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FACTORIZATION OF A POLYNOMIAL INTO QUADRATIC FACTORS
BY NEWTON METHOD

Joser DVORCUK

(Received December 27, 1967)

INTRODUCTION

In this paper the method for simultaneous finding of all the roots of a polynomial
is derived. The method is based on the factorization of a polynomial into quadratic
factors.

The method is designed for the polynomial with real coefficients. It is derived by
using the Newton method.

The quadratic convergence of this method is proved for the given good guesses
of the roots and for the polynomial with distinct roots.

Algorithm of the method is described in Algol 60.

1. Description of the method. The method performs the factorization of the poly-
nomial

(1.1) () =i§0aiz"“" (a0 + 0)
into quadratic factors i.e.
(1.2) f(2) = aojﬁ (2 + pz + )
where a; are real and n is even i.e.
(1.3) n=2m.
The factorization (1.2) with real coefficients p;, q; (j = 1,2, ..., m) exists for real

a; (i=0,1,2,...,n). Hence for polynomials with real coefficients we can perform
the calculation in the real arithmetics only.
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The method is based on formulas

(k - - - -
(L4) P = p0 L Y qui=D | qE D = g® L Y oD i =1,2,..,m

Jj=0 Jj=0

for k = 0,1,2,... with given approximations

(15) pfo)’ q(,()) i= 1, 2, PP ({3
where for u{?, vf j relations hold as follows
(0)
(16) WO = Dy
u® = psm™
u(ij+2) — pEk) (IJ+1) q(k) 51) j=0,1,...,n-2
0
(1.7) o® = D5t — pm)
1 k
0 = Dyl
. s
DI = WU gy 01— 2,
where
(1.8) D; = ag '[(s{)? — PRI | g®(rmy2] -t
and r{™, 5™ are obtained by recurrent formulas

KO — 0, 5O =1

(19) s = {100 = o oGP AN 4 O =)

2 .
U= for j =i
( 3 (k 1 (k 0\ (-1 —
S - ql) (P_(,) ))r(l )+(q ) S))sgl )fOI'_]=|=l
i 1)
sY=D for j =i

forj=1,2,...,m

2. DERIVATION OF THE METHOD

The method is derived by using the Newton method for the system
expressing the relationship between coefficients p;, gq; (j=12,.
(i=0,1,...,n) in the factorization (1.2).

We shall consider (1.2) in the form

21) > = ao 1] (2 + %2 + ) =

i=0

= ay(z" +_Zlh,~(x1, Vis X25 o0y V) 2°7F)

Dforj =+ i

of equations

..,m) and a,
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where h; are functions of variables x;, y; (j = 1,2, ..., m). Hence follows the system
of equations, which will be written in vector form:

(2.2) aoh(xy, yyyos Ym) — a2 =0,
where
h, a, Xy 0
(2.3 h=|h,|, a=|ay |, x=[y; |, 0=[0
h o e 0

Using the matrices

¥ rows

(2.4) RO — l

r columns

i.e. r X r matrices with y; on the diagonal and with x; and 1 above, (2.3) can be
rewritten as follows

m
(2.5) h =] Rg."’e,l s
j=1
where e, is the last column of the n x n unit matrix.

Newton method gives

(2.6) OX = ——A_l(aoh — a),
where
0h, Oh, Eihl]
T e T dx,
axl 6}71 ayml 8 s \
(2.7) A=ag|........... col], Ox = }1 ,
oh, Oh, oh, : )
OYm
a'xl ayl aym

According to

RO — JR(M
Ri' Rjr = R-(Ir Ri’
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foranyiandjwegetfork =1,2,...,m

[oh
= RM .
oy 121;11 ’
(2.8) xk
010...0 o
Xk ::1: .......... }':::
000 0

where €, is the last but one column of n X n unit matrix.
‘We determine the inverse matrix A~! from the equation

A"l A=1.

According to (2.8) we have to distinguish the even and odd rows of the matrix A~ L
thus we get the systems of equations for the i-th odd row:

(29) w;t—l — (ugn—l), u(i”_Z)’ ey uS.O))

in this form (the upper index T means transposition)

[ . m .
agel(TTR) wy =0
i=1
J*k k=1,2,...mk=i
m
aoe,( [1 R() wy; g =
i
m
aoé:( [[1 RS,n))T Wy =
Bl

m
aoenT(H,Rg'"))T Wy =0,
=

J¥i

|
o

(2.10)

|

If we denote the matrix of the system (2.10) by B, i.e.
(2.11) Biwsi-1 = §,

then analogously for the i-th even row

(212) W, = (00 o2, o)
we get the system in the form

(213) Bin,' x e,
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Lemma 2.1. The solution of the system of linear algebraic equations
(2.14) C
(2.15) (Ciw,; = e, respectively)

is the solution of (2.11), (2.13) respectively, the (n — 2) upper rows of matrix C,
being formed by (n — 2) x n matrix

1x; 90 ...0
_ 01t x;9,...0
(2.16) C;=a0700 1 x;...0

and the last two rows of C; being identical with the last two rows of matrix B;

Proof. Let us denote the part of matrix B; without the last two rows by B,.
Then it holds

(2.17) B = - AlC,

ao
where matrices A; have an analogous structure as A (see (2.7) and (2.8)); however,
they are (n — 2) x (n — 2) matrices and are generated by matrices

RP™D, j=1,2..,m, j*i

i.e. (2.17) implies that the rows of matrix B; are linear combinations of rows of C;
which proves Lemma 2.1.

Remark 2.1. The solution of the system (2.14) ((2.15) respectively) forms the
i-th odd (even respectively) column of matrix (A™*)" and so the sufficient condition
of the existence of the solution of systems (2.14) and (2.15) for i = 1,2,...,m is
a sufficient condition of the existence of A™1.

Lemma 2.2. For the solution of systems (2.14) ((2.15) respectively) the following
relationships hold

j+2 j+1 j
(2.18) uf*D = —x a0t oy
Y = —xof*D — yol?, respectively) j=0,1,...,n—2
u(il) — Ai—ls(im) , ugO) — _A;-lr(im)

(2 = A7 Tyr™ o = AT — x;{™)  respectively)
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where
(2.19) A; = ao[(s{)? = xis{riMy(rim)?]
and where r™, s are obtained by a recurrent process for j = 1,2, ..., m

r” =0, s=1

(220) r? = {[J’j = yi = xix; = )™+ (= %) sPTY for j i

Y for j=i
s —_yi(xj = x) 1™+ (v = ) sV for ki
sYD for j=1i
Proof. Systems (2.14), (2.15) are solved by the method of Gauss elimination.

The last two equations are changed by substraction of the multiples of the upper
equations of the equations

x 0 0
(2.21) a, ( ri 5 0 ) y|=1{1]([0 |respectively).
0 r; S; z 0 1

Let us note that for example the last equation of (2.14) is formed by the vector
acer( T R)T
j=1
J*i
i.e. by the coefficients of polynomial
(2.22) 9dz) = a0 [1 (2% + x;z + y)).
=1
J*i

Thus dividing the polynomial g(z) by ao(z*> + x;z + y;) we get for r;, s; the rela-
tionship

(2.23) 942) = ao[t(z) (2> + x4z + y)) + riz + 5]
From (2.23) follows the recurrent process (2.20) which will be proved by induction,
If 1 # i then it obviously follows

ao(z> + x4z + y1) = ao[2> + xiz + yi + (xy —x)z + (y1 — y)] .
Further let j =& i and let
j—1 . .
ao [T1(2* + xz + y) = ao[t;—1(2) . (2% + x;z + y;)) + r¥ Pz + sy~
k=1

k#*i
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If the last identity is multiplied by z* + x;z + y;and slightly modified, then we get

Jj
aon(zz =+ Xz + yk) = ao{[(zz + sz + y;) tj—i(z) + r(ij-l)z + ng_l) +
k=1
ki +(x; = x) r9 V(2 + xz + ) +
(D = 0= 3l =]+ (= x) 0T 2 4
[y — ) 1970+ (3, = p) 90T}
which after the comparison with the equation (2.23) gives the relationship (2.20)

and so it holds
(m)

i

rp=r", s =M,

The process of calculation of coefficients of the system (2.21) is derived.
We complete the system (2.21) to

1 x; p; x 0 0
(2.29) ag| ris; 0 y|=1{1](| 0 ]respectively) .
0r;s z 0 1

i

After solving (2.24) and due to the fact that other equations of the system (2.14),
(2.15) are

(2.25) uf* P + xuf* D 4+ yud =0, ofFD 4+ xpP D + yl? = 0 respectively.
Thus the proof of lemma 2.2 is completed.
In (2.6) there is the expression

(2.26) —agA"h .

The calculation of this term is solved by lemma 2.3.

Lemma 2.3. For the solution of system (2.14), (2.15) by means of the expressions
(2.9), (2.12) respectively it holds

(2.27) wi,_th = xu?™ " + yu™P . wih = x0"™ " + poi"~? respectively.
Proof. Let us denote
(228) u(i”) — ___xiu?l—l) _ yiu(in—Z) , vgn) — _xiv£n~1) - yiUEH_Z)

and

=T -1 0 =T -1 0)) .
Wii-1 = (“(in), u(i" I “(. )), Wy = (U(in)’ U(i" LA U(i )) s
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then it holds

m

(2.29) ‘%FﬂﬂRwﬂhﬁl=m*m&unwﬂnﬁl=o
because with regard to (2.25) and (2.28)
(2:30) W3R = (r),7,,0,0, ..., 0)

wi RO = (r3,7r4,0,0,...,0)

i.e. in the product (2.30) not more than the first two components differ from zero.

If this row vector is multiplied again from the right side by the matrix R{"*") then
the number of nonzero components does not increase more than twice. After multi-
plying by all matrices from (2.29), at most the first n components are different from
zero. However, when multiplying from the right side by vector e, ; only the (n + 1)-th
element of vector is essential which gives zero result.

Let us realize that there is one difference only between the vectors

ﬁ Rgc"+1)en+l ’ ﬁ R,“")e" .
E=1 k=1
Namely, the upper component of the left vector equals 1, and the other n components
of this vector being identical with all n components of the right vector.
It further follows

Il

m
m
T ) T (n)
Wl [[ RO Ve = uf” + oy [ Re,,
k=1 k=1
- () T TR
— n n
Wi, [IRM Ve =v" + Wy [] R, .
k=1
k=1

i

The assertion of lemma 2.3 follows according to (2.5), (2.29) and (2.28)

Remark 2.2. If solutions exist of all systems (2.14) and (2.15) for i = 1,2,..., m,
then there exists an inverse matrix A™1. Formula (2.6) assumes the form (1.4) by

substituting

k k
x; =0, yi=qP.

Lemma 2.3 simplifies the calculation considerably. The following lemma 2.4 will
deal with the existence of solutions of all the systems (2.14) and (2.15).
First of all let us denote

)\' Jj? u Jj
the roots of polynomials

2 HXzZ4y j=1,2..m
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Lemma 2.4. There is one and only one solution of systems (2.14) and (2.15) if
and only if

}bl:i:)‘«jyujy “jzk)\«j,lij, ]=1,2,,m,j=1=l

Proof. The necessary and sufficient condition of the existence of the only solution
of systems (2.14) and (2.15) is

detC; 0.
According to the considerations of the proof of lemma 2.2 it follows that
detC, = Aat.
If function g,(z) (see (2.22)) and a relationship (2.23) is used, we get
(2.31) gh) = ao(rhi + 51) 5 giw) = ao(ra; + ;)

and further from (2.19)

It

. (2-32) 4; ao(sf + ()"i + ”'i) sty + xiuir?) =
ao(ri;\'i + Si) (riui + Si) = ‘151 gi()\'i) gi(ui) .

If

With regard to
(2.33) g9dz) = %D (z = %) (z — )
i
we get
det C; = ag .Hl(xi = hg) (= ) (e = 2) (e = my)
j=
J¥Fi

Hence the assertion of lemma 2.4 follows.
Theorem 2.1. The inverse matrix A~ from (2.6) exists if and only if
}“i*xj:”'j9 pi*x‘jfp‘i j=1,2:~-'5m7j=,=i

fori=1,2,...,m.

Proof. The sufficient condition follows from Lemma 2.4, 2.1 and Remark 2.1..

It is sufficient to prove the necessary condition. For the existence of A~ it is
necessary that

det A £0.

The rows of the matrix A have to be linearly independent. Therefore all the rows

62



of the matrix B; (see (2.17)) have to be linearly independent. So there exists an
(n — 2) x (n — 2) matrix B, formed by omitting two columns of B,, such that

(2.34) det B; + 0.
The matrix B; could be expressed in the form (see (2.17))

(2.35) B, = - ATE,

ao

where €, is formed from C; in the same way as B; from B;. From (2.34) and (2.35)
we get, however, that necessarily

detA; +0, i=12,...m.

If we go on decreasing the order of matrices we get

for any j and i as well as

Dy = (y; = ) + xv; — y) (xi = x;) + yi{xi — x))* =
= [yj - Vi }"i(xi - xj)] [J’j —Vi— Hi(xi - xj)] =
= = 2) (b = 1) (e = A) (s — 1))
for j = i and hence theorem 2.1. is proved.

(k) (k)

Remark 2.3. Let us consider that the approximations p;”, q;”,i=1,2,...,m
(k)

are given for the factorisation and let us denote A%, p{*) the roots of polynomials
22+ pPz+ 4P, i=1,2,...,m.

The following theorem will show the possibility of the existence of the next appro-
ximations

k+1 (k+1)
Y, gl

constructed by use of Lemma 2.2.

Theorem 2.2. Let the approximations °

k) (k .
pﬁ),q(i’, i=12,...m
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be such that the roots
k
SRR AT
are distinct.

Than the Newton method in the form (2.6) gives the following approximations
PP =P +8p, ¢V =qf? + 8¢, i=12,..,m

determined by formulas (1.4), (1.6), (1.7), (1.8) and (1.9).

Proof. The theorem follows from the above mentioned lemmas by the substitu-
tion
xi=p?, yi=4P, i=12..,m.
According to the presumptions of Theorem 2.2 and Lemma 2.4 the inverse matrix in
formula (2.6) of the Newton method exists. Using Lemma 2.2 and 2.3 we get that

3pi, 8q{

exist and are expressed in the form

n n

k -J k -J

8p(? =Y auP, 8¢ =¥ ap"™?
i=0 Jj=0

This proves theorem 2.2.

Remark 2.4. Let us realize that Theorem 2.2 does not assume the distinction of the
roots of f(z). It requires the distinction of the approximation of those roots only.

Further we have to realize that Theorem 2.2 confirms only the existence of the next
approximations

(k+1)

(k+1
pi )

s 4qi

To obtain further approximations p{**?, g{**?

of this theorem.

we need some other applications

3. CONVERGENCE OF THE METHOD

First of all we shall derive formulas equivalent to (2. 8), (2.19) and (2.20).
We define

(3.1 Amsi =W for i=1,2,...,m.
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Lemma 3.1. If A; & A;,,, and if the solutions of all the systems (2.14) and (2.15)

exist then we get from (2.6)

(32) U | () B S0uii,)
a0 L1 =) a0 TT (Riem = 2)
-’1;1' ji?:m
(3.3) Sy, = — l,"wf(k,) 3 3\,._f(x,.+m)
do n ()\" - )\'1) do H ()‘Hm - )\'j)
j=0 j=1
j*i jEitm
Proof.

With regard to

ud TP+ x4y =0, WD 4 x4 oy =0

i
u), v} are the solutions of the following diference equation
Uipy + Nl + yagy- =0
with the coefficients x;, y;, and the initial values
ul®, ulD (i, vV respectively) .

i

However, it means that for A; £ A, ,,

u? = bMd + e M v = b M 4 M, ., j=0,1,..,n

itm>

the coefficients by, ¢, b,, ¢, being obtained from the initial values.
From (2.31) we get

gir) = 92n)

r, = =52
ay )\i - )"i+m)
g = Mim gi(}“i) - )\‘igi()"l+m)
‘ ao()\Hm - 7“.‘)
from (2.18) using (2.32)
1 1
b= ————, =
(}"i - )"i+m) gt(}\'l) ()"i+m - }\") gi(xi+m)
A A

t+m ‘i

b2 = — ——— —e ty = —

M =M 0) 7 (Mm = ) s )

and if we use (2.33) we derive (3.2) and (3.3).
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Remark 3.1. We: shall not consider the case A; = A;,,, because it would require
a modification of the method. This case will not be considered in the algorithm either.

Theorem 3.1. Let the polynomial (1.1) have distinct roots zy, z,, ..., z,. Let us

denote d = min |z, — z;|. Let the approximations p{”, q\*, i = 1,2, ..., m of the
Y

coefficients in the factorization (1.2) be given such that the roots MO A9 LA

of the polynomials

22+ pP2 + 4, i=1,2..,m

fulfil

(3.9 o -z < I —(1+ q)l/m—_n) ’
. 1 —2(1+ q)ll(n 1)

where

(3.5) 0<gq<(8.200"D _ 7)1

Then the sequences

(P00 (dP)2e i=1,2,...,m
determined by (1.4) are quadratically convergent.
Proof.

We shall perform the numbering of the roots A{), A% of the polynomials

i+tm
2Z2+pPz4+4¢2, i=12..,m.

We denote A%, A% the roots of z2 + p®z + ¢®

i o

(3:6) P = a5 S0P (TP = 28)
¥ j=1
J¥i

and

ng) — )\gk—l) _ F(ik—-l) .

Thus
k) Sk (k) _ q(k) (k)
2 + 2, = —p® =2 + 2,
(k) _(k) (k=) p(k—1) _ (k) _ 5 (k)y (k)
zi Ziem — Fi Fi+m)"qi)—)\i Mi%m
and

k _(k k _(k (k)Y \2 ~(k—1 (k=1
A =050 + 20, + J[(=P — 28,07 + aFFTORS DT
k) (k (k) (k (k 2 k=1) (k=1
AR, = 0-5(z0 + 20 — J[(z® — 20,0 + 4aFF DRI DT
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Hence if we choose the branch of ./ such that

VG — 20,7 = 20 — 48,

we get

|
B7) PO =] = 05)z0 — 2B J

k—1 -1

| AU RS
(Z(‘k) _ Z(k) 2
i i+m,

(k—1) p(k—1)

’_F;z Fx'+m

!,,(k) . Z(k)
“i

IIA

i+m
If we denote

1= (14 gV P
1 —2(1 + g)/7P

(3.8)

then it is proved in [1] that

[z‘i” - zil <b.q.d,
(3.9) [F¥ < (1 +4q)b.d,
40 — 0] = (1 — 2bg)d.
Accordingto (3.5) we have (8.2'/~ 1 — 7) g <1 and consequently (1 + ¢)"/"~ 1 84 <
<1l4+7q.
Hence

[(1+ @)V — 1] 2(1 + 3q) < (2(1 + @)™V — 1) (1 = ¢)

gives
1 —yq
21 + 3q)

Therefore g, exists such that 0 < ¢ < ¢, < 1 and
(3.10) b < 0-5(q, — @)(1 + 29 + q4,).
We shall perform the estimation by using (3.7) and (3.10):

20°(1 +q) (4, — ¢) b(1 + g)*d _
(1 — 2gb) (1429 + qq,) (1 — q(¢; — @)J(1 + 29 + qq,))
= (‘h - ‘1) b.d

0 A 5

and so

D = 2] < 20 =20 4 |1 — 2] < g,bd .
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Analogously we estimate
i = zien| < g, bd
Analogous considerations can be performed for k if we assume that
A0 —z| S bdgiTt, i=1,2,..,n
because (3.9) assumes the following form for k

L0 2k -1
-zl b

!F?””' S(L+4qg)b. g

Further we get

B S T e d

(t—2b (]qfk‘z)

and using (3.10)
g1 — q) b(1 + q)* ¢¥ 2 d
( ) 1
(1 +q)? +q(1 =gt (g, — q)

!z(im _ Mk)l <
hence
|20 = AP| < (g, — q) bg7 ~%d .

and

o (k K-
O —z| <b.q] .

0

The quadratic convergence of the sequences {AL{“}, is proved.

The quadratic convergence of the sequences
(k k .
(PN, (g, i=1,2,..,m
is proved as well.
4. PROPERTIES OF THE METHOD

Theorem 4.1. For p{*’ determined by (1.4) and for k = 1, 2, ... it holds

(4.1) P+ p + .+ P = aag!
Proof. We rewrite (2.6) in the form
(4.2) Adx = a — ayh
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According to (2.1),

Therefore

(43) Oy, Mg, k=1,2...

After substituting x; = p{* we get

m m
k k.
aoZ5P‘i’=ax -aoZp‘i’
i=1 i=1

for k =0,1,2,... from (4.2). Further

61042181’(1’() =4a; — ao ZI(P(ik—l) +8pf ) =
i= i=

m m
=a; — ao.Z:IP(ik‘I) ~(a — ao.le‘i"‘”) =0
i= i=

for k=1,2,....

Now we have
m
x) _
a; — aoZpi ) =0
i=1

for k = 1, 2, .... This proves Theorem 4.1.

Remark 4.1. This method can be modified similarly to the case of the modification

of Jacobi method into Gauss-Seidl method. Namely, calculating p

PP, for j<i
can be replaced in (1.9) by
p5k+1), q§k+1).

For this modification theorems 3.1 and 3.2 hold.

(k+1)

i

> 4q;

(k+1)
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5. ALGORITHM OF THE METHOD
Procedure sifac requires given initial approximations
(5.1) P9 q, i=1,2,..,m.
The results of the procedure sifac are approximations
(5.2) PR g i=1,2,..,m

for the first k satisfying any criterion (see below) of the stopping of the iterative
process.

The initial values for procedure sifac can be formed by the procedure initial
according to the following formulas for i = 1,2, ..., m

¢ = 1-2r,%(1 — 0-4[n)"1, pl® = 2r(1 + 4/(3n + 6) — 4i|(n + 2)),

where r is obtained by procedure radius, which is a modification of Bernoulli method
for finding the maximal modul of the root of a polynomial.

The results of the procedure sifac can be used for the reconstruction of the coef-
ficients of the polynomial f(z) by using procedure coef and can be used for finding
of all roots of the polynomial f(z) by using procedure roots.

Procedure sifac performs the calculation according to Lemma 2.2. for
la] < 1
and for
g = 1

the following Lemma 5.1 is used

Lemma 5.1. If y; + 0 then we get for the solution of the system (2.14) (2.15)

. X, (; 1
u(i,) __x ug,+1) = uf.“'Z),
Vi Vi
0] Xiogvn _ L ogeay
v = — 2o — —v; s J—_—n—-2,n——3,...,0
Vi Yi
respectively,
_ — /. X; _ - <=1 =
ugn 1 _ Ai 1(3?") i rgm)) , u(in) = _xiugn 1 _ A; 1 rim)
Vi
U(in_l) - —Ki—l '—,Em) , v(‘n) - —x,vﬁ"") -y Zl—l EEM) s
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respectively where

= ao| G = O |
Vi Vi

and where F™, 5™ are obtained by using the following recurrent formula for

i
j=12,...,m
s 550):1;

7O =0
' [ _ Vi _<xj_ﬁ)ﬁ:,fgj"”-p(xj—w)i?'” for j i
FP = Vi Yi ) Vi Vi

FID for j=1i

- (xj - nyi)lF?"” + (1 - L’) $Y7V for j#i
Yi /) Vi Vi

S-gi) —
971 for j=1i.

Proof is analogous to that of Lemma 2.2. However, the Gauss elimination is per-
formed from right to left. Thus obtained u{"~Y y(=2) =1 4(1=2) are ysed in
Lemma 2.3 and formulas for u(, v complete the proof of Lemma 5.1.

Stopping of the iterative process. We define the following sequences

_ . ® y 1808 + [5%)
69 s e [ (ot + o, B

(5.5) 00 = Op—1 for A, < A,
Qu—y + 1 for A2 A"

where
Qo =0.

We consider two criteria of the stopping of the iterative process:

Criterion A

(5.6) A, < eps
for the given eps with the following results:
iter = k
(5.7) ¢ = true
rel = A,
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Criterion B.
(5.8) ¢ > max

for the given max with the following results

iter = k
(5.9) ¢ = false
rel = A,
Formal parameters
a) quantities to be given
n — the order of the polynomial —
— it must be even
b — array b[0 : n] containing coefficients

a; beginning with a, (see (1.1))
eps — real value for (5.6)
max — integer value for (5.8)

bl — array b1[1 : n] containing initial values (see (5.1)) for the procedure
sifac ordered in the following way

0 0 0 0
72, a4, p8, ..., g

and after ending of the iterative process containing the results
P, a, P, .. qi
b) results produced by the procedures

c — Boolean variable containing true if the process was ended by the crite-
rion
A (see (5.6) and (5.7)) or false if the process was ended by the criterion
B (see (5.8) and (5.9))

iter — number of performed iterations (see (5.7) or (5.9))

rel — values of A, (see (5.4), (5.7) and (5.9))

r  — value for (5.3)

b2 — array b2 [1 : n] containing results of the procedure initial

b3 — array b3 [1 : n] containing intermediate results of the procedure radius
b4 — array b4 [1:n] containing the next values of the approximations in

procedure sifac

b5 — array b5 [1 : n] containing real parts of the roots after calling of the
procedure roots

b6 — array b6 [1 : n] containing imaginary parts of the roots after calling
of the procedure roots
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b7 — array b7 [0:n + 2] containing the coefficients of the reconstructed
polynomial after calling of the procedure coef i.e. b7 [i] approximates
b[i] for i =0,1,...,n.

err- estimation

err = max i[i]—v——* b[]
1sisn b[i]

if b[i] = 0 then the denominator equals 1.

c) an example of application

begin integer n, n1, max; real eps;
inreal (1, eps);
ininteger (1, nl);
ininteger (1, max);
n:=2 x entier (n1 + 1)[2);
begin real r, rel, err; integer il, iter;
Boolean c; real array a[0 : n], al,
a2[1:n],a3[0:n + 2];
comment the declaration of the procedures must be placed here;
for il := 0 step 1 until n1 do inreal (1, a[i1]);
if n % nl then a[n] := 0;
radius (n, r, a, al);
initial (n, r, a, al);
sifac (n, eps, max, a, al, a2, iter, c, rel);
coef (n, a, al, a3, err);
roots (n, al, al, a2);
outresults (n, a, al, a2, a3, iter, rel, err)

end body;

end application;

The statement

sifac (n, eps, max, a, al, a2, iter, c, rel);
can be replaced by

sifac (n, eps, max, a, al, al, iter, c, rel);

for the modification of the method analogous to Gauss-Seidl variation of the Jacobi
method (see remark 4.1).

73



If initial values (5.1) are given then the statements
radius (n,r, a, al);
initial (n, r, a, al);

will be replaced by
for i1 := 1 step 1 until n do inreal (1, al [i1]);

Declaration of the procedures

procedure sifac (n, eps, max, b, bl, b4, iter, c, rel);
value n, eps, max; integer n, max, iter;
real eps, rel; Boolean c; real array b, bl, b4:
begin integer i, j, k, fi; real p, p1, p2, rep, rl, si, v, x1, x2;
iter := fi:= 0;
rep :=1;
Ls1 : iter := iter + 1;
rel .= 0;
for i := 2 step 2 until n do
begin real procedure delta (u, u); value u, v; real u, v;
begin real p, g;
p := b[if c then 0 else n] x v;
for k := 1step 1L untiln — 1 do
begin
p:= b[ifcthenkelsen — k| x u + p;
q:= —pl xu—p2 x v
vi=u;
u:=gq
end k;
delta := b[if cthennelse 0] x u + p
end delta;

It

Il

Ls2:r1:=0;
s1:=1;
c:=abs(bl[i]) = 1;
p2 1= if c then 1/b1[i] else b1[i];
pl :=ifcthen b1[i — 1] x p2else b1[i — 1];
p:= abs (b1[i]) + ab(bl[i — 1]);
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for j := 2 step 2 until n do if i = j then
begin
x2 := if ¢ then b1[j] x pl — b1[j — 1] else p1 — b1]j — 1];
x1:=if c then 1 — b1[j] x p2else b1[j] — p2;
vi=(x2 x pl + x1) x rl — x2 x sl;
sl :=x2 x p2 x rl + x1 x s1;
rl:=v
end j;
vi=(rl x p2 — sl x pl) x rl + s1 x sl;
if abs (v) < p X ;o — 10 then
begin
b1[i] := if b1[i] = O then ,;,— 8 else b1[i] x 1.1;
bi[i — 1] :=if b1[i — 1] = O then ;,— 8else b1[i — 1] x 1.1;
go to Ls2
end;
v:=1/(v x b[0]);
if ¢ then begin
x1 := delta((s1 — r1 x p1) x v, (b1[i — 1] x (r1 x pl — s1) — rl1) x v);
x2 := delta(—rl x v, (b1[i — 1] x r1 — b1[i] x s1) x v)
end
else begin
x1 := delta (sl x v, —rl X v);
x2 := delta(rl x p2 x v,(s1 — rl x p1) x v)
end;
v:=if p > 1 then (abs (x1) + abs (x2))/p else abs (x1) + abs (x2);
if v > rel then rel := v;
ba[i] := b1[i] + x2;
bafi — 1] := bi[i — 1] + x1;
comment for output p{¥, ¢ we can perform output of i, b1[i — 1],
b1[i] and v;
end i;
for k := 1 step 1 until n do b1[k] := b4[k];
if abs (rellrep) = 1then fi:= fi + 1;
c:= rel < eps;
if 71 (¢ v fi = max) then go to Lsl

end sifac;
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procedure initial (n, r, b, b2); integer n; real r; real array b, b2;

begin real p, g, s; integer j;

p:=—8xrl(n+2);
q:=r+r—p/3;
s:=rxrxl1.2;

for j := 2 step 2 until n do begin
s:=b2[j]:=s x (1 — 0.4/n];
b2[j —1]:=q:=p+4q
endj;

end initial;

procedure radius (n, r, b, b3); integer n; real r; real array b, b3;

beginreal rl, s, v, x1, x2, y1, y2; integer i, j, k, p; Boolean c;

v:= —1/b[0];

ji=k:=p:=1;

ri=rl:i=y2:=b3[1]:=1;

¢ := false;

Lrl: x2 := 0;

for i := 1step 1 until jdo x2 := b[i] x b3[j — i + 1] + x2;

s 1= Xx2xuv;

x2 := abs (s);

x1:=x21(1/p);

go to if abs (x2) > 1 then Lr8
else if ¢ then Lr3

else if abs (y2) < abs (x2) then Lr2
else if p < n then Lr4 else Lr6;

Lr2: ¢ := true;
Lr3: if abs(x2) < abs(y2) then go to Lr6;

Lrd: y2 := x2;
yl:= x1;
Lr5:p :=p+ 1;
xX2:=r;
go to Lr9;

Lr6: go to if abs (y2) < 0-95 then Lr7
else if k > 16 then Lr 10 else Lr5;
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Lr7: x1 := yl; ‘
x2:= y2 x yl;
Lr8: ¢ := false;
y2:=1,p:=1;
r:=xl xr;
X2 :=r x x2;
Lr9: k:=k + 1;
x2 1= 1/x2;
ifj < n then
begin .
for i := 1 step 1 until j do
b3[i] := b3[i] x x2;
rl:=rl x x2;
b3[1] := b3[1] + r1;
ji=j+1
end
else for i := 2 step / until n do
b3[i — 1] := b3[i] x x2;
b3[j]:=s x x2;
if Kk < 5 x n then go to Lrl;
Lr10: end radius;

procedure coef (n, b, b1, b7 err); integer n; real err; real array b, b1, b7;

begin integer j, k; real p;
for j := Ostep 1 until n + 2 do b7 [j] := 0;
b7[n] := b[0];
for k := 2 step 2 until n do
for j := n — k step 1 until n do
b7[j] := b7[j] x b1[k] + b7[j + 1] x b1[k — 1] + b7[j + 2];
. err:=0;
for j := 1 step 1 until n do
begin
p:= bi[j] — b[j];
if b[j] # O then p := p[b[j];
if abs [p] > abs (err) thenerr := p

end;

end coef;
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procedure roots (n, b1, bS5, b6); integer n; real array bl, b5, b6;
begin integer k; real p, q;
for k := 2 step 2 until n do
begin

p:= —0.5 x bl[k — 1];

q:=p x p— bl[k];

if g < O then begin
bS[k — 1] := b5[k] := p;
b6[k] := sqrt (—q);
b6k — 1] := —b6[k]

Il

end

else begin
b3[k] := p + sqrt (q);
b5[k — 1] = —bl[k —-1] - bS[k];
b6[k - 1]:= b6[k] =0
end;

end k; .
end roots;

Numerical examples. The method is illustrated by two examples:
fild)=2° =1, fi2)=E-1D*.(z-2P.(z - 3)*.(z — 9)

Table 1

Initial values and results for z2% — 1

initial values results
j I R
p§0) q§o) p§30) q§3°)
1-75757575756 1-176 1:17557050458
1-39393939392 1-15248 0-61803398875
1-03030303029 1-1294304 1-61803398874
066666666666 1-106841792 —1-90211303259

O O X0 I N DA W

—

0-30303030302
—0-06060606061
—0-42424242425
—0-78787878789
—1-15151515152
—1-51515151515

1-08470495614
1-06301085702
1-:04175063988
1-:02091562709
1-:00049731454
0-98048736825

1-90211303259

—0-61803398875
—1:17557050458
—1-61803398875

e b e e e bk ek e




Table 2
Initial values and results for f,(z)

Initial values results
j B S — U, S
p(jo) q(jO) p§.45) q3-45)
1 6:24903434608 18-5911925932 —7-00127215639 12-0053638741
2 2-57087676919 17-9475448895 —2.92672894585 1-8112962497
3 | 0-89271919231 17-1336430938 —2-08416132007 1-0856580055
4 — 178543838456 16-4482973701 — 398890729233 2-9677317228
5 —4-46359596145 [ 15-7903654752 —3-99999551239 3:9998973799
- |
Table 3
Obtained roots

j . roots of z2% — 1 roots of f,(z)

1 —0-587785252293 4 0-809016994378i 3-:00154783161

2 —0-309016994377 4+ 0-951056516296 3-99972432477

3 —0-809016994371 4 0-587785252293i 0-88878694904

4 0-951056516296 + 0-:309016994380i 203794199680

5 —0:951056516296 4~ 0-:309016994362i 1-02552480006

6 +0-999999999996 1-:05863652000

7 + 0:999999999996i 0-98940955560

8 0-309016994373 4~ 0-951056516296i 2-99949773673

9 0-587787252293 -+ 0-809016994371i 1-39032072785
10 0-809016994378 +- 0-587785252293i 2-00967478453

For f,(z) it was substituted
eps = 107°, max = 50
and for f,(z)
eps = 107%, max = 20
Results are (see (5.7) and (5.9)).
iter = 20, ¢ = true, rel = 9.54,, — 12 for f,(z)
iter = 45, ¢ = false, rel = 1.6,5 — 1 for fy(z)

Initial values and results are placed in the tables 1, 2, 3.

These examples illustrate the algorithm of the method. More detailed numerical
explanation and the comparison of this method and of other modifications of the
Newton method used for simultaneous finding of all the roots of the polynomial
will be published in the next paper.
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Souhrn

ROZKLAD POLYNOMU NA KVADRATICKE SOUCINITELE
NEWTONOVOU METODOU

Joser DvORCUK

V ¢ldnku je odvozena metoda rozkladu polynomu sudého stupné na kvadratické
souCinitele tj.

n 0,5n
f(2) =izz)a,-z"" =a,[[(z* + pjz + q))
= j=1

konstruovanim posloupnosti

(P} {aP}e i=1,2,...,05n

podle vzorcii (1.4), (1.6), (1.7) a (1.9).

Metoda je uréena pro vyhleddni soucasné vSech kofenid polynomu.

Pro polynomy s redlnymi koeficienty metoda vyzaduje pouze redlnou aritmetiku.

Jsou-li zaddna dobrd poddte¢ni priblizeni pi®, ' pro polynom s rtiznymi kofeny,
pak metoda konverguje kvadraticky (véta 3.1). V dalsich vétdch jsou formulovany
jesté nékteré vlastnosti metody.

V algoritmu je navrZen zptsob volby pocdtecnich p¥iblizeni.

Algoritmus metody je popsdn v Algole 60.

Numerické vysledky ilustruji algoritmus. Podrobné&jsi rozbor numerickych vysledki
a porovndni odvozené metody s dalsimi variantami Newtonovy metody pouZivané
pro tento ucel bude publikovan v dal§im ¢ldnku. )

Author’s address: Josef Dvoréuk, Ustav vypoétové techniky CSAV a CVUT, Horska 3, Praha 2.
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