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THERMAL DEFLECTION
OF A NON-HOMOGENEOUS RECTANGULAR PLATE

S. K. SARKAR

(Received August 5, 1966.)

INTRODUCTION

The literature on the determination of thermal deformations in rectangular plates
of varying thickness is scarce. This is partly due to the considerable mathematical
difficulties resulting from the difficulty in solving the partial differential equation
with variable coefficients and partly due to its earlier non-applicability in practical
and engineering works. But these types of plate are being widely used in recent
engineering structures.

The investigation into this branch was initiated by R. GRANOLssON (1934) who
analysed the behaviour of rectangular isotropic plates of varying thickness in the
isothermal case [1]. The solution was obtained in the simplest case with the help
of Fourier series. Later, E. REISSNER (1937) obtained a similar solution for linearly
variable bending rigidity [3] H. D. ConwaAy (1948) obtained numerous solutions
for symmetrically loaded circuilar plates with radial variation of thickness [4].
He also found the expressions for the deflection surface of rectangular plates with
flexural rigidity variable in an exponential manner (1958) [5]. All these discussions
and investigations included only the isothermal cases of plates.

The thermal problem was first considered in a work by Z. THRUN (1956) in which
he obtained the expression for the deflection of a rectangular plate whose flexural
rigidity is linearly variable and which is subjected to a non-uniform temperature
change [2].

In 1960 Z. MAzurkiewIcz discussed in a paper the thermal problem and obtained
the equation of the deflection surface and the frequency of free vibration of a thin
rectangular isotropic plate of varying thickness by using Fredholm’s integral equation
of the second kind [6].

In 1962 E. H. MANSFIELD co-ordinated and extended the published works by
expressing the governing differential equations solely in terms of the Laplacian
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operator. He considered the behaviour of a rectangular plate with thickness varying
exponentially and temperature varying in the plane and through the thickness [7].

In the present paper the governing differential equation with variable coefficients
is solved for a thin rectangular isotropic plate of varying thickness under suitable
boundary conditions and the influence of temperature. The temperature is arbitrarily
obtained by solving the heat conductivity equation. The change of temperature
in time is supposed to be small, so that the problem is regarded as quasi-static.
It is assumed that the bending rigidity of the plate is known function of x, y, conti-
nuous and differentiable inside the region and along the edge of the middle surface
of the plate. Poisson’s ratio is constant. The analysis is based on the usual small-
deflexion theory of elasticity.

2. NOMENCLATURE

= w(x, y, t), the deflection of the middle surface.
t = time.
a, b = horizontal dimensions of the plate structure.
2h = thickness of the plate, a function of x, y.
E, v = Young’s modulus and Poissonis ratio taken as constants.
D = D(x, y). Flexural rigidity = 8Eh3[12(1 — v?).
T = T(x,y,z, t), temperature.
o = coefficient of thermal expansion.
M,, M,, M,, = moments.

3. METHOD OF SOLUTION

We consider a rectangular plate occupying the space
(1) 0

and take the xy-plane in the middle surface of the plate with z denoting the distance
from this plane.
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The differential equation of the deflection surface of an isotropic, non-homogeneous
plate under no external load may be represented in various forms. The most general
form of the equation of equilibrium is expressed in terms of moments per unit length
[9], eqn. 12.12.13
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where the moments are given by

(3) M, _D[Wxx + vay] - IMT >

—D[w,, + yw, ] — 1A:I~Tv ,

It

M}’
M, =(1-v)Dw,,
where the bending rigidity of the plate per unit of length is

2ER3

(4) D(x, y) = m

and the symbol M (x, y) denotes the quantity
h
(5) My(x, y) = oF f Tz dz.

—h

The equation for the deflection w is now obtained by substituting into equation (2)
the expressions for the moments,

0* My o? ,
A 2 [——D(Wxx + vw)’)’) - 1 _1 ] + A 2 [_D(WY)' + vwxx - lMT ] -

ox* v|  ay? —y
62
0x Oy

-2

[(1 =) Dw,] = 0

which reduces on simplification to

(6) D Vw + V2w V3D + 2 b 9 (V2w) + D 9 (V2w) | —
Ox 0x dy dy
0*D 3*w 0®D 9w 0°D 0*w
_(1._.y) 7_2'_2—2 e +_._‘0_£ = — 1 VZMT,

0x* 0x 0x 0y 0x dy  dy* dy? 1—yv

where
02 0%
7 2=
@ ox?  oy?
4 4 4
V4 = i 2 g 9

=— + + .
ox* ox* ay? oyt
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4. RIGIDITY VARYING LINEARLY

Case I
In the particular case where the bending rigidity varies according to the law
(8) D =Dy + D,y, Dy D, = constant,
the equation (6) reduces to

1

-V

VM,

D V*w + 2D1—a—(V2w) = — -
dy 1
ie.

© V2[(Do + Dyy) V2w] = — 1_1_ V:My .
-

The differential equation should be solved with particular boundary conditions.
To solve this we have to find M for which the temperature T is to be known.

The temperature T(x, y, z, t) satisfies the heat conductivity equation (with no
heat sources)

(10) ver= 1T,
k ot

where k is the diffusivity constant.
We take the solution of equation (10) in the form

o0
(1) T, y,z,0) =Y (Do + Dyy)e kommmawe gy M g X

mmn=1 h a
Therefore, M(x, y, ) is given by

(12) My = z (___1)m+1 20Eh (Do + Dly) e—k(mz/h7+n2/a2)1t2t sin nnx

mun=1 mmn a
Equation (9) can now be written as
(13)

V(D + Diy) V] = 3 (Do + Dyy) (— 1)t ZEEL bt iy 1

nm=1 mn a

Let us find out the deflection w for a plate simply-supported along the edges
x =0, aand y = 0, b. The solution of equation (13) will be sought in the form

©
(14) w=wy(x) + Y ¥, sin >,
n=1 a
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where the first part is a particular integral of equation (13) and the summation
of terms is the complementary integral. All terms in expression (14) must satisfy
the conditions of simple support along the edges x = 0, a.

A particular integral of

(15) (Do + Dyy)Viw =Y (Do + D,y)(—1)"*! 2Eh e snaye g X
mun=1 mmn a

is necessarily a particular solution of equation (13). Substituting the first term of
expression (14) in equation (15) and dividing throughout by the term (D, + Dyy),
we get,

2
d*w Z ( 1),,,+ 1 2aEh ok e w2 nmnx
dx m,n=1 a

which may be integrated to give

(16) Wl(x) Z ( ])m+2 2eEha® o~ KM/ n2a2)n2t ﬂrf
mmn=1 I‘ﬂl’lzTZ3 a

The second part of expression (14) must satisfy the homogeneous equation
(17) V2[(Do + Dyy) V2w] = 0.

Substituting the series into equation (17) and dividing throughout by sin (nnx)|a,
we obtain

o (s ]

The solution of equation (18) is [8]; p. 176

(19) Y, = A,’,{ + Dx)’) — ¢~ 2an(Do+D1)/Do E, I:Z_OC,,_(DO + D1J’):|} s
oh

_ B,rl {e—Za"(Do+D1}’)/D0 IOg %(DO + Dly) _ E,’ —21n(D0 + Dly) ea,.y +
D, D,

+ C,e™ + D,e ™,

where
nw u u u _—u
(20) 2, = —, Ei(u)=f ¢ du, E,.(_u)zf ¢ du.
a - U w U
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Substitution of this value of Y, into the equation (14) gives the expression for the
deflection of the middle surface. The constants 4,, B,, C, and D, in equation (19)
can be obtained from the remaining conditions of simple support along the edges

(21) W,y=0 = le=b =0,
2
a—VE+——MT—=0 at y=0,b.
* (1-vD
Case 11

If the rigidity varies according to the law
(22) D=Dy,+ D,z
then equation (16) takes the form

(23) D Viw = — 1; VM, .
-V

The temperature T(x, y, z, ) is obtained from the equation (10) and we take
it arbitrarily in the form

(24) T(x, y,z, 1) = Z (Do + Dy z) e Kimi/mentlanit iy MY gin MY
mn=1 a

so that M,(x, y, t) comes out as

o0
2D _ . mMnX . nm
(25) My = Y S pdemkmtlar b gy MUY G TTLV
m,n=1 3 a

The solution of equation (23) is easily found to be [9], p. 390

(26) w(x,y) = Z Wi sin T sin MY
m,n=1 a b

where

(27) Wi == Lo !

(1 =v)n*D m?|a® + n?[b*
and

a b
(28) a,, = 4 M(x, y) sin = sin 7 g dy = 2Dy s - kmrgar ey
ab JoJo a b 3

Each term of the deflection satisfies the conditions of simple support at the edges.

The expression (26) with the values of w,, given by the expression (27) gives the
explicit value of the deflection.
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In conclusion, 1 take this opportunity to convey my grateful thanks to
Dr. P. CHowpHURY of B. E. College, Howrah, West Bengal, whose kind help has
enabled me to complete this paper.
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Vytah

TERMOELASTICKA DEFORMACE NEHOMOGENNI PRAVOUHLE
DESKY

S. K. SARKAR

V rdmci linedrni termoelasticity jsou stanoveny slozky tenzoru deformace pravo-
uhlé tenkosténné desky s linedrné proménnou tuhosti. Problém je feSen ve smyslu
kvazistatickém. Jednd se o systém rovnic pretvofeni a o rovnici teplotniho pole
jako celkovém systému linedrnich parcidlnich diferencidlnich rovnic s proménnymi '
soudiniteli. Reseni sestdvd z &4sti charakteru tepslného potencidlu a z &4sti, obsahujici
slozky Galerkinova vektoru posunuti. K ur&eni funkce prithybu je pouZito Fourie-
rovy metody. Na hranici vySetfované oblasti jsou zaddny homogenni okrajové
podminky pfi feSeni elastické tilohy a nehomogenni pocdtedni podminky pfi feseni
rovnice vedeni tepla.

Pesrome

TEPMODJIACTUUYECKAS JE®OPMALM S HEOJHOPOHOM
MMPAMOYTOJBHON TUTUThI

C. K. CAPKAP (S. K. SARKAR)

B pamkax JIMHCHHOW TEPMOAJIACTMYHOCTH OIPE/ACICHBI KOMIIOHEHTBI TEH30pa
nehopmanu TPSIMOYTroJIbHON TOHKOCTEHHOM TIUTBHI C JMHEHHO MepeMEeHHON TBEp-
JoCThIO. 3a7aya peuleHa B CMBICIE KBasucraruucckoM. CucreMa ypaBHCHUI mpe-
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00pa3oBaHUsA M ypaBHCHUS TEMJIOBOTO TMOJS PACCMATPUBAETCS KaK OJHA CHCTEMa
IubdepeHIHATBHBIX YPABHEHUH B YACTHBIX TPOM3BOJHBIX C IICPEMECHHBIMU K03 du-
mMeHTamMH. PelieHue cocTOMT M3 ABYX 4YacTeii: mepBast M3 HMX HOCUT XapakTep
TEMJIOBOTO NMOTCHIMAJIA, U BTOPast YaCTh COJEPKUT KOMIOHCHTBI BEKTOpPA CMCUICHUS
Tanepxuna. [ns onpepesenus GpyHkuuu nporwba ucnosib3zoBadH Meton dypee. Ha
I'PaHuIC UCCIICyeMOii 001acTH 3alaHbl OTHOPOAHBIC KpaeBbIe YCIOBHUS ITPK PCIICHUU

9JIACTHYECKOM 3a1a9¥ U HEOJHOPOAHBIE HAYAJILHBIC YCJIOBUA NPU PCIUICHUN ypaBHE-
HUA TCHJIONPOBOAHOCTH.

Author’s address: S. K. Sarkar, Department of Mathematics, B. N. College, Itachuna, Hooghly,
West Bengal, India.
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