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SVAZEK 14 (1969) APLIKACE MATEMATIKY CisLo 1

TWO MINIMAX-TYPE METHODS FOR SOLVING SYSTEMS
OF NONLINEAR EQUATIONS

JAROSLAV HROUDA

(Received April 20, 1967)

1. ASSIGNMENT OF EXTREMUM PROBLEMS

Let us have a system of equations
(1.1) filx) =0, ieK, pfx)=0,ieL

where f; are continuously differentiable (nonlinear) real functions,') p; linear non-
constant functions, x is a point of E,, K and Lare disjunctive sets of indices.?) If r
stands for the number of equations of the system, then r S n. We shall use a common
notation h;, i e K U L = I for both types of the functions in (1.1).

The system (1.1) is assigned functions
(1.2) a(x) = max h(x),
iel
(1.3) A) = max |h(x)]
1€
and a set of E,
(1.4) Q={x|h(x) 20,iel}

which is a closed and, in general, disconnected set. Then the solving of the system
can be formulated as )

A. a constrained extremum problem

(1.5) m:n {o(x) I xeQ},

1y Defined where necessary.
2) One of the sets K and L may be empty.
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B. an unconstrained extremum problem

(1.6) min f(x) .

x

The methods we shall apply to solving these minimization problems will be based
upon the principle of successive relaxation of the values «(x) or B(x). lterative
processes will generally converge to a so-called A-stationary point in the case (1.5)

and B-stationary point in (1.6). Of course, all roots (absolute minima) are included
in both classes of these stationaritizs.

To develop these methods we shall make use of the ideas of Zoutendijk’s method
of feasible directions [1] [2] known from mathematical programming.®) A similar
idea is used in [3] to obtain the Chebyshev solution of an inconsistent linear system.

The system (1.1) can be assigned extremum problems still in another way: Let us
denote by Q" and Q' the sets of E, .

(1.7) Q = {(x, Xp41) | 0 S hy(x) £ Xpuy, i€}

(1.8) Q = {(x, X411) | |h{(x)| £ Xps1.i€l}.

A

Then, clearly, each root of the system (1.1) is also a solution of both the problems

(1.9) min {X,, | (%, x,41) € Q},
(X,Xn+1)

(1.10) (min {Xns1 | (%, X,41) € Q.
X,Xn+1

In contrast to objective functions of (1.5) and (1.6) those corresponding to (1.9) and
(1.10) are differentiable. Therefore it is possible to solve (1.9), (1.10) by applying the
general methods of mathematical programming [1][6] [7]. It should be noticed,
however, that there are no methods which would always — without more assump-
tions — provide absolute extrema.®)

3) Accurately speaking, one of its version called by Zoutendijk “algorithm P1 with precaution
AZ1”. Knowledge of this method is not necessary for understanding the article. We shall use
only a few basic concepts from the theory of mathematical programming.

4) (x, X, 4 1) is a vector of E,, y; it is obtained by adding the component x,,; to the vector
x€E,.

5) In this connection Mr. J. Nedoma suggested another quite natural possibility:
min {} h(x) | x € Q}.
x i

Of course, this approach is not a minimax-type one.
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2. METHOD OF A-DIRECTIONS

2.1. Definitions and properties of concepts. We resume the notation introduced
in the foregoing section. All the following definitions and assertions will apply to
some point x € Q. Let us denote by I,(x), Io(x), and I(x) the sets of indices

(2.1) I(x)={iel|h(x) = ax)},
Io(x) = {iel|h(x) =0},
I(x) = I_,_(x) V] Io(x) .

Then the meaning of K ,(x), L,(x), etc. will be obvious. Further, we denote by
A(x) the set of vectors

(2.2) Ax) ={s £ 0| Vh(x)Ts <0, iel,(x),
Vi(x)Ts >0, ieKqx),
Pis) 20, iely(x)}.)

Here py(s) = Vpy(x)"s; so the bar denotes breaking away of the absolute term of
a linear function.

Definition 1. Vector s is called an A-direction of the point x if s € A(x).

Definition 2. x is called an A-stationary point of the system (of level ¢) if A(x) = 0
(and ofx) = @).”)

In this way each x e Q either is assigned a set of vectors (A-directions) or its
A-stationarity is stated (no A-direction of x exists).

Remark 1. All roots of the system (1.1) are just all its A-stationary points of
level 0. For if x is a root, then x € @, ax) = 0,1,(x) = Io(x) = I, and thus according
to (2.2) it must be A(x) = (). The converse assertion follows from the relations
0= h(x)<ax)=0, iel

Lemma 1. If s € A(x), then there is a number 1 > 0 such that a(x + s) < a(x),
x + Ase Q for all0 < A < X(more precisely: f{x + As) > 0,i € K; px + As) > 0,
ie L — Ly(x)).

Proof. First notice that in virtue of Remark 1 «(x) > 0. From (2.1), (2.2), and
the continuity assumption of partial derivatives of h; it follows that there exist num-

6) Vh(x) = grad hy(x), the symbol T means scalar product. The notation A(x) does not
relate with that in [4] and [5].

7) The terms from both definitions will be often used in an abbreviated form: A-direction,
A-stationary point.
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bers 7; > 0 (iel) such that for all 0 < t < t; the following inequalities hold:

0 < hfx + t5) = a(x) + TVh(x + Os)Ts < ox) for iel,(x),%)
a(x) > fix +15) = Vf(x + Oas)Ts >0 for ieKyx),
a(x) > pix + 15) = tpfs) 2 0 for ieLy(x),
0 < hx + 1s) < o(x) for iel —I(x).
Putting down 1 = mlln 7; finishes the proof.
Lemma 1 shows t]l:at when we locally move from the point x along its A-direction

we can decrease the value «(x) remaining within the set Q. The following assertion
provides a criterion for deciding about the A-stationarity of a point.

Lemma 2. The point x is an A-stationary point if and only if

(2.3) max {o | Vh(x)Ts + 0,0 <0, iel,(x),
(s,0)
—Vf{x)Ts + 0,6 £0, ieKyx),
10) 0, ieL(x)} =0

where 0, are some positive numbers.

Proof. Let us denote by & the left-hand side of the equality (2.3). Let & = 0.
If there exists an § € A(x), the vector (3, &) where

T & T ~
6 = min {— Vh{x)"$ ,iel (x), VIS , ieKo(x)} >0
i 0; 0;
would satisfy both the conditions in (2.3) and & > . This is impossible, however,
thus A(x) = 0. On the other hand, let A(x) = 0. If there were a vector (3, &) satis-
fying the conditions in (2.3) and & > 0, it would mean that an 4-direction of the point
x exists. The vector (s, o) = (0, 0) fulfils the conditions in (2.3), hence 6 = 0.

' Remark 2. If x € Q is such that Vh,(x) = 0 for some i € K(x), then x is A-station-
ary. Indeed, in this case a condition 0,0 < 0 occurs in (2.3), so g = 0.

By words, an A-stationary point x can be characterized as follows: Out of this
point there passes no direction along which it would be possible locally to decrease
the value o(x), and at the same time to increase all the zero residua of the equations
f{x) = 0, and not to decrease none of the zzro residua of the equations p{(x) = 0.
For if such a direction exists, it could be proved by consideration similar to that
in Lemma 1 that it is an A-direction. As for its sense, the conception of A-stationary

50<0;<1.
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point is therefore equivalent to that of Q-quasistationary point of the function «(x)
[5]- (If Va(x) exists, both conceptions are identical even by definition.) If the set Q
fulfils the regularity condition, the corresponding notion will be the Q-stationary
point of the function o(x).

Concerning the mathematical programming problem (1.9) the following statement
is valid: x is an A4-stationary point of the system if and only if (x, o(x)) is an '-quasi-
stationary point of the function x,4,.’) Under the regularity condition for the set
@, (x, ax)) is an Q'-stationary point of the function x,, ;.

The following intzrpretation will make the meaning of A-direction still clearer:
Let us denote by Q,, the set

(24) Qe = {y [0 = h(y) S o), iel},

The A-direction of the point x is a vector with x as origin and pointing to the interior
of the set (2.4) (i.e., excluding tangent position to those boundaries of the set on which
the point x lies unless they are “low’” linear boundarizs).

In order to make possible to compare directional qualities of A4-directions, it is
necessary to eliminate somzhow the influence of their lengths. This will be also useful
for working out methods of calculating these vectors.

Definition 3. We shall call a set of vectors N(x) “normalization set relating
to A(x)” if it has the following properties:

a) If A(x) = 0, then
aa) for each s € A(x) there is a positive number (s) such that

(2.5) pseN(x) forall 0=y =7(s), 7(s)|s]| = oy

where w, > 0 is a constant (independent on x);

ab) for each s e N(x) it holds
(26) ls] = @
where w, is a constant (w, = w,);
ac) N(x) is closed.

b) If A(x) = 0, then N(x) can be an arbitrary set containing the zero element.
Now, we shall execute the required normalization of the set A(x) by setting

(2.7) A(x) = A(x) 0 N(x).
%) It can be obtained by Zoutendijk’s method of feasible directions (without the need for the
regularity condition).
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Obviously, all A-directions of the point x remain in the set (2.7) if not regarding their
lengths. Thus the conception of the A-stationary point will not be influenced if defined
by (2.7); i.e. it holds

Lemma 3. A(x) = 0 if and only if A(x) = 0.

Remark 3. Lemma 2 will remain valid if the normalization condition s e N(x)
is inserted into (2.3). This can be proved by adapting slightly the proof of Lemma 2
and applying Lemma 3.

2.2. Algorithm. In this section an iterative procedure for obtaining one of the
A-stationary points of the system (1.1) will be given. First, we shall describe the
algorithmic scheme of one iteration (we will justify it afterwards).

Let us have a point x € @ and a number 0 < & < 4. Let us denote by I,(x, 9),
Io(x, 6), and I(x, 6) the sets of indices

(2.8) I(x,8) = {iel|h(x) 2 (1 - 5)ux)},
Io(x,8) = {iel|h(x) < su(x)},
I(x,8) =1I.(x,8)uUlyx,6).'°)
Replacing in (2.2) I(x) by I(x, §) we get a set A(x, 6).!*) By inserting A(x, ) into

Definition 3 instead of A(x) a normalization set N(x, &) will be defined.

For given x and ¢ the auxiliary problem for finding an A-direction of the point x
is formulated as follows:

(2:9) max {o| Vh(x)"s + |Vh(x)| 0 <0, iel.(x,d),
—Vf(x)Ts + |[Vfx)]| ¢ £0, ieKy(x,9),
—pis) <0, ieLyx9),

seN(x, 5) 1.1%)

The extremum problem (2.9) is a mathematical programming one. Let the symbol
11 (x, d) stand for it. Let us suppose that all norms of the gradients in (2.9) are non-
zero. The auxiliary problem is always solvable (if A(x, 5) % 0, it follows from the
definition of the set N(x, &); if A(x, ) = 0, the problem has a zero optimal solution,
which can be proved like Lemma 2).

10) Analogically for the letters K and L.
1y 1t is A(x, 8) < A(x).
12y || || means the Euclidean norm of a vector.
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Let (s, o5) be an optimal solution of the auxiliary problem (2.9). If g > 0, then
[s5]l + 0;'*) put down

(2.10) (s, 0") = (55, 03)

_ , (s if of|¢] >0,
(.11) il N Ty

If 65 = 0, then solve the problem IT(x, 0). If also ¢¢ = 0, then x is an A-stationary
point (see Lemma 2 and Remark 3). Otherwise put

(212) (s, ') = (53 95) »
(2.13) 5 =1s.

The vector s’ is an (optimal) A-direction of the point x.

If there is |Vh(x)| = O for some ieK(x, §), turn immediately to the problem
I1(x, 0). If there is a zero gradient even there, then x is an A-stationary point (accord-
ing to Remark 2).

The A-direction s’ being known, Lemma 1 guarantees the existence of a number
A" > 0 such that the point

(2.14) X=X+ XS
will satisfy the relations
(2.15) ox) < a(x), x'eQ.

Choose the number A’ > 0 so that the inequality in (2.15) may hold more strongly,
namely as o(x) — o(x’) = & where ¢ > 0 is a given constant. If no such a number
exists, take A’ = A* where A* is a solution of the one-dimensional constrained minimi-
zation problem

(2.16) min {a(x + As) | x + As'€ 2,4 2 0} .
2

The latter way of getting A’ is an optimal one: it makes a(x) decrease as much as
possible in the direction s’ remaining in Q.

Remark 4. The norm of the vector s’ satisfies the inequalities

(2.17) oy < |s']

< w,.
This is a consequence of the extremum nature of s’, as well as of (2.5) and (2.6).
13y 1t follows from the inequalities in (2.9) since I..(x, 6) + .
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Remark 5. Since (s, ¢’) is a solution of (2.9), it holds
O,I
Is']
Now, if an initial point x° € @ and an initial value 0 < 5, < 1 are given, we can
construct the sequences

(2.19) % {5 {0 {Ads {od")

by recursive application of the procedure described above (writing x* instead of x,

x**1 instead of x, etc.).

(218) 0< m._in {[cos (Vhy(x), s’)], iel,(x,0)UKyx, o)} <1.'%)

Before formulating the convergence assertion we will attempt to clear up some
parts of the algorithm:

In the (k + 1)th iteration we can either state that an A-stationary point has been
reached or construct — on the basis of x* — a new point x**! satisfying a(x***) <
< o(x*) and x**! € Q. Such a point can be found along an A-direction of x*. The
solving of the problem (2.9) provides a vector (an optimal one) from the set of A-direc-
tions. In order to make it more illustrative, let us write down the problem (2.9) in
the form

(2.20) min {|s]| max {cos (- Vh(x*),s), iel.(x"8),
cos (= Vf(x¥), s), ieKo(x, 5k)}|
Pds) 2 0, ie Ly(x* 8,), seN(xK, &,)}

and remind the interpretation of an A-direction by (2.4). The solution of (2.20)
yields a vector which directs towards the intcrior of the set Q. departing as much
as possible — in Chebyshevian sense and with respect to the normalization applied —
from those boundaries of the set the point x* is near (except for the “low” linear
boundaries where also parallel position is admitted). The parameter §, serves as
a measure of this nearness of boundaries. It appears necessary to guarantee the con-
vergence of the process (it avoids small steps towards close boundaries). The value
of §, is reduced during the computation whenever there appears an optimal A-direc-
tion only slightly deviated from the boundaries of Q,(,. So, the influence of the
parameter §, is gradually getting weaker if it would prevent proceeding towards an
A-stationary point. In the extremal situation when no non-zero solution of the pro-
blem (2.9) exists, it is necessary to search for an A-direction without respect to &,
i.e. in the whole set A(x*). From the setting of (2.20) it is also apparent why | Vh,(x")]

14y Symbol cos (a, b) means a™b/(||a| ||5]).
15) Here the index number is written as superscript if the sequence is a vectorial one and as
subscript if scalar.
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occur in the problem (2.9) — in this way the undesirable influence of the lengths of
gradients of h; upon choice of optimal 4-directions is avoided.¢)

As concerns the number 4, ;, undoubtedly, it is of advantage to take it (optimally)
such as to bring about the deepest decrease of the value a(x) in the (k + 1)th iteration.
In general, this is a difficult task. But in case there exists an interval g, < 2 < vgyq
where it holds a(x* + As**") + ¢ < ax¥), x* + As**' e Q, the algorithm enables
us to choose ;. as an arbitrary number from this interval. .

And now, we proceed to the convergence questions. Let us suppose that none of the
points x* is A-stationary, so that the sequences (2.19) are infinite.

Theorem 1. If for some ¢ > 0 the set Q,'7) is bounded and x* € Q, for some k =
= ko, then there exists a cluster point of the sequence {x*} which is an A-stationary
point of the system (1.1).

Proof. Since x* € Q, for all k = ko, the sequence {x*} is bounded. Let us denote
3 = lim §,. Two possibilities are to be distinguished: )

1. 8 = 0. Then there must be an infinite subsequence of “halving” {(5,”+1 =
= 16,,}. We can take, without loss of generality, k; = I. Then we select a convergent
subsequence {x"’} with a limit X. Obviously, X € Q. Again, we take for the sake of
simplicity I, = g. Let us suppose that X is not an A-stationary point. Then «(X) > 0,

[Vh{(X)| > 0 for i € I(X) according to Remarks 1 and 2. It holds i
(2.21) I(x%, 8,) = I(x) forasl. q.'%)

Indeed, i ¢ I(X) indicates 0 < h(X) < «(%). But then (with regard to the convergences
and continuities) it will be also for asl. g

by < ) < (1= 8) o). o

Le. i¢I(x%6,).
Considering Lemma 2, we can postulate a vector (§, &) such that § # 0, & > 0,
and

i
1

Vh(X)T5 + |Vh(X)| 6 =0, iel. (%),
—VA(X)"5 + |Vf(R)] & £0, ieKyX),
—p{(3) <0, ieLyx).

i
16y Naturally, such a procedure will be of value only if the solving of the auxiliary problems
is much less laborious than that of the original system of equations. . i

17) See (2.4). JUICH .

18y ‘asl. means all sufficiently large. ‘ ) S R -
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Because of continuity it holds
Vh{(x)"5 + -%HVh,-(x")H 6 <0, iel,(X),
—VI(x)T5 + 3|VA(x9)] 6 =0, ieKyX),

—p3) 0, ieLy(%)

I\

for asl. g, hence according to (2.21) § e A(x?, §,) for asl. ¢ — say ¢ > Q. For each
of these g there exists a number 7, such that y3 € N(x4, §,) for 0 < y < §, and 7, =
2 o,/||3].*°) Setting
7 = inf J,
2>0

gives 7 > 0 and 75 € N(x%, 6,), ¢ > Q. Then the vector (3, 1) is a feasible solution
of all the auxiliary problems IT (x", 5,1), q > Q, thus

(2.22) 0':,: =g

241 = 396 > 0 forasl g.

But at the same time we get for these g according to (2.11) and (2.17)
Og+1 s 5qHS"”H = ‘540)2 '

Because of the assumption & = 0 this implies o,.,; — 0, which is in contradiction
with (2.22).

ki ki+1

2. & > 0. Again, we can have convergent subsequences x*' - X € Q, s
0i,+1 — 0 2°) and can simplify indexing: k, = I. Clearly, §, = J for asl. [, thus they
are the problems I7(x', §,) (not I1(x", 0)!) to be solved, and according to (2.11), (2.17)
it holds 6,44 > &||s'*!| = dw,, which implies > 0. Let us suppose that ¥ is not
A-stationary. Now, it can be easily seen that the inclusion

— 5,

(2.23) I(%) < I(x", 8))

is valid for asl. I. Really, if i € I ,(X), then

1
M) 5515,

a(x")

for asl. I if i € Io(X), then hy(x') < Su(X) < 8,¢(x") for asl. L.

19) See the property aa) of the normalization set. Here the normalization set from the auxiliary
problem I7(x4, éq) is considered.

20) The inequalities (2.17) and (2.18) indicate boundedness of the sequences {s*} and {q;}.
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It follows from (2.23) that the inequalities

(2.24) Vi s+ VR3] 6,00 £ 0, i€l (%),
=VAET S+ VA o141 S0, PeK(X),
—p{s'Y) <0, ieLyX)

are valid for asl. I. By limiting them we get
Vh(%)T5 + |Vh(X)|6 £ 0, iel. (%),
=VAX)5 + |V(X)]| ¢ £0, ieKy(%),
—-pi(3) <0, ieLy).
Since |Vh(X)| & > 0 for i € I(X), the vector § # 0 is an A-direction of the point X.
By virtue of Lemma 1 there is a number J > O such that
0<fx +145) <aX), iekK,
0 < pix + 15) < ofX), ielL.
But then for asl. I it will be
0 < hy(x' + 2s') < ofx'*Y), iel,?)

which is in contradiction with the optimal determination of the numbers 4;, that
occurs for asl. I owing to monotony as well as boundedness of the sequence {a(x*)}.
This completes the proof of Theorem 1.

Remark 6. Theorem 1 is true also for a rather simplified algorithm which con-
tains arbitrary constants 6; > 0 instead of | VA,(x)| in (2.9) and an arbitrary constant
» > 0 instead of |s'|| in (2.11).

Finally, we shall formulate a sufficient condition to assure the method of A-direc-
tions will tend to a root. Let us denote by J(x) the Jacobian matrix of the system

(1.1) o) (M), =17,

0x; J=1,...,n.

Theorem 2. Let r < n. If for some @ > 0 the set Q, is non-empty,**) bounded
and the rank of J(x) is r for all x € Q, — Qq, then the system (1.1) has solutions.
The method of A-directions determines one of them starting from any initial point
x° € Q,

21) Z can be chosen so as to imply p;(* + zi) = 0 at most for i € Ly(X), but in this case

Pi(s'*1) = 0 because of (2.24).

22y This assumption is no restrictive one (see Section 4.3).
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Proof. According to Theorem 1 the method of A-directions provides an A-station-
ary point (in the set Q,). But there are no A-stationary points in Q,, except roots.
Indeed, for each xeQ, — Q, we could obtain an A-direction by solving the al-
gebraic system

Vh(x)Ts = »;, iel(x)
where x; are some arbitrary numbers — negative for i € I,(x) and positive for i & Io(x).

Remark 7. In order that X may be an A-stationary point of the system (r < n)
of level ¢ > 0, -it is necessary for the matrix J()?) to be of the rank less than r. For
otherwise an A-direction of X could be obtained as in the proof of Theorem 2.

3. METHOD OF B-DIRECTIONS

Now, we shall deal — more concisely already — with solving the problem (1.6).
Let x be an arbitrary point. Let us denote by I (x) and I _(x) the sets of indices

(3.1) I(x)={iel|h(x)= B},
I(x)={iel|h{x) = —p(x)} **)

and by B(x) the set of vectors

(3-2) B(x) = {s + 0| Vh{(x)Ts <0, iel.(x),
Vh(x)'s >0, iel_(x)}.

The following terms can be defined by analogy to Section 2.1: B-direction of the
point x, B-stationary point of the system, normalization set relating to B(x) (the
notation N(x) will be used also here). The reader himself will easily formulate and
prove the assertions corresponding to all lemmas and remarks of the Section 2.1.

B-stationary point x can be described as follows: No direction leaves it along which
it could be possible locally to decrease the value B(x). So, the sense of this concept
is equivalent to that of stationary point of a function. (When Vp(x) exists, both
concepts are equivalent even by definition: V(x) = 0.)

Regarding the problem (1.10) the following is true: x is a B-stationary point of the
system if and only if (x, f(x)) is a Q'-stationary point of the function x,,, [5]. (The
regularity condition is always fulfilled for the set £~2’.)

Concerning the correspondence between the classes of A-stationary and B-stationary
points if follows immediately: If x € Q and B(x) = 0, then also A(x) = 0. (If x ¢ Q,
the set A(x) is not defined.)

2 3) Likewise for K and L. The coincidence of this notation with that in the method of A4-direc-
tions will not cause misunderstanding.
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Analogically to (2.4), let us denote by Qp(x) the set

(33) Qpey = [ [ < Bx).ied}

Then the B-direction is a vector directing, in the environment of the point x, “sharply”’
into the interior of this set.

Now, we describe an algorithm for determining a B-stationary point. The scheme
of one iteration will be similar to that of Szction 2.2.

Let us have a point x and a number 0 < § < 4. Denote by I.(x, §) and I_(x, d)
the sets of indices

(3.4) I.(x,8) = {iel|h(x) = (1 - 9)B(x)},
I-(x,0) = {iel|h{x) = —(1 - 5)B(x)} .

By means of them, the sets of vectors B(x, &), N(x, d) are defined. Solve the auxiliary
problem

(3:5) max {o|VR(x)Ts + |Vh(x)| 0 <0, iel,(x0),
—Vh(x)"s + |Vh(x)| 0 £ 0, iel_(x,0),
s e N(x, 9) }.

Further proceed the same way as in Section 2.2 (remembering appropriate changes
in the notation) until a B-direction s’ of the point x is obtained. Construct a point

(3-6) x'=x+ s

taking A’ so as to get ﬂ(x) — ﬁ(x') > e or, if impossible, A’ = A* where 1* is a solution
of the problem

(3.7) mjn {B(x + As) | A= 0}.

Starting from an initial point x° and a number 0 < §, < } and applying recursively
the procedure described above, we either reach a B-stationary point or obtain an
infinite sequence {x*}. In the latter case the following assertion is true:

Theorem 3. If for some ¢ > 0 the set 52 is bounded and x* e !NZQ for some k = k,
then there exists a cluster point of the sequence {x"} which is a B-stationary point
of the system (1.1).

The proof is an analogy to that of Theorem 1. We still ask the reader for the
final kindness — to formulate and prove by himself “B-pendants” of Remark 6,
Theorem 2, and Remark 7.

If there exists a (finite) solution of the minimization problem (1.6), it is obviously
a B-stationary point, and this represents the Chebyshev solution of the system (1.1).
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In one special case — if the system is linear — each B-stationary point of the system
is guaranteed to be its Chebyshev solution. This is the subject of the following

Theorem 4. Each B-stationary point of the system (1.1) with K =  is an absolute
minimum of the function p(x).

Proof. Let X is a B-stationary point. If there were x such that f(x) < B(X), the
vector x — X would be a B-direction of X. Indeed, because it is

Px = %) = pix) = pi%) = pix) — B(X) = B(x) — B(X) <0
for i eI,(X) and

Pix — %) = px) = p{X) = pdx) + B(X) = —p(x) + B(X) > 0

for i e I_(X).

4. REALIZATION OF THE METHODS

4.1. Some normalizations. As we already know, the normalization enables us to make
use of the metric properties of the scalar product to obtain the optimal A/B-direc-
tions®*). It is the choice of a normalization set on which the proceeding of the com-
putations essentially depends. Doing this we fall into usual controversy: quality of the
direction versus laboriousness of its computation. We will describe four types of
normalization sets that we believe to be interesting from the view of practice. First
for the method of A-directions:

1 Ny 9) = {s| o] = 13

This normalization is theoretically the best — the optimality of the A-direction is
considered on the basis of angular deviations. In this case the appropriate auxiliary
problem (2.9) is a non-linear programming problem (with one nonlinear constraint
ls|| = 1). Zoutendijk suggested a special method to solve such a problem [1, section
8.2] [6, section 9-5]. However, his approach seems to be enormously laborious.
(Of course, except for the trivial case when I(x, §) contains only one index.) Here
the approximate methods appear more suitable for practical purposes:

la) The auxiliary problem is solved by cutting-plane method [9], which is an
iterative procedure starting from the approximation |s;] < 1, j = 1, ..., n for the
constraint ||s| < 1. In every iteration one linear constraint is added to improve the
current approximation. It is of advantage that a direction more or less close to the
optimal one is available in every iteration of the cutting-plane method. The initial
iteration gives the direction optimal in the normalization N, (see bellow).

24) Read: A-directions or B-directions.
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1b) The auxiliary problem is converted into an equivalent quadratic programming
problem. Its objective function is replaced by a piecewise linear function and the
linear programming problem so obtained (with a great number of variables, of course)
is then solved using decomposition principle. The reader is referred for more details
to [6, section 9-5].

2) Nz(x,5)={s||sj!__<_1,j=1,...,n}.

This normalization set leads to linear auxiliary problems with variables subjected
to both lower and upper bounds.??) Such problems can be conveniently solved by
dual simplex method. (This is described in many books on linear programming,

see e.g. [8].)
3) Ny(x,0) = {s ;j;l|s,.| <1},

The auxiliary problem can be solved as a linear programming problem, of course
with enlarged number of variables [6, section 9-5].

4) The fourth normalization set will be defined only for the auxiliary problem
(2.9) when all [Vh(x)| # 0:2°)

(4.1) Ny(x,8) = {s| u(s) = 1, |s] < M}
where

s) = min M iel,(x,8) v Ky(x
42) u(s) ,-A{”wz,.(x)” LielL(x 8) UKo ,5)},

M = 1is a given constant. This normalization set, in contrast to the foregoing ones,
depends on x and §. Let us make sure that it has the properties required by Definition 3:

aa) In virtue of (4.2) and Cauchy-Schwarz inequality it is

(43) us) = s -

Taking w; < 1, we can for s € A(x, 8) put down
1
7ls) = o= -
sl
Really, we have for 0 < y < §(s) according to (4.2) and (4.3)

-

Wo9) = ) £ 30 u) = X < 1, [os] < 7)ol = 1 < v

I
25) The variable o fulfils the inequalities 0 < 0 = \/ n owing to (2.18).

26y Only such auxiliary problems are to be solved.
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ab) Take w, = M.

ac) Evident from the setting

Ny(x,8) = (E, — {s|u(s) > 1}) n {s| ||s]| = M}.
b) The set (4.1) contains the zero element.

Remark 8. If M = 1, then N,(x, 8) = N,(x, 6). It can be readily verified using
(4.3).

For practical application of the normalization N, the following assertion will be
useful:

Lemma 4. Let A’ stands for a set of vectors (s, o) satisfying the inequalities
in (2.9). The sets of optimal solutions of the problems '

IT,: max {al(s, o)e A, seNy(x,93)},
(s,0)
IT,: max {a[(s, o)ed, o =1, u(s)=o,

(s,0)

|s| = M}

are identical.

Proof. Each optimal solution (s*, 6*) of the problem I7, satisfies
o= i) S 1. | =M.

Therefore it is also a feasible solution of IT,, i.e. each optimal solution (s**, 6**) of
the problem IT, fulfils the inequality o* < o**. Conversely, each optimal solution
of IT, is a feasible solution of IT,, thus ¢* = o**.

The contents of Lemma 4 can be expressed briefly as follows: The normalization
N, in the auxiliary problems (2.9) is induced by the constraints

(4.4) o<1, us)=o, |s|=M.

If M is sufficiently large, the constraint ||s|| < M can be omitted in practical
computations (when number of iterations is finite). That means, we calculate with
a value M > max [|s*| which, of course, need not be known in advance.?”)

An auxiliary problem

(4.5) Tﬁ,}; {o [ (s,0)ed’,o <1, u(s) = o}

2 7) The sophistry that we suspect here consists in substituting the infinite iterative process by
a finite one which can only be said about that it has relaxation property. Every use of this method
in practice is then ‘“‘uncertain” from this point of view. As a rule, a practician is compliant to
undergo such a risk, especially if he can, like here, easily recognize reaching or approaching the
result (according to the level of a(x)).
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can conveniently be solved by a special simplex-type method [1, section 8.5]. (Satis-
fying the condition u(s) = ¢ is naturally supplied by the simplex mechanism of the
method.)

Remark 9. The normalization N, lets considerable freedom in the choice of the
optimal A-directions. Exactly speaking: If M = 1/n, 0 < 5 < 1, then any direction
3 e A(x, ) of the form

. 1 .

S = - S,

K(3)

where ||§]| = 1, u(5) = 5, can be selected as an optimal one. Indeed, the vector (3, 1)
is a solution of the auxiliary problem IT, because of u(3) = 1, (3, 1) € 4’, and

151 = [sl/us) = 1fn < M.

In the method of B-directions the first three normalization sets can be used without
any change. The fourth one is to be modified in the following way:

Nu(x0) = {s| is) = 1, [s] = M}
oy [ [VR()Ts| . OT (x
fi(s) = min {]”W,(X)WL siel,(x,8) vI_(x, 5)} .

This normalization will be induced in the auxiliary problems (3.5) again by the con-
straints (4.4) — with the same practical consequences as in the former case.

where

Remark 10. Naturally, the normalizations described can be interchanged during
computation. It seems reasonable to apply the normalization N, in those iterations
where the sets I(x, §) or I(x, 0) contain one index only. Otherwise, some other less
laborious normalizations should be uszd.

4.2. Evaluation of A'. We shall continue using the notation of Sections 2.2 and 3.
If & is sufficiently small, then in practical computations (i.e. with a finite number
of iterations) it will be not necessary to determine A’ by the optimal way. All we need
is to decrease the value of «(x) or f(x). Here holds the same as for the set N,. Never-
theless, it will be desirable to approach the optimal value of A as much as possible.
At the same time, however, the economy achieved in less number of iterations should
not be depreciated by necessarily larger volume of computations. We shall describe
one rather simple and general procedure to compute A’ which has proved to be of
practical value. First for the method of A-directions:

Take a number ¢t > 0 (called basic step). Proceed through the points

(4.6) x® =x,

XD =x 4271, 1=1,2,...

t
I
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as long as the inequalities
a) a(x¢7V) > o(xV),
b) h{(xP) =0, iel,
c) <l
are true ([ is a given constant). If for some / = I’ this is no more the case, then
1) if I’ > 1 and a) or b) fails, set
(4.7) =22 L
Is']

2) if c) fails, set

(4.8) po=or-rt

Is'1

3) if I’ = 1, then proceed ““in the opposite direction” through the points

(4.9) X = x4 2-'"—tm s, m=1,2,...

s

testing the inequalities

a) a(x™™) < ax),

b) h{(x"™) 20, iel.
As soon as for some m = m’ both the inequalities are satisfied, set

(4.10) p=om L 29

Il

Usually, we are not interested in the knowledge of the explicit value of 1’. What
we need is the point x’. We can obtain it — in the three cases (4.7), (4.8), and (4.10) —
according to the formulae respectively

(4.11) x = 1x4,
x(™m)

28) Theoretically, such m’ exists. However, at the computer computation the appropriate A’
could sometimes be reduced to the machinary zero (owing to various reasons each of which, after
all, is due to the finite machinary precision). Therefore for programming we recommend to
“‘ensure” this point like this: If no m” = m will occur, start the computation newly with an initial
point chosen from an environment of the point x; for instance, it could be x + vs”. Here m > 1,
7 > 0 are given constants.
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It is convenient to take in the (k + 1)th iteration the basic step ¢ = #, equal to the
length of motion made in the kth iteration, i.e.

(4.12) te = [|xF = X7 = 4s4]

The reason of this is to achieve certain selfadaptability of the length of the basic
step assuring that the numbers I, P44 29) will not become very large. The initial
basic step t, may be taken as an arbitrary positive number. In virtue of (4.12), (4.7),
(4.8), and (4.10) the values of basic steps can be obtained recursively according to
the rules

21'—2t,
(4.13) t=2|s|| ={2"""t,
27m't .

The procedure here described can be readily adapted for the method of B-directions:
it is sufficient to introduce the function B(x) in the inequalities a) and leave out the
inequalities b).

4.3. Preparation of the initial point. The calculation according to the method of
A-directions can be started from an arbitrary point x° if we shall solve — instead
of (1.1) — the equivalent system

(4.14) Hix) = L(x) h(x), iel

where

o= 18 Az
-1 if h(x°)<o0.

In this connection, let us notice that A-stationary points of non-zero level are not
invariant relating to “sign” transformations of the system.

As concerns the method of B-directions, every point x° is immediately available
as a starting point. The notion of B-stationary point is independent on the “signs”
of the equations.

4.4. Calculation of function values and derivatives. In the programs of both algo-
rithms the values as well as gradients of the functions h; are to be calculated. In
practice the following three approaches proved satisfactory:

1) Annex subroutines for the function values and partial derivatives.

2) If h; are polynomials, input them into the computer through a special code
(arranging coefficients, indices of variables, and exponents); use this code to compute
the values of the polynomials and to obtain the partial derivatives by “machine
derivation”.

29) I 41, My 41 stand for the values I, m’ in the (k + 1)th iteration.
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3) Approximate

(4.15) ohi(x)  Ahlx)
0x; Ax;

A
IIA

j=n

using the function values obtained by one of the preceding ways.

4.5. Linear equations in the method of A-directions. A priori we can imagine that the
direction obtained by solving the auxiliary problem (2.9) with inequalitizs p{s) = 0
could leave the region Q. It could be caussd by numerical inaccuracy. This dangzr can
be faced by inserting artificial small systematic errors into the auxiliary problem:

i}i(s) ESP (”It > 0) .

4.6. Numerical illustrations. In all computations that we shall mention here the
value §, = 0-125 has been used. The numbers 1, have been obtained by mesans of the
procedure described in Section 4.2 with the following values of the parameters:
to = 0-01; ] = 10; im = 10. Partial derivatives — unless it is said othzrwise — were
calculated according to 2) in Section 4.4. We will illustrate the behaviour of the
algorithms using these examples:

1.39) xIx3 —2x3 —5x3 +10=0
xi  — 8x, + 1=0
1L 2x2 — x2 4+ X5 4 3x,x3 + x4 +1=0

X3 =234+ x;x,— X, +X,—%x3;4+2=0
X34+ x3—3x%, + XoX3 X, +x,—1=0

IIL. (system of 4 linear equations with 4 unknowns [11, section 16, table IL1a])

Iv. x5 4+ x2 = 2x,x3 + 3x, —11=0
X3 — 3x;%4 + XX, —2x; +4x,—x,— 8=0
X2 —2x3 4 X,x, + 3%, —xy + 6=0
3x} + x3 —2X7 4 Xx;X, — 4X,X,4 + 5=0
V. X3 + X3x, + X5 -3=0
x5 4 X,X¢ + x; + x4 —4=0

X2+ X2+ X Xs 4+ X, + X3 +%,—6=0
X34 X2+ X X7 F X, FX3+%x—6=0
X3 4 X2 4+ X3Xg + X1 + X4 + X5 —6=0
X2 + X2 + XX + X4 + X5 —-5=0
X2+ X%, + X3 + Xg —4=0

3% Taken from [10].
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In Table 1 some sequences obtained in computing Example II by the method of
A-directions with normalization N, are presented. The process has converged from
the initial point (10, —10, 15) to the root {(0-535 777, —2:122 983, 0-940 767). The

Table 1.

k a(x®) LG5 8) | L5, 80 | oflls™] L | my f

0 | 07860,o+ 3% 1*b) - — | — | 01000,, — 1
1 | 033900+ 3 1%, 3 0-8978 10 0:5120,0 + 1
2 | 099874+ 2 3* 0-8377 2 0-5120,0 -+ 1
3 | 06535+ 2 3% 0-6566 1 | 2 | 012804+ 1
4 | 057114+ 2 3% 0-6455 1 0-3200

5 | 05298, + 2 3% 1 0-6434 1 | 1 | 01600

6 | 04891+ 2 3% 1 0-3322 3 0-3200

7 | 04695+ 2 2, 3* 0-3182 1 | 1 | 01600

8 | 04278, + 2 2, 3% 1 0-6694 2 0-1600

9 | 01340,y + 2 1* 0-8132,— 1| 8 01024, + 2
10 | 07324+ 1 3% 0-9425 1| 4 | 06400

1 | 028195+ 1 3% 0-6287 2 0-6400

12 | 018324+ 1 2% 0-6082 1 | 1 | 03200

13 | 012179+ 1 2% 0-9482 1 | 2 | 08000,5—1
14 | 010634 + 1 2% 1 0-9565 1| 2 | 02000, —1
15 | 09237 2%,3 0-2270 4 0-8000,, — 1
16 | 0-8485 2%, 3 0-5958 1 | 3 | 01000,y — 1
17 | 07919 2%, 3 1 0-7239 2 0-1000,5 — 1
18 | 05438 2% 09774, — 1| 7 0-3200

19 | 04098 2% 0-9636 1 0-2000,5 — 1
20 | 03428 2% 0-9657 1 ] 1 | 01000,,—1
50 | 01458, — 3 2% 0-1982 4 0-4883,9 — 5
51 | 01384, — 3 2% 1 0-9699 1| 2| 01221,5~5
52 | 01368, — 3 2%, 3 0-1982 2 0-1221,5 — 5
53 | 01340, — 3 2%, 3 1 0-7274 1 | 1| 06104,5—6
54 | 08219, — 4 2% 0-1052 9 0-7812, — 4
55 | 05231, —4 2% 0-9699 1 | 4 | 04883,,—5
56 | 03739, — 4 2% 0-9699 1| 1 | 02441,9—5
57 | 02993, — 4 2% 0-9699 1|1 | 0122l,g—5
58 | 0-2805,, — 4 2% 1 0-9699 1| 2 | 03052,—6
59 | 02652, — 4 2%, 3 0-1982 4 0-1221,5 — 5
60 | 025135 — 4 2%, 3 1 0-7274 1 | 2 | 03052,—6
61 | 01720,, — 4 1* 0-1052 8 01953, — 4
62 | 07575, —5 1* 0-9752 1 | 4 | 01221,0—5

Y qio £ p=q.10%2,
b) The asterisk means that the index belongs to the set / +(x").
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Table 2.

No x B(x°) MN K B(xX)
I (—4,4) 02250, + 3 AN, 45 0-7063,o — 5
AN, 9 46 0:6795,9 — 5
AN, 30 08583, — 5
BN, 23 01669, — 5
(—01,01) 099974 + 1 AN, 96 09924, — 5
AN, 9 62 0-7838,5 — 5
AN, 64 0-4560,, — 5
BN, 22 0-5841,5 — 5
(20, —20) 0-1840,0 + 6 AN, 37 07987, — 5
AN, 9 35 0-8106,, — 5
AN, 74 0-6050,0 — 5
BN, 21 06914, — 5
@3, -3) 01720, + 3 AN, 35 07093, — 5
AN, 9) 42 05633, — 5
AN, 32 0-4053,5 — 5
BN, 17 0-6261,4 + 15
I (—4,3,4) 0-7800,  + 2 AN, 43 09719,y — 5
AN, 35 0-8501,5 — 5
BN, 7 0-4508,, — 6
(10, —10, 15) 0-7860, 0 + 3 AN, 62 07575, — 5
AN, 51 0-8879,0 — 5
BN, 49 0-9989,o — 5
(—0-45016554, 0-7646 AN, 110 0-1732,4 — 29
0-027210277, AN, 110 0-9521,4 — 3
0-70557485) BN, 110 0-3790,, — 4
4,3, —4) 01000, + 2 AN, 44 0-5700%)
AN, 32 0-5700%)
BN, 41 0-:3019%)
81 (0,0,0,0) 0-9000 AN, 26 06147, — 5
AN, 21 0-8244,0 — 5
BN, 46 02064, — 5
v (—6,—5,6,7) 0-1685,0 + 4 AN, 174 0-6649,, — 4
a,1,-1,-2) 0-1300,4 + 2 AN, 75 0-1259,4 — 19
AN, 75 0-4731, — 19
BN, 75 01262, — 4
A x)= -1 0-6000,, + 1 AN, 71 0-3653¢)
=7 0-1620, + 3 AN, 100 01667, — 4
AN, 40 01153, + 19
BN, 100 0-1407,, — 3
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9) Partial derivatives approximated according to (4.15).
b) A/ B-stationary point of non-zero level.
€) Slow convergence.




parameter 6 has changed its value only once — in the 9th iteration. The computation
of 62 iterations has taken 11 minutes (prints included).?!)

Table 2 contains some information on the solving of Examples I—V. In the column
MN the method applied is indicated as M = A or B and the normalization as N =
= N, or N,. Column K contains numbers of iterations carried out. Let us notice
that for the method of A-directions the system was always transformed so that it
might be x° e Q (see Section 4.3), and thus a(x°) = B(x°). The auxiliary problems
were solved by the methods recommended in Section 4.1. The computations took
from 80 sec. to 45 min.?') Numbers of iterations given in Table 2 are not quite
reliable characteristics of laboriousness. In a few cases there have been rather signi-
ficant differences in average time of one iteration in calculating an example (from the
same initial point) by various methods.

4.7. Conclusion. Finally, we will express some not very exact jedgements concerning
practical aspects of the methods of A/B-directions which we base either upon the
results described in Section 4.6, either upon some other experience.

The normalization N, represents a good compromise in the contradiction of
demands mentioned in Section 4.1. The normalization N, (with sufficiently large M)
sometimes gives surprisingly good results, but sometimes creates the optimal direc-
tions little deviated from the boundaries of Q,,,, which could unfavourably influence
the speed of convergence.??)

The difference approximation of gradients is practically as good for application
as the exact gradients (sometimes it is even better).

None of the methods of A/B-directions can be said to be systematically better than
the other.

Two properties characterize the convergence behaviour of the methods:

a) the convergence tends to be slow;
b) the process can converge to an A/B-stationary point of non-zero level.

Similar behaviour was observed, e.g., in the method of gradient minimization of the
sum of squared residua. Of course, this is algorithmically much simpler. Nevertheless,
even such complicated methods as those of A/B-directions might have their justi-
fication: Setting aside various intuitive imaginations,”) it is sure that the region of
convergence to a root (see Theorem 2) is, in general, different from that of other
methods (compare, e.g., with [12], [13]).

31y On the small-size computer National ELLIOTT 803B.
32) The normalizations Ny, N;, and N, have not been examined.

33) For instance: The functions a(x), B(x) are “less nonlinear” than g(x) = Z[hi(x)]z. There
is less number of 4 /B-stationary points than of stationary points of the function g(x).
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The property b) can be — to an extent — neutralized by means of a strategy often
recommended in such cases:**) to do more computations starting from different
(randomly chosen) initial points. By this means more roots, if any, may be obtained.

The programming of the methods of A/B-directions is not difficult if a subroutine
for solving the auxiliary problems is available. The programs of both methods are
nearly identical.

The author thanks Mr. JOSEF NEDOMA for his valuable comments and Mrs. MILENA
Dr1inoVA for help in programming.
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Souhrn

DVE MINIMAXOVE METODY RESEN{ SOUSTAV
NELINEARNICH ROVNIC

JArROSLAV HROUDA

K feSeni soustavy (kone&nych) rovnic
h{(x)=0, i=1,...,r, x€E,
se v &ldnku pouzivd variaéniho principu: minimalizovat funkce

A. ox) = max hy(x) za podminky hy(x) = 0 (i =1,...,r),
B. B(x) = max |h(x)|.

Tyto extremdlni ulohy se fesi iteragnimi metodami zaloZenymi na relaxaci hodnot ofx)
(s podminkou hx) = 0) nebo B(x). Obecn& je zarudena konvergence jen k jistym
staciondrnim bod@im (A-staciondrni, B-staciondrni bod); viechny kofeny soustavy
jsou v8ak mezi nimi zahrnuty. Ob& metody jsou vypracovdny na basi Zoutendijkovy
metody pfipustnych smérii, zndmé z teorie nelinedrniho programovdni. Lze je tedy
v podstaté chdpat jako metody p¥ipustnych smé&rt Fe§eni minimalizaénich dloh A., B.
s nediferencovatelnymi &:lovymi funkcemi o(x), B(x). Stranou hlavni teorie je
ukdzdno, jak je moZno k feSeni soustavy rovnic pouZit nelinedrniho programovani
pfimo. _

Je uddna jedna postadujici podminka pro konvergenci ke kofenu. Je-li soustava
linedrni, je kazdy jeji B-staciondrni bod jejim ebySevovskym pfibliZenim.

Kazd4d iterace sestdvd po numerické strance ze dvou &dsti:

1. uréeni sméru relaxace (A-smé&r, B-smér) fe§enim pomocné extremdlni dlohy
(zpravidla wlohy linedrniho programovani specidlniho typu);

2. uréeni délky postupu v daném sméru (k tomu je navrZen jeden jednoduchy
algoritmus).

Praktickd ucinnost novych metod je ilustrovana na ¥eSeni 5 soustav polynomic-
kych rovnic (2 <nrZ= 7). Numerickd pracnost obou metod je nemald. Pfesto
mohou mit svlij vyznam; dopliiuji totiz — dosti chudé - konvergenéni moZnosti
jinych metod.

Author’s address: Jaroslav Hrouda, Vyzkumny ustav technicko-ekonomicky chemického
primyslu, Stépansk4 15, Praha 2.
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