Aplikace matematiky

Boris Gruber
Numerical determination of the relative minimum of a function of several
variables by quadratic interpolation

Aplikace matematiky, Vol. 12 (1967), No. 2, 87-100

Persistent URL: http://dml.cz/dmlcz/103074

Terms of use:

© Institute of Mathematics AS CR, 1967

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103074
http://dml.cz

SVAZEK 12 (1967) APLIKACE MATEMATIKY CisLo 2

NUMERICAL DETERMINATION
OF THE RELATIVE MINIMUM
OF A FUNCTION OF SEVERAL VARIABLES
BY QUADRATIC INTERPOLATION

Boris GRUBER

(Received September 7, 1966.)

1. INTRODUCTION

Many physical and technical problems require to determine the relative minimum
of a function of several variables. In this paper an algorithm is demonstrated which
is suitable in the following cases:

a) The number of variables is so great (tens, or even hundreds) or the function
is so complicated that the problem cannot be solved in the exact way known from
classical analysis (putting the first partial derivatives equal to zero and inquiring into
the corresponding quadratic form) and we have to modify the concept of the relative
minimum in such a manner that accessible numerical methods are applicable. The
uncertainty which arises will be smaller if not only one minimum of the function f
is calculated but the whole sequence of minima of functions f, ..., f,, depending
upon a parameter. The probability that we have really found relative minima (in
classical sense) increases with the “smoothness™ of this sequence.

b) We are not interested in all minima of the function but only in certain ones
which are of special importance for our problem. Besides from the (e.g. physical)
character of the problem may be assumed that for each of these selected minima an
“initial point” may be found which lies closer to this minimum than to the others.
This situation occurs e.g. if looking for the equilibrium configuration of a system of
mass points with central force acting beetween them. Doubtless a great number of
these equilibrium configurations exist (the central force having a suitable form and
the number of the mass points being great enough) but we are interested only in
those of quite certain character, e.g. which correspond to an ideal crystal lattice or
to the lattice with a vacancy, interstitial, dislocation, etc. We choose the initial
configuration according to the case that is studied.
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¢) The algorithm is especially advantageous if the function has the form of a sum
every member of which depends only upon one or a few variables. It is advantageous,
too, if the calculation of the function values is much easier than the calculation of
the values of the partial derivatives because these are not used.

The main effect of this method is that it enables us (even though only with a certain
probability of the success) when looking for the relative minimum to change all
co-ordinates of the given point simultaneously (not one by one) although only ”very
few” function values are calculated.

2. AUXILIARY CONCEPTS
Two points
(1) X0 =[x}, ...x0],
X* =[x} + 8, .., x) + 3,]
of the n-dimensional space (n > 1) and a positive real number & are given. The

points X°, X* are said to be neighbouring') (also X* to be a neighbouring point of
the point X° and vice versa) if such an integer i (1 < i < n) exists that

|6 =6, 6;=0 for j+i.
They are said to be adjoining?) (also X* to be an adjoining point of the point X° and
vice versa) if they are not identical and if
either |5 =0 or &, =0
holds for every i (1 < i < n). So two neighbouring points are also adjoining but

the opposite is not true.
The symbol K(X°, 8, m) (m positive integer) denotes the set of points

(2 X =[x,...x,
where every co-ordinate x; assumes all the values
x{ + kéfm (k =0, +1,..., +m)

independently on the other co-ordinates. Instead of K(X°, 9, 1) we write K(X°, 9).
This set consists of the point X° and of all adjoining points of X° so that it contains
exactly 3" points. Further we denote by R(X°, §) the set consisting of the point X°
and of all neighbouring points of X°. This set has 2n + 1 points and inclusion

(3) R(X°, 8) = K(X°, )
holds (Fig. 1).

')y More precisely: é-neighbouring.
2) More precisely: d-adjoining.
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A real-valued function f of n variables is termed to have a weak (or strong) re-
lative minimum of the order § at the point (1) if it is continuous in the interval

4 XY =8, XY +6) x .o x X2 =5, X0+ )

and if

(%) f(X°)= Min f(X) (or f(X°)= Min f(X))
XeR(X9,5) XeK(X0,8)

8
-

o) K(x°,4,2) d) K(x°, 15)

e) K(V°, 19
8 T
WD
o o o
o (i ?—/—XO
o O o o
o o o
f) K(x°, 5, 4) g) K(x°, 15, 2)

Fig. 1 (n = 2).
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is satisfied.®) To decide whether the function has a weak (or strong) relative mini-
mum at a given point, we have to calculate 2n + 1 (or 3") function values.*)

3. QUADRATIC INTERPOLATION

Let be given the point (1), a positive real number ¢ and a real-valued function f
of n variables continuous in the interval (4). Let us denote

(6) yo = f(X°),
& ’—"f(x(x)s s x?_,,x? + 4, x?ﬂ’ ---,xr(:) — Yo
& = (X oo XX = 0 X X)) = Yo (i=1,..,n)

and construct the polynomial

(7) P(xy, ..o x,) = yo + 3. Pi(x))
i=1
where
26 Px) = (&; + &) (x — x})* + 3(e; — &) (x — x3) (i=1,....n).
Then equality
P(X) = f(X)
holds for X € R(X®, 9).
In this paragraph first we are looking for the point

(8) U° = [uf, ..., uy] e K(X°, 5)

satisfying

9) P(U°) = Min P(X). %)
XeK(X°,5)

Using denotation (2) we get

(10) Min P(X) =y, + Y Min P{x)
XeK(X9,5) i=1 XeK(X°,5)

having in mind that every of the functions P; depends only upon one variable and that
the set K(X°, &) has the form of a Cartesian product. If X € K(X°, §) then P(x;)
assumes one of the values Py(x}), P{(x} + 8), P{(x) — &), i.e. one of the values 0,

3) Of course, a function having a weak or a strong relative minimum at X° need not have a re-
lative minimum at this point in the classical sense at all. E.g. f(x, y) = (y — x*) (y — x?) has at
the origin a strong relative minimum of the order J for every 0 << § < 1 but has not a relative
minimum at this point because of f(J, 6%) < 0 for 0 < & < 1.

4) More precisely, we must determine £(Xx°) and 2n (or 3" — 1) values f(X) — f(Xo) the cal-
culation of which may be eventually easier than the calculation of f(X) (e.g. if f is a sum and
every member depends only on a few variables).

3) Of course, more points with this property may exist. In respect of the decision of a com-
puter the further procedure is formed in such a way that the point U° is determined uniquely.
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¢;, &;. Therefore from (10) it follows

(1) Min P(X) = y, + Y Min (0, ¢;, &) .
i=1

XeK(X°,5)

It can be easily scen that

(12) for

I~
v
(=)
xll

v
<

is Min (0,2, &) = 0= Pyx}),
for & <0, ¢ <§ is Min(0,¢,8) = ¢ = P(x} + 9),

for ¢

A
el
IA
@

Min (0, &, &) = & = P(x} — 9)

i

o= ¢

(Fig. 2). So if we put

K|

Min (0,,5)= P(x?+3) Min (0, ,&)=P(x)

N Min(0,6,5)=P(x-3)

AN

Fig. 2. (The arrows denote to what region the frontier belongs.)

(13) ud = x? for e

[\
=]
L
v
=]

x)+6 for g <0, ¢ <§,

i

N A
bl

ul =x) -6 for §<0, &

the point U° is found.®) (Fig. 1b.) The points X°, U° are adjoining if they are not
identical. The last case occurs if and only if

(14) =20, =20 for i=1,..,n

6) For the sake of uniqueness (see footnote?)) inequalities (12) are formed in such a manner
that the regions defined by them in the plane Ogg; are disjoint. E.g. for ¢; =0, &; =20 is
Min(0, g;, &) = 0 = ¢; = Py(x?) = Py(x9 | &) and it may be put with the same right 49 = x?
as well as u? = x? -+ 4. In this case we prefer not to change the co-ordinate.
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holds, i.e. if and only if the function f has a weak relative minimum of the order ¢ at
the point X°. Then we get according to (11)

Min P(X) = y, = f(X°) = P(X°)

XeK(X0,5)

which means (see (5)) that the polynomial P has a strong relative minimum of the
order 6 at the point X°.

Let us notice that at the point U° the polynomial P assumes its smallest value on
a set containing 3" points. But to determine the point U° it was necessary to know
only 2n + 1 values of the polynomial P.

Further it will be shown how to find the point

(15) Vo =[], ..., v0] e K(X%4,2)
with the property

P(V°) = Min P(X)
XeK(X°,0,2)

assuming that f has a weak relative minimum of the order 6 at the point X° 7).

Similarly as in (10) we can write (using denotation (2))

(16) Min P(X) = yo +3 Min Pyx).

XeK(X,5,2) i =1 XeK(X0,5,2)
For X € K(X°, 8, 2) the value P{(x;) equals to one of the numbers
P(x?), PAx) +18), P(xY — 18). P(xY + &), P(x) —9),
i.e. to one of the numbers
0, (3¢; — &), 3(3%; — &), &, &

Denoting the smallest of them by a; we get from (16)
Min P(X) = yo + Y. a;.
XeK(X0,8,2) i=1

It can be easily recognized (remember that according to our assumption (14) holds)
that

for e, <& <3¢ is a; = P(x)),

for 3¢ < §; is a; = P(x? + 19),
for 3 < g is a; = P(x? — 35)

7) The procedure is formulated again in such a manner that ¥° is determined uniquely.
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(Fig. 3). Therefore it is enough to put

(17) v) = x? for %¢, <&, < 3¢,
v} = xy + 40 for 3¢ < g,
0 0 -
v; = Xx; — 10 for 38 <e¢;.

Because of V°e K(X°, 15) the polynomial P has a strong relative minimum of the
order 19 at the point V° (Fig. 1c, d, e).

a,=P(x’+d/2)

./

& £=3¢
/
- a =R(x?)
-/ \ ! 3¢ = ¢,
\
\
b 5% \
\
N a, =P (x?-9/2)

” A \ ] | | | | [}

0 &
Fig. 3.

In a similar way the following may be stated: If

(18) w? = x? for 9g¢; < 158, < 25¢;,
w) =x? 4+ 35 for 5S¢ < 38 < 2lg;,
w? =x% — 15 for 5§ < 3g < 21,
wi =x} +15 for 75, <&, &>0,
wi =x{ — 15 for 75 <e, >0,

(19) W = [wi, ..., wh]

is put then equality
P(W°) = Min P(X)
XeK(X©,5,4)
holds assuming that f has a weak relative minimum of the order § at X°. For
WO e K(X°, 16, 2), the polynominal P has at W° a strong relative minimum of the
orders 16 and 46 (Fig. 1f, g).
Other cases of this kind are analogous.
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4. SEARCH FOR THE RELATIVE MINIMUM

The initial point X°, a positive real number & and a real-valued function f of n
variables are given. The function f is assumed to be continuous in a sufficiently
great neighbourhood of the point X°. Naturally we are led to one of these two
procedures:

(a) We calculate the values f(X) for X € R(X°, §) to know whether the function f
has a weak relative minimum of the order § at X°. If this is not the case we find the
point

(20) Y%e R(X", 9)

satisfying

(1) J(¥%) = Min f(X)*)
XeR(X©,5)

and come back to the beginning having put Y° instead of X°. If f has a weak relative
minimum of the order & at X°, then we either finish the calculation when § is for
our purposes sufficiently small or return to the beginning having replaced the number 6
by a suitable smaller positive number, e.g. 10.

(b) We proceed likewise as in the case (a), only the set R(X?, 8), the point Y° and
the concept “weak relative minimum” are substituted by the set K(X°, §), the point Z°
and the concept “strong relative minimum?, respectively.

From (3) it follows

(22) F(Z°) = f(Y°)

so that the procedure (b) in general stands for the shorter way to the relative mini-
mum.®) Of course, to determine the point Z° it is necessary to calculate 3" function
values (in contrast to 2n + 1 function values for determination of the point Y?)
and this may be at greater n (tens) even for a computer unfeasible.

Let us therefore approximate the function f by the polynomial P as it was demon-
strated in the paragraph 3 and let us determine the point U® according to (13) and
(8) (denotation (1) being assumed). For this 2n + 1 values of the function f are
enough. If this approximation is good we may expect that not only (9) but also

F(U%) = Min f(X) = £(2°)
XeK(X9,6)

holds, i.e.

(23) J(U°) = 1(Y°)

8) Of course, more points with this property may exist.
9) The points X%, v%are neighbouring so that they differ only in one co-ordinate but XO, VA
are adjoining and may differ in any number of co-ordinates.
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is satisfied, too (see (22)). If here the sign < occurs it means that we came closer to
the value of the relative minimum than in the procedure (a) having done the same
work!?). That is the meaning of the approximation. If

fU%) < £(Y°)

does not hold we have to content ourselves with the point Y°. Let us mention that
the point U° may differ from X° in any number of co-ordinates.

The approximation by means of the polynomial P may be also used in that case
when we come to a point X° at which the function f has a weak relative minimum of
the order 6 this number being too great for the purpose of our calculation. Then we
construct the point V° or W as it was demonstrated in the paragraph 3.

So the search for the relative minimum by means of the quadratic interpolation
may be done in the following way:

We calculate the 2n + 1 values f(X) for X € R(X°, §) and determine the num-
bers (6).

() If (14) does not hold the points Y° and U° satisfying (20), (21) and (13), (8)
have to be found. When

24 JU?) < f(¥°)

is true we return to the beginning having replaced the point X° by U°; in the opposite
case X° is replaced by Y°.

(B) If (14) holds we either finish the calculation (when ¢ is sufficiently small)
or construct the point ¥° or W° according to (17), (15) or (18), (19), respectively.'")
When

(25) F(V) < f(X%) or f(W°) < f(X°)

is correct we come back to the beginning writing V°, 16 or W, 10 instead of X°, &.
If (25) does not hold we return to the beginning again having replaced ¢ by a smaller
value.

At the end let us mention that the main idea of this method does not consist in the
fact that P is a polynomial of the (at most) 2nd degree but that P has the form (7),
where every of the functions P; depends only upon the i-the variable and is uniquely
determined by its function values at three points.

10) We have in mind the calculation of the function values of f.
“) We choose W° when having reasons for the assumption that the approximation of the
function f by the polynomial P might be exceedingly good.
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5. EXAMPLE

We will demonstrate the calculation of the equilibrium configuration and critical
shear stress on the bilinear model of a crystal lattice. This lattice will be on the one
hand “ideal”, on the other hand with a ““dislocation”. The calculation was made
by the computer LGP 30 in the Centrum of Numerical Mathematics of the Charles
University.

The bilinear model consists of two parallel rows of “atoms”. The distance between
the rows is b and every row contains m atoms. Every atom may move only in the
direction of its row. The whole configuration is characterized by the quantities

Xis X25 cves Xom—1 5

the meaning of which may be seen from the Fig. 4.

Xy X2 Xm -1
T T ' = o ’”‘ =
! i 1
r < A‘r g >
- - — — =
1 F ‘F F F F
i ! ;
b 1 ‘ |
1 -F | -F -F -F -F
| - | - - - !
1 ! * I - I o * o
‘ ‘ ; )
L Xm | Xmer | [ Xme2 _| Xome2 | Komr |

Fig. 4.

Central force is assumed to act between every couple of atoms. This force is deter-
mined by the Morse potential

V(r) — D(e—Za(r—ro) . 2e~m(r—ro));

here D and « are physical constants, r is the distance between the atoms and r, the
equilibrium distance. Further we demand that a constant external force F acts in
the positive direction on every atom of the upper row and in the negative direction
on every atom of the lower row.
Introducing the dimensionless quantities
X = r/ro, y=ary, f= FrO/D

U(x) = V(xro)/D — C”ZV(X—“I) _ ze._y(x_l)
the total dimensionless “potential energy” w of this system is given by the following
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formula
W(X gy ey Xopmoy) = Yoo o+ e+ x) +

12izjsm—1

F (= Xy X X+ X))

+ (= Xi3mey + xi + oo + x;)7 + b)) +
+ o(J((x; + <o X+ X540 + D))} +

2m—1

EY (o 03+ )

The values of y are between 3 and 4-5;'?) we take y = 4.

Respecting the capability of the computer that was used and the orientation cha-
racter of the calculation we choose the simplest model with m = 3. Putting b = § /3
(the altitude of the equilateral triangle the side of which is equal to 1) it is natural to
take the following values (if the external force does not act) as the initial configuration:

Ideal lattice Lattice with dislocation

x, =1 x, = 1
x;, =1 x, = 1
x3 =05 x; = —05
x, =05 x,= 05
x5 = 05 x, = 05

Calculating till 3 decimals we get this equilibrium configuration:

Ideal lattice Lattice with dislocation
x, = 0-987 x; = 0960
x, = 0-981 X, = 0975
x3 = 0-486 x3; = —0-386
x, = 0-480 x, = 0431
x5 = 0-486 xs = 0454
Now we let the force f gradually increase and look for the corresponding equilib-

rium configurations. The greatest value of f (using 3 decimals) for which in the model
of ideal lattice an equilibrium configuration exists is f = 1-970. The configuration reads

x, = 0965
x, = 0:967
Xy = 0232
x, = 0234
x5 = 0232

12) See e.g. L. A. Girifalco, V. G. Weizer: Application of the Morse potential function to
cubic metals, Phys. Rev. 7714 (1959), 687.
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For f = 1-971 one doesn’t succeed in finding the equilibrium configuration. There-
fore we hold this value for the “critical shear stress” of our model because the
“plastic deformation” just starts. For the model of the lattice with dislocation this
critical shear stress is f = 1-222. (If f = 1221 we get as the equilibrium configuration

x; = 0958
X, = 0958
x; = —0-573
x, = 0242
xs = 0271.)

This value is only 1-61times smaller than the value for the ideal lattice in contradiction
to the discrepances of about 4 orders obtained by the experiments on real materials.
This is evidently caused by the “rigidity” of our model the atoms of which may
move only in one direction.

I am indebted to Dr. J. BiLY from the Centrum of Numerical Mathematics of
the Charles University for his valuable comments to my work. The example was
calculated by the assistance of several workers of this Centrum. Special thanks are
due to Mr. J. KorroN and Mr. P. DOKTOR.

Vytah

NUMERICKE STANOVENI LOKALN{HO MINIMA
FUNKCE VICE PROMENNYCH KVADRATICKOU
INTERPOLACI

Boris GRUBER

Je uveden algoritmus pro stanoveni polohy lokdlniho minima funkce vice promén-
nych, ktery spocivd na kvadratické interpolaci a je vhodny v téchto pfipadech:

a) Pocet proménnych je tak velky (desitky, popF. sta), event. funkce je tak slozitd,
Ze neni mozZno fesit ulohu exaktné zpisobem zndmym z klasické analyzy.

b) Nezajimame se o vechna lokdlni minima dané funkce, nybrZ jen o jistd z nich,
kterd maji pro nds zvld§tni vyznam. Pfitom z charakteru Glohy (napf. fyzikdIniho)
se dd predpoklddat, Ze ke kazdému z téchto vybranych minim maZeme udat ,,vychozi
bod*, ktery lezi k tomuto minimu bliZze nezli k event. ostatnim lokdlnim minimam.

¢) Metoda je vyhodnd zvldst tehdy (neni to viak podminkou), m4-li dand funkce
tvar souctu, jehoZ kazdy ¢len zdvisi jen na jedné nebo nékolika mdlo proménnych.
Rovnéz se hodi v tom pripadé, kdyz vypocet funkénich hodnot je znaéné jednodussi
nez vypocet hodnot parcidlnich derivaci.
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Algoritmus zni takto:
Je ddn vychozi bod (1), kladné &islo & a spojitd funkce f n proménnych spliujici

uvedené ptedpoklady. Oznatime R(X°, ) mnoZinu sklddajici se z bodu X° a ze
vSech bodu tvaru

[Xps oo Ximpe Xy £ 6 N p e x| (P=1,..n)
a vypoctitdme &isla (6).

(o) JestliZe neplati (14), ur¢ime bod Y° spliiujici (20), (21) a bod U° podle (13), (8).
Plati-li (24), vrdtime se na za¢dtek nahradivie bod X° bodem U°; neplati-li (24),
vrdtime se tam nahradivie X° bodem Y°.

(B) JestliZe je splnéno (14), pak bud vypocet skon&ime (je-li pro nase ucely cislo &
dostate¢né malé), nebo sestrojime bod V°, resp. W podle (17), (15), resp. (18), (19).
(Pro bod W° se rozhodneme, mdme-li diivody k pfedpokladu, Ze funkci f Ize v okoli
bodu X° zvl43t dobfe aproximovat polynomem nejvyse druhého stupné.) Plati-li (25),
vrdtime se na zaddtek pisice V°, 13, resp. W°, 0 misto X, 8. Neplati-li (25), vrdtime
se na zacdtek nahradivse o néjakou mensi hodnotou.

Uvedend metoda je ilustrovdna prikladem vypoctu rovnovdzné konfigurace bili-
nedrniho modelu atomové mrizky.

Pesrome

YUCJIEHHOE YCTAHOBJIEHUE JIOKAJIBHOI'O MUHUMVYMA
®YHKIUHW MHOI'UX IIEPEMEHHbIX IIVTEM
KBAJJPATUUYECKOW HMHTEPIIOJISIIUN

BOPUC I'PYBEP (Boris GRUBER)

HpMBC}I@H ElJII‘OpI/{(bM JJIs1 YCTAHOBJICHUSA IIOJIOXKCHUA JIOKAJBHOI'O MHWHUMYyMa
(byHKl],P[Irl MHOI'MX MNCPEMECHHBIX, OCHOBAHHBIA Ha KBZI}lpﬂTP[‘[CCKOﬁ HUHTE PHOJIALUU
)i IIpPH'OJ],PIMbIVl B CJICAYOUUX Ciiyvyasx:

a) Yuciio NCPEMCHHBIX HACTOJIBKO BCJIUKO (leCﬂTKl/[, BO3MOXHO COTHH) U
(l)yHKH,M?{ ABJIACTCA HACTOJIBKO CJIO)KHOI‘/'I, 4TO 3aa4y HEJIb3sl pCIUUTh TOYHO METOAa-
MU, U3BCCTHBIMU U3 KJIACCUYCCKOI'O aHaJiu3a.

b) He uHTepecyloT HAc BCe JIOKAJIbHBIC MUHUMYMbL JaHHOI (DyHKIMM, HO TOJBKO
HEKOTOPBIE M3 HUX, UMeroume ocoboe 3HayeHue. Ilpu aToM mo xapakrtepy 3ajauu
(nanp. Gpu3MUECKOMY) MOXKHO NPEAIOIAraTh, YTO K KaX/I0MY M3 3THX BBIOPAHHBIX
MHMHUMYMOB MOXHO OIPEACSUTh ,,UCXOAHYIO TOYKY'‘, HAXO/SLLYOCs Osuke 3TOro
MUHUMYMa 4€M JIPYrUX BO3M. JIOKAJIbHBIX MMHUMYMOB,
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¢) Mertoj BbIrojieH 0cobeHHo Toria (OAHAKO, 3TO He 06s3aTesIbHOE YCIOBHUE),
Korja AaHHast GyHKLMsSI UMEET BUJ CYMMBI, KaX/blil YIEH KOTOPO# 3aBUCUT TOJIBKO
OT OJHOM MJIM OT MAajio nepeMeHHbIX. Takxke 3TOT ajiropuM NpPUroJeH B TOM
ciydac, KOT/Ia BBIYMCJICHME 3HAYCHMH (YHKUMM TOPasio NpPOLUe, YeM BbIYMCIICHHE
3HAYCHWH YACTHBIX NPOU3BOJIHBIX.

AJTOpr(pM COCTOUT B CJICAYIOLIEM:

3azaHa ucxojHas Touka (1), MOJOKUTEIBHOE YHCI0 § M HenpepblBHas (yHkmus f
OT 1 MEPEMEHHBIX YAOBJICTBOPSIIONIAS NPeaAnogoxenusM. O003HAYUM NOCPENCTBOM
R(X°, §) MuoxecTBO cocTosIee u3 Touku X ° u Bcex Toyek

[xg, oo Xin X £ 6, Xi4s 00 X,] (i=1,...,n)

U nojcuuTaem uucia (6).

(o) Ecim He nmeeT Mecto (14), naxomutest Touka YO ¢ momompsto (20), (21) 1 Touka
U° ¢ nomowusio (13), (8). Ecu umeet Mecto (24), mpouecc TOBTOPATCS ¢ Hadvana,
o BMecto Touki X Gepercst U%; eciu (24) He umeeT Mecto, BMecto X Gepercs Y°.

(B) Honycrum (14) umeer mecro. Toraa wim npouecc MoxerT ObiTh 0GOpBan
(xorga 4ucyo ¢ JOCTATOYHO MAJIO JJisl HAIUMX ueJielf), WM MOXeT GBITh HOCTPOCHA
Touka V°, coors. WO cienys (17), (15), coors. (18), (19). (Touka W° crpoutes Toraa,
€CTb-JIM y HAC OCHOBAHUS CYMTATL, 4TO (YHKIUIO f MOXHO B okpecTHocTH X© oco-
OGEHHO XOpOLIO NPUOAM3UTL NOJMHOMOM He GoJiee ¥eM BTOpoil cremenu.) Ecin
BepHo (25), mpoluecc NoBTOpsAETCA € Hayasa, npuyeM BMectTo X ° u § mopcrasnsercs VO,
18, coots. WP, 15. Ecin (25) He BepHO, NOBTOPSiEM TIPOLECC ¢ HAYAJIa, TIOACTABJISS
BMECTO 0 HEKOTOPOE MEHBIIIEE YUCIIO.

ITpumeHeHre MeTona WJUIFOCTPUPOBAHO HA TPUMEPE BBIYMCICHUH MOJIOXKEHHUS
paBHOBeCHS OMIMHEITHON MO/IeIM ATOMHOM PEIIETKH.

Author’s address: Dr. Boris Gruber, C.Sc., matematicko-fyzikdlni fakulta Karlovy university,
Praha 2, Ke Karlovu 3.
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