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SVAZEK 13 (1968) APLIKACE MATEMATIKY ClsLo 3

ITERATIVE SOLUTION OF THE BEST LINEAR
EXTRAPOLATION PROBLEM IN MULTIDIMENSIONAL
STATIONARY RANDOM SEQUENCES

JIRf ANDEL

(Received January 30, 1967.)

In this paper an iterative method for the solution of the best linear extrapolation of
two — dimensional stationary random sequences is derived. The method is based on
the alternating projections theorem. The solution is carried out by the Jaglom’s
method and by the Hdjek’s method. In both cases a numerical example is given.
Further the alternating projections theorem in the n-dimensional case is mentioned
and its application to the best linear extrapolation of the multidimensional stationary
sequences (and to the stationary processes continuous in the mean as well) is shown.

1.

Theorem 1.1. (The alternating projections theorem.) Let Py, P, and T be the
projection operators on a Hilbert space H onto the subspaces H,, H, and H; n H,.
If T, is the n-th term of either of the sequences

p,, P,P,, P,P,P,, P,P,P,P,,...,
p,, PP,, P,PP,, P,P,PP,,...,
then T, - T strongly (i.e., for each x € H, | T,x — Tx| — 0), as n - oo.
Proof: See [4], Vol. 2, p. 55.
Lemma 1.1. Let Py, P, and P be projection operators on a Hilbert space H onto
the subspaces Hy, H, and H,,, where H, is spanned by H, and H,. Then P =

=1~ Q, where 1 denotes the identical operator and Q is the (strong) limit of
either of the sequences

1-P, (1-P)1=Py), (1=P)(1=P)(1—Py),...
1=Py, (1=P)(1=P), (1=P)(1=P)(1—Ps)...

Proof: Lemma 1.1 follows immediately from Theorem 1.1 (See [4], too.)
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Theorem 1.2. Keep the notation of Lemma 1.1. Let x be an arbitrary element of
the space H. Put

pl‘:Plx’ qn=P2(x_pn)’ pn+1=P1(x—qn)’ T’l=1,2,...
Define the sequence of operators Uy, U,, ... by
U1x=pl, U2nx:pn+Qni U2n+1x=pn+l +qn> n=1527-'-

Then for n - o«
|Ux — Px| -0
holds.

Proof: By induction it may be first proved that
n—1

Pn = [:;l)pl(pzpl)" = 2 (PP, ] x,

k=1

n—1 n
g, = [ X Po(P, Py = Y (P,P)]x, n=1,2 ..
k=0 k=1
Further we get by induction

n—1 n—1
—[(1 = P)(1 = P)]" = =1 + ¥ P(PP))" = ) (PiPo) +
k=0 k=1
n—1 n
+ Y Py(PyPo) = Y (PP, n=1,2,...
k=0 k=1

Now, we easily obtain the relations

Pt @n={1 = [(1 = P;)(1 = P)]'"} x,
Pn+1 +‘1n={1 _(1 _Pl)[(l_Pz)(l‘Px)]"}xs

forn =1,2,... From Lemma 1.1 we have

|Ux — Px|| >0, as n— .

2. THE ITERATIVE PROCEDURE OF THE BEST LINEAR EXTRAPOLATION
OF THE TWO-DIMENSIONAL STATIONARY SEQUENCES BASED
ON THE JAGLOM’S METHOD

Denote (for this section only) by N the set of integers and by N the set of natural
numbers.
Let x, = (x,l, xf), te N, be a centred two-dimensional stationary sequence with

a correlation matrix (Bj(n)); =1 2, i.e. Ex} = Ex] =0, Ex], xk = By(n), j, k =
=1,2;t,neN.
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Suppose the existence of the matrix of spectral densities (fj(4)) ix=1,2 and let all
fi(%) be rational functions in e**. Put f;,(%) = fi(e?), j, k = 1,2. Let z/(.) be the
stochastic measure corresponding to f;(2), j = 1, 2. (See [7].)

Let t be a fixed integer. Denote by H, the Hilbert space generated by all finite
linear combinations of the elements x}_, se N*, and by the limits (in quadratic
mean) of sequences of such combinations. (Brieﬂy we say that H, is generated by the
set of elements {x;_,, se N*}.)

Let H,, H,, and H be Hilbert spaces generated by the sets of elements {xf_s,
seN'Y, {x/_,xl,.s,ueN*"} and {x}.x2 s, ue N}, respectively. Obviously
H{, H, = H;, = H. The scalar product is given by (x, y) = ExJ, x, y € H. Denote
(as in section 1) by Py, P, and P the projection operators on the space H onto the

subspaces H,, H, and H,,, respectively.

First we recall briefly the Jaglom’s method for the best linear extrapolation of
one-dimensional centred stationary sequences. The results are formulated for the
component x,. Suppose values x;_,, s € N* of one path of a sequence x! to be known.
We ask for the best linear extrapolation of the value x!,, (m = 0 is an integer).
As is well known, it is necessary to find the point p; = P x} .

Let (D(/I) be the spectral characteristic for extrapolation, i.e., a function for which

2 = j "ot (2 ,(d2) .

Theorem 2.1. Let &*(z) be a function of complex variable z. Suppose that:
(a) @*(z) is analytic on the set {z : |z| = 1},
(b) @*(c0) =0,
(c) ¥*(2) = [z" — @*(2)] f1(2) is analytic on the set {z : |z| < 1}.

Then the function ®(%) = ®*(e'*) is the spectral characteristic for extrapolation.
The mean square error of extrapolation is given by

o7 = [xtem — P1f|> = B11(0) — Jn e " @(2) fia(2) di =

= B4(0) - J ’ |B(2)|? f11(2) d4 .
For proof see [2].

But the idea of the proof of this theorem may be utilized for the derivation of
sufficient conditions for the determination of the elements p,, p3, ... and g4, g, ...
in Theorem 1.2. Obviously, the element Px!,,, is the best linear extrapolation of the
element x/,,,, when x,_,, s € N*, are known.
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Theorem 2.2. Let ¢;(z) be an analytic function on the set {z:|z| = 1}. Put
@,(2) = @;(e'*). Let p, be expressed in the form

Py = J " e (1) 2,(d)
Let y(z) be a function of complex variable z and suppose that

(1) ¥i(z) is analytic on the set {z : |z| = 1},

(by) ¥*(0) = 0,

(c1) 95(2) = [2" = 0X(2)]f1a(2) — Vii(2) £55(2) is analytic on the set {z :|z| < 1}.
Put

T

i f ¢ (2) 2x(dA)

-n

where Y,(2) = y(e). Then g, = q,.

Proof: The conditions (a,) and (b,) imply 4, € H,. We see from (a,) and (b,) that

Yi(z) = f az*
k=1

so that
i, = J ey ae” ™ z,(dA).
k=1
The function (z) is analytic on the set {z : |z| = 1}. Consequently it is analytic on

aset D={z: |z| > d}, where de(0,1). According to Abel’s theorem the series

@ o
> a,z7* is absolutely convergent when |z| > d. Especially the series Y ]akl is
k=1 k=1

0
convergent and consequently the series Zake_"“1 is uniformly convergent. This
k=1
0
implies that Y a,e™ ™
k=1

converges in quadratic mean with respect to the density f55(4)-

Therefore,

d, = f et Z ae” ** z,(d2) =

—x k=1

n N N
= l.i.m.J‘ ey ae”* z,(dd) = Lim. Y ax?, .
< k=1

N- o N-ow k=1

We see, that the element g, is the limit (in mean) of the sequence of linear combina-
tions of elements x?__, se N* and consequently §, € H,.
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The condition (c,) implies that
x:+m—pn~qn-LH2'

Actually, we have for any se N*

(ﬁm—m*%ﬁiJ=JEM$@ﬁﬂ-

-n

But from the condition (c,) it follows that $;(e'*) = z bye™*, where the series on the
right-hand side is absolutely convergent. k=0
Therefore,

J e 9¥(e*)dA =0 for seN*

holds. As x},,, — p, — d, and x?_(se N¥) are orthogonal, we have x;,,, — p, —
—§,1 H,.
Consequently §, = ¢g,. Q.E.D.

Theorem 2.3. Let lﬁ:(z) be an analytic function on the set {z : |z| = 1}. Put
V(%) = ¥n(e™). Let g, be expressed in the form

a0, = J " et () z,(dA) -

Let ¢F, | be a function of complex variable z and suppose that

(a2) @n11(2) is analytic on the set {z : |z| = 1

(b2) @nsi(o0) =0,

(c2) #x(2) = 27f11(2) — ¥i(2) 134(2) — @i+1(2) f13(2) is analytic on the set {z : |z| <
< 1}.

Then
mﬂ=jemwﬂw4@@,

-n

where
(pn+l(}“) = ‘P:H(ed)-
Proof is analogous as in previous case.

Remark 2.1. In the above notation we have obviously
GZn - ||xt+m — DPn — qnuz = ”xtl+m - pn”2 - ”qn”z =

_ B,,(0) - J L) + e 0.0) — |01 f1a() d -
- f D 1) 02
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agn-{-l = th1+m — 4qn — pn+1H2 = thl+m - qnuz - “pn+1”2 =

— B,,(0) -J

T T

™ Y (2) fra(A) di — J e™ ™ () f24(2) dA +

-n -n

n

Pn+ 1(1)|2f11(l) di.

+ f Vi) f22(2) dA — J

-n -n

Example. Let x, be a two-dimensional stationary sequence with Ex, = 0 and
with the following matrix of spectral densities f jk(l):

C]'ell _ all-2, Cze"ir,t

17
e — ay)

’

reN*, C; >0, C; >0, C, + 0 and real, a,, a,, a; are real number such that
a, £ a, a3 Fa;and0 < |aj| < 1,j = 1, 2, 3. Let this matrix of spectral densities
be positive definite for all 2 € (—n, 7). We have f;,(1) = f(e**), where

fii(z) = Ciz[(z — a,) (1 — a,2)] 7", fi5(z) = Coz 7" (z — a,) (1 — ayz2)] 7",
f21(2) = Coz"[(z — a3) (1 = a2)]7", f25(2) = Csz[(z = a3) (I = asz)]7"
It may be easily shown that the spectral density f; 1()L) corresponds to the correlation
function By;(n) = 2nC,(1 — a})~* d'}L

Consider the problem of extrapolation one step ahead, i.e., assume m = 0. From

the Theorem 2.1 we determine the spectral characteristic for extrapolation ¢(%) =
= a,e” " (in details see [2]). Thus we have

Py = alxtl—l :
Using Theorem 2.1 we obtain
[x: = pi]* = 27C, = (1 — a3) By,(0).

In order to find g, we use Theorem 2.2. As we have seen, we have ¢f(z) = a,z™'
Now, we ask for such a function y{(z) which satisfies conditions (a,) and (b,),
when according to (c,), the function

e Colz—a)(z —a3) (1 —azz) — C3y(2) 2"z — a,) (1 — a,2)
(2'1) # (Z) h 2'(z — a,) (z — a;) (1 - azz) (1 — asz)

is analytic on the set {z : |z| < 1}. Find the y}(z) in a form
Vi(z) = 277z = a)) T ¥(e),
where y*(z) is a polynomial of degree r + 1 or less. When we substitute y(z) into
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(2.1), we see that a removal of a simple pole in the point 0 and those in the points a,
and ay is equivalent to the existence of such a polynomial P(z) that

(2.2) Cy(z — ay) (z — a3) (1 — a3z) — Cyy*(2) (1 — a,2) =
= P(z)z’(z — a;) (z — a3).

From a comparison of degrees of both sides of (2.2) it follows that P(z) is a constant.
We denote this constant by K. For z # 1/a, we get from (2.2)

*(5) = Cy(z — ay)(z — a3)(1 — a3z) — Kz'(z — a,)(z — a3)
() C5(1 — a,2) )

In order to ensure that y*(z) is a polynomial it is necessary that for z = 1/a, the
numerator equals 0. This condition gives

(2.3) K = Cy(1 — aya;)(a, — a3) (1 —a3) ' ay .

Consequently,

s Coz —a))(z —a3)(1 —asz) — K2'(z — ay) (z — a,)
Vilz) = Cs 27z — ay) (1 — ayz)

E)

where the constant K is given by (2.3).

In order to obtain some numerical results, we suppose further r = 1. In this case,
we have

(24) Yi(z) = (42> + Bz* + Cz + D) [z%(z — a,) (1 — ay2)]7",
where

C,A = —Cha; — K,

CiB = Cy(1 + ajas + a2) + K(ay + a3),

C;C = —C,(a, + a; + a,a3) — Ka,a,,

C,D = C,aja,.

The decomposition in the partial fractions gives

(25) Ui(e) = oz + Bzt 4 9(z = ax) 7,

where
7__2 ﬁ_“_c_“2+_2(‘l+a§) y_Aa§+Ba§—+—Ca2+D
) a,’ as ' a3(1 — a) ’

The fraction of the type 6/(1 — a,z) does not occur in decomposition (2.5}, as our
choice of constant K guarantees the divisibility of polynomial Az> + Bz? + Cz + D
by the polynomial 1 — a,z.
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In the considered case we have derived the following results:
¢1(2) = aje™*
Yi(2) = e 2 + Be” " + y[(e* — a,).
Hence
P14 a4y =a;x; ., + B+7) xI,+ (0‘ + V“z) X, +

2.2 i 3y2 4.2
+oyaxxios + yayNi_g + yaxxi_s + ...

According to Remark 2.1 it may be obtained

03 = 2nCy — 2nCy(1 — a3)™! |:oc(a2 —a,) + B(1 — aja,) +

_ai

+ " l (1 - 2aya, + alai)].
After some computations we get the following expressions for a, § and y:
o = —C,a,a5/Csa, ,
—C,[Cya3(1 — a3)] ' (—aja, — asas + aja; + aya3 + a3a3 — aa,a3),
Cy[Csa3(1 — a3)] 7' [—asa; + (1 + aya; + a3) a3 —

—(ay + a3 + aja3) a, + a,as].

- =
| I

Some special values of parameters ay, a,, a3, Cy, C,, C; have been chosen for
numerical illustration so that the matrix of spectral densities has been positive definite
for all e (—m, n). Table 1 contains the values of B,;(0), 67, 03 and the maximal
absolute values of the correlation coefficient of both components

_ '312(’1)]
el = max B2
n [B11(0) By2(0)]
Table 1
l | 5 | i
ag | ay | a3 GGG lolmax | By1(0) o o3
f | | f "
07 | 06 | 04 5 11 3 026 | 6160 31-42 29-50
07 | 06 | 04 5 12 3 053 | 6160 31-42 2392
07 | 06 | 04 5 133 3 087 | 6160 3142 10-55
07 | 04 | 06 511 3, 018 | 6160 31-42 30-33
07 | 04 | 06 5 2 3 035 | 6160 31-42 19:92
07 | o4 | 06 s |27 3 047 | 6160 3142 606
094 | 093 | 095 | 5 | 1 300020 | 26990 31-42 29-31
094 | 093 | 095 | 5 | 2 3 041 | 26990 3142 2241
094 | 093 | 095 | 5 | 38 | 3 077 | 26990 31-42 1-07
i | |
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3. THE ITERATIVE PROCEDURE BASED ON HAJEK’S METHOD

First we show the Hdjek’s method for the extrapolation in stationary sequences

(see [1]).

Let a (one—dimensional) centred stationary sequence x, have the spectral density
| . ;
(3.1) f(A) = —| Y ape™| 2,
271 k=0

n
where a,_, are real and such that all roots of z a,-,z° = 0 are greater than 1 in
k=0

absolute value.

Let X be a Hilbert space generated by the set of elements {xo, e xN}, N = 2n.
Let v be a random variable with Ev = 0, E|v|2 < o0; generally v¢ X. Put ¢, =
= Ex,,t = 0,1, ..., N. Then the projection of random variable v into the space X
(denote it by Pv) is given by

N N
(3.2) Py = 2 X:0sQss »
t=0s5=0
where
min[N—t,N—s,n—|t—s|]
(33) Q.= Zo Apoi@pi-je—g for max(t,s) >N —n,
i=
n—|t—sj
An_Gy_i—j1-5) for n=<t, s<N-—mn,
i=0
min[t,s,n—|t—s]|]
Ay iy i—ji—s for min(t,s)<n.

i=0

Introduce the vectors X = (xq, ..., xy)' and @ = (@q, ..., @y)". Then the relation (3.2)
may be written in the form
Py = x'Qop,
where
Q = (Qts)t,s=0,...,N
and ¢ is conjugate to ¢.

Now, let us have a two-dimensional (centred) stationary sequence x, = (x;, x;)
such that its matrix of spectral densities (f},(4)); =1 » is rational in e'* and the spectral
densities f1;(4) and f;,(4) have the form of (3.1). According to (3.3) we compute the
corresponding matrices Q") and Q.

Let H,, H,, H;, and H be Hilbert spaces generated by the sets of elements
{xLt=0,1,..,N}, {x, 1 =0,1,..,N}, {x;, x2, 1,5 = 0,1,..., N} and {x;, x2, ¢
and s are integers}, respectively. Let P;, P, and P be the projectors on H onto Hy, H,
and H,,. Keep the notation of the Theorem 1.2.

Suppose values xg, X4, ..., Xy to be known. Then the best linear extrapolation of
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the element x} ., (m is a natural number) is Px} . Let us look for Pxy+m bY the
iterative method described in Theorem 1.2. First of all we determine

o = Ex!Xpym> t=01,..,N.
Consequently
_ 1 _ L (yel) o)
Py = Pixyy, = x'QW o',
where
1 1,1 1 [N
x = (xo, X1y oo XN) S oV = ((po, Pl eees qolf,)' .

Denote the difference xy,,, — P;xx, ,, by v, and determine

¢! = ExX,, t=0,1,...,N,
and
gy = Pyo; = x¥'Q¥ @,
where

0P = (0%, 01, .., 03) , xP =(x3,x1, ..., x2) .

Further we may proceed analogously: We put x%., — q, = v, and determine
P,v, = p, etc. Following Theorem 1.2 the sequence py, p; + g p, + gy, P2+ 25 -+
(strongly) converges to Pxy .

Let us investigate by this method the best linear extrapolation of the element XN+t
(when xo, X,, ..., xy are known) in example given in section 2.

If we have the spectral density

f(a) = Clei’1 - al_z = 2L |(27C)™* — a(2nC)™* €72,
n

C>0, ae(-1,1), a=%0

s

then we obtain the matrix

1 —a 0 0 ... 0 0 0||

—al+a® —a 0... 0 0 0;3

Q—-—]— 0 —a 1+a®>—-a... 0 0 Ol
D e |

0 0 0 0...-ql+d —al

0 0 O 0. 0 -—a 1|

When we substitute in this expression the values C = C;, a = a; and C = C,,
a = a,, respectively, we obtain the matrices Q) and Q@ for the spectral densities
f11(4) and f,5(2) of our example.
First we have

¢or =2nCy(1 —aj) ' al*'"", t=0,1,... N,
and

1
Py = a1 Xy -
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This results is the same as in section 2, where all values xy_;, k = 0, (i.e., the entire
past of the sequence x,) have been known.
Further we obtain

0 = E[x¥(xh,; — ayxh)] = 2rC,(1 — a2) ™} (a¥ ™" — a1, 1 =0,1,...,N,
g, = Co[C5(1 — a3)]7' [(1 — aja, + aja; — aa3) x} +
+ (R + 2aja,a5 — a; — a,a3) xk_; +
+ R(a, — ay) xj—, + ayR(ay — ay) Xy_3 + ... +
+ a3 ’R(ay — a;) xi + a3 ~*(a3 — aya; + a,a; — a,a;3) xg],
where
R = —aza5 + (1 + a3)a, — a;.

After some computations we may see, that the coefficients of xZ, ..., x are the
same as the corresponding coefficients obtained by the Jaglom’s method. The
coefficients of x3 are different. The reason is following. In Hdjek’s method we have
supposed, that we know xy, Xxy_1, ..., X only.

From the theory given in [1] we may further derive that

03 = [xve1 = P — @] = [xhes = Pi® — 9P QP®.

4. A GENERALIZATION OF THE ITERATIVE METHOD
FOR THE MULTIDIMENSIONAL CASE

Let Hy, H,, ..., H,(n 2 2) be subspaces of a Hilbert space H and let P, P,, ..., P,
be projection operators onto these subspaces. Introduce the operator A = P,P,_; ...
... P;. Obviously, the adjoint operator is A4* = P,P,... P,. Put B = A*A. Let P
be the projection operator onto H, n H, ... n H,.

Theorem 4.1. B* > P strongly, i.e., |B*x — Px| - 0 as n —» oo for any x € H.

Proof see [5].
Remark 4.1. Theorem 4.1 holds even if the operator A is generally a finite product

of all operators Py, ..., P, (in arbitrary order); some of these operators may occur
several times.
Let H, be the minimal Hilbert space containing all H,, H,, ..., H, as subspaces.

Denote P, the projection operator onto Hy and put D = (1 — P,)(1 — P,—y) ...
...(1 = P,); obviously D* = (1 — P;)(1 — P,)...(1 — P,). The following lemma
is an easy consequence of Theorem 4.1.

Lemma 4.1. The sequence of operators 1 — (D*D)* converges (strongly) to the
operator P,.
Let x be an element of H. Put

¥ = Pyx, y0 = Py(x — y{V), ..,y = P(x — yP — .~ y2).
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By induction we get

W=P(l=P_y)...(1 =P)x, k=1,2,..,n.
Further (by induction) we derive the relation
x = y(l) = y(ll) + ...+ y(l) = (1 — D)x
Put
= YO = Pl = x0) = 3P =
= Py[(x — xP) — p@ — . — yP].

Analogously as in the first step we obtain

VP =yP + o+ yP = (1 - D¥) (x — xM).
Put
X@ =y 4 @

Then x® may be expressed in the form
x® =1~ D*Dx.

Proceeding in this way, we obtain

YD = (1 = D)(x — yV — ... — y-D)
y(zk) = (1 _ D*) (x - y(l) - = y(2k—l)),
k=1,2,..

By induction we derive that
X0 =y 4 4 Yy = [1 — (D*D)*] x.
As 1 — (D*D)* converges to P, strongly, x**) converges to Pox in the norm.

Remark 4.2. The procedure just described has the following interpretation. First
we put

1 1 1
X0 = Pyx, x{ = Py(x — x{V), oo i = Pylx — x{ — ... = x(D,),
and further
(1) 1 2 2
WP = X032, = Py = K = 0 ),
2) 2)) .
=P1(x\.x(2 - ...—xf,)),
2
x(ls) — x(lz)’ x(23) - Pz(x _ x(13) — x( ) — x(Z)), ey xfl:!) =
3 _ 3
= P,,(x ~ Xi x( )1)
etc. Obviously x% + ... + x® = x® and we know that x®* — P,x in the norm.
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This procedure may be, of course, modified according to Remark 4.1.

Clearly, the method of succesive minimization gives the iterative solution of the
problem of best linear extrapolation in multidimensional sequences analogously as
in sections 2 and 3 for the two-dimensional case. Here we omit the details.

Our method may be used for the case of linear extrapolation of multidimensional
stationary processes which are continuous in quadratic mean. But it seems that the
direct procedure given in [3] is here more desirable.

5. FINAL REMARKS

Paper [8] contains a solution of linear extrapolation problem, based on the alternat-

ing projections theorem, too. The measures (x,z;)(.) = Exz/.), j = 1,2, are
introduced, where z () is the stochastic measure corresponding to the j-th component
of the process, and x is a random variable, E|x|* < 0. Let M,(.) and M,(.) be the
spectral measures corresponding to spectral distribution functions F (1) and F,,(%),
respectively. Using the notation of our section 2, the Px is expressed (under some
general conditions) in the form of a infinite series. The members of this series are
integrals with respect to z;(.) and contain among others d(x, z;)/dM;. The elements
of Hy (and H,) are first expressed by the help of orthonormal basis and after that the
alternating projections theorem is used. Paper [8] deals with two-dimensional case
only. While the results of [8] are rather theoretical the methods derived in our
sections 2 and 3 may be in practice effectively used.
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Souhrn

ITERACNI RESENI PROBLEMU NEJLEPSI LINEARN{ PREDIKCE
MNOHOROZMERNYCH STACIONARNICH NAHODNYCH
POSLOUPNOSTI

JIRi ANDEL

Budiz x, = (_,\‘,1, x?) dvojrozmérnd centrovand staciondrni posloupnost. Budiz H,
(i = 1,2) Hilbertitv prostor generovany mnozinou prvki {xi_,, xi_,, ...} (¢ se nyni
predpokldda pevné). Budiz dédle H,, minimdlni Hilbertiv prostor obsahujici H, a H,
jakoZto podprostory a budiz H Hilbertliv prostor generovany mnoZinou {x,, t =
=..,—1,0,1, } Ozname P,, P, a P po fadé projektory prostorit Hy, H, a H{,
v H. BudiZ x € H. PoloZme

Pr=Px, q,=Pix=p), Pus1=Pilx—4q,), n=12..
Definuyme
le:pl’ Uan:p/x+qn’ U2n+1x:pn+1+qna n:1725"-

Pak “U,,x - Px“ — 0 pro n — o0. Diikaz tohoto tvrzeni je obsahem véty 1.2.

Nalezeni nejlepsi linedrni predikce prvku x/,,(m = 0 celé) pfi zndmych x,_,,
X,_2,... je oviem ekvivalentni nalezeni prvku Px. Vé&ta 1.2 umoziiuje hledat Px
iteraéné. Praktické provedeni tohoto postupu v pfipadech, kdy matice spektralnich
hustot je raciondlni vzhledem k e, je poddno ve vétdch 2.1, 2.2 a 2.3. Jednotlivé
kroky se provddéji pouZitim Jaglomovy metody [2] Jsou-li zndmy hodnoty xg, ..., Xy,
pfi¢emz jde o predikci prvku xy,(m = 1), a jsou-li spektrdlni hustoty fy,(2) a f,,(4)
typu (3.1), lze jednotlivé kroky iteratni metody provadét Hdjkovou metodou [1].

V prdci jsou obéma metodami provedeny prvni kroky itera¢niho postupu pro
matici spektrdlnich hustot

. _ T —
llcllell_all 2, Cze 1l|el/1 . a2| 2

}!Cze'lle‘z _ a2|—2’ Cslexl _ a3|~2

kde C; > 0, C3 > 0, C, je redlné ¢islo rizné od nuly a &isla ay, a,, a; jsou redlnd
¢isla, navzdjem rtznd a také riiznd od nuly, kterd maji absolutni hodnotu mensi nez 1.
Predikce je v tomto pfipadé provddéna o jeden krok dopfedu. Pro konkrétni hodnoty
parametri byly nékteré veliiny tabelovdny v tabulce 1.

Déle ¢lanek obsahuje zobecnéni iteraéniho postupu na n-rozmérné staciondrni
posloupnosti, n = 2.
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Pe3rome

UTEPAIIMOHHOE PEIIEHUE IIPOBJIEMbI HAWJIVUIIE
JIMHEMHOM DKCTPAIIOJIALINU MHOI'OMEPHBIX
CTALIMOHAPHBIX CJIIVUAMHBIX IMOCJIEAOBATEJBHOCTEN

UPXU AHZIEJI (Jikf ANDEL)

IMycts x, = (x}, X?) — AByXMepHAS IEHTPUPOBAHHAS CTAIMOBAPHAS MOCIE/0BA-
TesbHOCTh. Ilycte H; (i = 1, 2) — npocrpancTBo I'miibGepTa, HOPOXKACHHOE MHO-
JKECTBOM 3JIEMCHTOB {xf_l, xi_,, ...} (¢t 3mecy mpenmonaraeTcst pUKCHPOBAHHBIM).
Ilycts H,, — MuHUMAanbHOE npocTpaHcTBO [ibbepTta, koTopoe conepxut H, v H,
KaK MOJiINpOCTpaHCTBa, U nyctb H — npoctpaHcTBO I'iibbepTa, MOPOXACHHOE MHO-
KeCTBOM {x;, xZ; t,s = ..., —1,0,1,...}. MBI 0603Ha4UM B 3TOM NPOCTPAHCTBE
yepe3 P;, P, u P COOTBETCTBEHHO MPOEKTOPEI mpocrpancts H,, H, u H,,. IIycts
x € H. Eciu MbI 0603HaYUM

plzplx’ qn=P2(x_pn)’ pn+1=P1(x_qn)» n=l921'-'
Hu lezpl’ Uan:pn+qn’ U2n+1x=Pn+1+qn’ n=1*2!"'?

10 [|U,x — Px| = 0 mst n — 0. JI0Ka3aTeIbCTBO 3TOTO NPEUIOKEHUS COACPKUTCS
B Teopeme 1.2.

SICHO, YTO HAXOXIEHHE HAWIYYIIeil JMHEHHON SKCTPAIOJANMY 3JIEMEHTa X, .,
(m = 0 — ueJtoe), KOrga M3BECTHBL X, _ 1, X;_,, ..., SKBHBAJICHTHO Pa3bICKAHHIO JJic-
menTta Px/),,. Braromaps Teopeme 1.2 MOXHO uMcKaTh Px)., METOIOM WTepaLii.

B ciy4ae, korfia MaTpuia CHEKTPAJIbHBIX IUTOTHOCTEH pallMOHaJbHA OTHOCUTEIIb-
HO e'*, mpakTwyeckast KOHCTPYKIMS UTEPAIMOHHOTO METO/IA COAEPKUTCA B TEOPEMAX
2.1, 2.2 1 2.3. Illaru 3TOr0 METO/a OCHOBAaHBL Ha MeTozie Sriroma [2].

Eciin M3BZCTHBL 3HAYEHUSA Xg, Xy, ..., Xy M HAJO OIKCTPANOJMPOBATH IJIEMEHT
Xyem (M = 1 — 1esoe) 1 ecin CieKTpalibHble MIOTHOCTH KoMmoHeHT Tuna (3.1), To
MOXHO [0JIb30BATHCS B OTICIBHBIX IUarax Metomom Laexa [1].

B 3T0i1 craThe B KayecTBe NMpUMeEpa CHAEJIAHBI MEPBBIC IIATM UTEPAMOHHOTO MPO-
Hecca MeTogoM Srsoma u Naeka i1 MaTPUILBL CIEKTPAJIbHBIX MIIOTHOCTEH

Cl[elﬂ. _ all—l’ Cze—lllell _ az‘—l

ia] ik -2 iz -2
| Cae |e -a21 s C3|e —a3[

t
|

|
|
|
|
|
|

sgece C, >0, C3 >0, C, — geiictButenbaoe uuciio, C, #+ 0, ay, a,, a; — Jei-
CTBUTEJIbHBIC YUCJIA, HEHYJIEBBIE M MOMAPHO Pa3JIMYHbIe, a0COJFOTHBIC 3HAYCHHUS KO-
TOPBIX MeHbUIE 1. DKCTPANOJISAIUA BEIYUCIISIETCS. Ha OMH 1Iar Bueped. JJIst 3ajaHbIX
3HAYCHUI MapaMeTPOB HEKOTOPHIC BHIYMCIICHHAIC BEJIMYMHBI IOMELIEHBI B Tabuie 1.

B cTaThe TOXE HAXOAUTCSA 06OGIISHIC UTEPALHOHHOTO IPOLECCa TS I — MEPHBIX
CTaIMOHAPHBIX MMOCJIE0BATELHOCTEH.

Author’s address: RNDr. Jiri Andél C.Sc., Matematicko-fyzikélni fakulta Karlovy university,
Sokolovska 83, Praha 8.
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