p + l)-st 
column with some (p + q) -th column (p + q 5̂  n) so that the corresponding ele-

( i ) 

ment on the diagonal of the matrix Ap is different from zero. If the given matrix A 
is regular then it is always possible to find such Tx. 

(D_ 
In the further procedure we find, using the original algorithm, the matrix A x 



instead of A~K Thus we put 

(D ( D ( D 

A„ = Mp+Np, 

(1) . . (1) (D (D 4 (D 

A;1 = (E + м; 1^)- 1 м;1 = A^.M;1 , etc. 
till we obtain 

A;1 = A;1M;_\...M;1. 

Hence we could find the matrix 

(33) A;1 = T . A ; 1 

( D _ 

(by interchanging the (p + l)-st row by the (p + q)-th row in the matrix Ap

 x) and 
then find A"1 = A"1 from (31). 

But this would not be advantageous, as the uniformity of the process would be 
broken (and, moreover, the number of necessary adresses used in a computer would 
increase, because it would be necessary to store separately the product Mp~}1Mp~}2 ... 

( i ) ( i ) 

... A*! -M0 - and the product M~}x ... M; 1 ) . 
Thus we choose another possibility: Having passed from the matrix Ap to the 

( i ) 

matrix Ap, we continue according to the original algorithm so that we do not com-
(D_ 

pute the matrix A0 ~ according to (31), but the matrix A0

 1 in the form 

(D (D л ( i ) 

(34) v = л;+

1

J..ад;1Лíi;i1... лi^лi;1 = 

A^ìkljA-^M-1 ... M-^M^1 

= A;I(M;_\ ... м-^м-1 ... м-^м-,1 = 
•p "'p-

( i ) 

*; = л;1лi;_1

1...л.г1лi0-
1. 

If we then interchange the (p + l)-st row by the (p + q)-th row of the matrix A;1, 
( i ) 

i.e. if we multiply A0

 x by the matrix Tt from the left, we obtain from (34), using (33) 
and (31), 

T.Ao - = T^A^M;}, ... M " 1 = A ; 1 ^ ... Mo1 = A"1 = A"1 , 

i.e. the desired inverse matrix A - 1 of the given matrix A. 

If during the computations according to (34) it happens again that for some 

r(p < r < n) the (r + l)-st diagonal element of the matrix Ar is zero, we pass again 



by a suitable interchange of the (r + l)-st column with some (r + s)-th column 
(1) ( 2 ) ( 1 ) 

(r + s :g n) of the matrix Ar to the matrix Ar = *4rT2 (the meaning of T2 is similar 
to that of Tx), and we continue according to our algorithm so that instead of (34) 
we obtain at the end 

(2) (2) ( 2 ) (2) (1) ( 1 ) 

(35) A; 1 = A; l M;_\ ... M;1M;_\ ... M/M;}, ... M0- » = 
(2) (1 ) ( 1 ) 

= A;1M;J1...M;1M;1X...M0-
1. 

If we interchange then the (r + l)-st row by the (r + s) -th row and then the 
( 2 ) _ ( 2 ) _ 

(P + l)-st row by the (p + q)-th row of the matrix A0 , i.e. if we multiply A0
 1 by the 

product T{T2 from the left, we obtain from (35) 

(2) ( 2 ) (1) (1) 

T.T.AfT1 = T . T ^ r 1 ^ - , 1 ! ... M^Ai;. 1 ! ... M" 1 = 
(1) ( 1 ) (1) 

= T.A^M;}, ... M;XM;_\ ... M 0 - = 
( i ) 

— T" A - l „ A - l __ A-l 
— I 1M0 ~ iH0 — iH , 

i.e. the desired inverse matrix A'1. 
It is clear that the process just described of removing the "forbidden" zero element 

can be repeated in any steps where necessary. After the whole computation has been 
finished the desired inverse matrix is obtained by the corresponding permutation of 
rows. 

Thus it follows that if the given matrix A is regular then it is always possible to 
obtain its inverse by the process proposed in this paper. 

Rounding-off errors and some questions concerning the possibility of the practical 
use of this method will be discussed in a special paper. 

Výtah 

O JEDNOM ZPŮSOBU VÝPOČTU INVERSNÍ MATICE 

OLGA POKORNÁ 

V tomto článku je navržen způsob výpočtu inversní matice pomocí výpočtu 
inversních matic jednoduššího tvaru než má původní matice. Jako zvláštní případ 
je zde podrobně probrán případ, kdy pomocná matice, která se v každém kroku 
postupně invertuje, je trojúhelníková, řádu nižšího než matice v předchozím kroku. 
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