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SVAZEK 10 (1965) A P L I K A C E M A T E M A T I K Y ČÍSLO 3 

AN EXAMPLE OF A SET OF PRINCIPLES 
FOR THE CONSTRUCTION OF LINEAR FINITE 

DIFFERENCE OPERATORS 

J lRI KAFKA 

(to topic c) 

1. Physical statement of problem. The partial differential equation which is to be 
solved by a numerical method is usually considered as given a priori. Inquiring into 
the origin of this partial differential equation, in most cases, it describes a physical 
system. The main task is not to solve the mathematical problem, but the physical one 
(on the other hand, the solution of the physical problem may be auxiliary to, e.g., 
the development of a new machine). The algorithm for the solution of the problem 
should therefore start from the physical statement of the given problem. For the 
purpose of further discussion, all principles of physics are to be used in their integral 
form (viz. in that form obtained by generalising experimental results), e.g. the Gauss' 
theorem of electro-statics is to be used when solving potential problems. The proce­
dure contains four steps corresponding to four sections of the presented paper. 

Let us take the diffusion equation as an example of a partial differential equation 
describing a lamellar field. The finite-difference method will be used to solve a mixed 
boundary and initial value problem. 

The following notation is used: 

0 ... three-dimensional domain; V . . . volume of 0; 
Q . . . surface (boundary of 0); S area of Q; 
t . . . t ime; u . . . concentration [amount of mass 
J(v) . . . component of the vector of in unit volume (usually denoted 

mass flow density in the direc- by c)]; 
\ tion of the external normal D . . . diffusion coefficient; 

to Q. 

The phenomena under consideration are governed by the law of conservation of 
matter 

(1) \[ {u(t2) - u((.)} dV + Pdf f f J ( v ) dS = 0 . 
Jje Jti JJsi 
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A second physical law, the diffusion law [5], also applies 

(2) J = - D grad u . 

In sections 2 to 4 we shall concentrate on one-dimensional diffusion. Diffusion can be 

considered as one-dimensional e.g. in the case of a narrow tube with impermeable 

walls. The cross-section of this tube will be denoted by S0 (fig. 1). 

2. The decomposition of the domain in which the solution is to be determined. The 

interval <a, b> on the x-axis is divided into L intervals with lengths Axz (/= V 2, ... L); 

the time-interval <t0, tK} is divided into K intervals with lengths Atfc (k = 0, V ... 

... K — 1) (fig. 2). The domain in the xt-space is thus decomposed into rectangles 

which will be called "elementary domains". Their total number is N = K . L. 

A weighed directed graph which will be called "the net" is now constructed. The 

boundaries of these elementary domains do not from the meshes of the net. In every 

elementary domain a point is chosen; these points are to be the vertices of the net. 

The position of the vertex is determined by the requirement of minimum remainder 

term (therefore it is placed in the centre of the Axz — interval) and by the requirement 

of stability (therefore it is placed on the end of the Atfc_L — interval). The absolute 

values of non-diagonal elements of the super-matrix H in (9) or (10) are the weights 

of the edges. The connection matrix of 

this graph is then obtained by writing a 

" o n e " for every non-zero element of H, j 

and then zeros in the main diagonal. 

k-1 

1-1 

-J(x) 

ЛX, 

•** 1+1 

• _ ^ _ ^ ( _ _ -

Fig. 1. One elementary interval in the diffu­
sion tube. 

Fig. 2. The net in the neighbourhood of an inter­
nal vertex. One elementary domain is shadowed. 

3. The construction of the finite difference operator at interior and boundary points. 

The principle (1) is applied to every elementary domain. Both integrals are ap­

proximated by quadrature formulae written with their remainder terms in footnotes2) 

and 3 ) . The first integral is computed according to the tangent rule2). The expression 

for the remainder term _# t is valid if the function w(x, t) fullfils a Lipschitz condition 

and the following condition of second order1) 

(3) |A2

2u(x, ř)| S M^2)(Ax)2 x e <„, b) 

Footnotes *) 2 ) 3 ) see next page. 

236 



with M{2) independent of x and Ax. The result of the operation is the following finite 
difference formula 

(4) (ulk - ultk_l) S0 Axx + S03lL. + | ( - J(x)i-i,i(t) + 

+ J(x)i,i+i(t))Sodt=-0. 

This equation is divided by S0 and the integration along the t-axis is carried 
out according to the generalised trapezium rule3) (in this case the condition 
|A2

2J(x)(x, t)\ ̂  M(
t
2)(At)2 is assumed), ae <0, 1> is an arbitrary parameter, 

(5) (ulk - ui,fe-i.) Axx + mt - ((1 - a) Jix)l-Ulk + 

+ aJ(x)l-l,l,k~l) Atk-1 — ^2,1-1,1 + 

+ ((1 - a) J(x)lJ+Uk + aJix)i,i+_,k-i) Arfc-t + ^2,i,i+i = 0 . 

The gradient in (2) is approximated by means of the central difference formula4) 
(in addition to (3), the condition |A;Wx , t)| ̂  Mx

3)(Ax)3 is required) 

(6) J(X)i,i + i,k = - (ui+i,k ~ Uik) Dlil + lik\Axltl + 1 - mz . 

This expression is inserted into (5) and the resulting equation divided by Atk_x 

(7) ulkAxl\Atk_1 + (1 - a) {(ulk - ux_uk) Dl_1Jk\Axl_lJ + 

+ \ulk ~~ ul+l,k) Dij + i^k\AxlJ+1j + C/,l-i,fc-iui-l.fc-l + 

+ Cn,fc-iW/,fc-i + Cl)l + Uk_1ul + Uk_1 + m4 = 0 (/ = 2 , 3 , . . . L - 1). 

The remainder term &4 will be analysed in section 4. The symmetrical three-diagonal 
matrix Ck_x has in the main diagonal the elements Cppk_1 — — AxJAtk_l — S^_1(y+/?). 
- ^y,fc-i = - Axp\Atk_t + a(Dp_1)Pik_JAxp_lfP + Dp>p + uk_JAxPfP + 1), in the 

*) Axu(x, t) = u(x + Ax, t) - u(x, t); A,u(x, t) = u(x, t + At) - u(x, t(. 
2) \h

af(x) dx = (b - a(f(|(a + b() + mx\ 0tx = (b - a) i^(b - a)2/"(£); I G <a - | ( b - a), 
b + y(b — a)). If the condition (3) is fullfilled, then the remainder term 0tx may be approximated 
as (b - a) i%A2f(a - \(b - a)(. 

3) lbJ(x) Ax = (b - a) ((1 - a)f(b) + o/(a)) + ̂ 2 ; ^ 2 = (b - a) {(a - | ) A/(a( -
— yy(b — a(2///(s)}; I £ <a, b). If the functionf(x) fullfils the condition (3), then the remainder 
term 0t2 can be approximated as %2 = (b — a) {(a — -̂( A/(a( — -^-2A

2f(a)}. 
4) (d/(x(/dx)^= 6 = (f(b + |Ax) - / ( b - |Ax))/Ax + ̂ 3 ; ^ 3 = -^(Ax)2/"($); 3 e 

G <b - Ax, b + Ax>. If the function/(x) fullfils the following condition |A3/(x)| <_ M(3)(Ax)3, 
then the remainder term may be approximated as 0t2 = — j-gA3 f(b — ~Ax}/Ax. 
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lower diagonal the elements C/j,/?~i,*-i = ~ aDfi-i.,p,k-d&xp-i.,p a n d 1n t n e upper 
diagonal the elements CPtp+ltk-t == ~ aDp,p + i,k-ilAxp>p + 1. According to the type 
of the chosen quadrature formulae, various types of finite difference formulae can be 
obtained; e.g. for a = 0, (7) becomes the four-point implicit formula. The latter can 
be solved by means of an electrical network designed by G. Liebmann [2] [3] [4]. 

Ч*)a ^ 
<. C ł°-f- - -t c 6 ł°-f- - -t X 
c V ł°-f- - -t 

tmh 3» 
ЛX 

м.s ^ t -

Fig. 3. The boundary condition on the left end of the tube. 

If the boundary conditions of the second kind are prescribed (i.e. if the flux densities 
J(x)a and J(x)b are given), the finite difference equation at the points I = 1 and / = L 
(vertices neighbouring to the boundary) reads 

(8) Wi,fcAxi/Л**-i + (1 - <y)(ulk - u2fe) Dlt2tkjAxlt2 + 

+ С l , L , f c - l w l , * - l + Q , 2 . f c - l W 2 . f c - l ~~fl,fc = 0 , 

WL*A*L/AÍ*-I + (1 - Ö)(UL -1 ,*) &L - 1 ,Lkl&XL - 1 ,L + 

+ Q.L-1 fc-lмL-l,fc -ì + Q-L,ќ-iwL,fc-i ~ љk — o 

where fl>k = JixJt)dtlAtk.t and / „ = - J(xy,ft)dtlAtK-v

 I I will be 
J tk-1 J tk- 1 

useful to set f 2 j f e = f 3 j f e = ... = ft-i,k = 0- The finite difference equation at the 

points l = 1 and l = L — 1 is written whithout its remainder term. Since the boundary 

values are given exactly, they do not contribute to the remainder term and the 

remainder term of this equation is of the same order as the remainder term 0tA of 

equation (7) discussed in section 4. 

For t = const the equations (7) and (8) represent a set of L simultaneous linear 

equations 

L L 

(9) £ Afiyku7k + £ CPytk.1uytk_1 = f^fe (/? = 1, 2, . . . L) or 
7 = 1 7 = 1 

Aьii, + Ҫ 
*-!"*-! 

where uk and fk are column vectors and Ak is a three-diagonal symmetrical matrix. 
The elements of the main diagonal of Ak can be expressed as Appk = Axp/Atk„l — 
— I^=Uy^p)Apyk. There are K of such sets of equations and the matrix H of the 
complete set of N = K . L simultaneous equations is composed of submatrices as 
shown below. The inverse of H is denoted by G to indicate its relation to the Green's 
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function of the given boundary-value problem. The matrix G is written only for Ak 

and CA_j. independent of time (see (13)) 

(10) H = 
Cx A2 

C, A, 

C„-i Aк 

G = H 1 = A 1 

B A 1 

B ^ A 1 

A 1 

B A 1 

B K - Í І B K - 2 Л - 1 BA 

where B = — A 1 C. The form of G = H l can be deduced in the following manner: 

The simultaneous equations (9) are solved by means of the inverse of the matrix Ak 

(11) "k = K^k ~ KlCk~i"k-i = Afc_1ffe + ^k-i"k-i • 

This operation is repeated for t = tk_1, and uh_t is inserted into (11) 

(12) uk = Ak

lfk + Bfc_1Afc-_1

1ffc + B,_ tB f c_2ii f c_2 . 

Let now Atfc, DPy1c (and therefore also Ak, C k _ t , Bfc_x) be independent of time, Atk = 

= At, DPyk = Dpy, etc. The initial conditions u0 belong to the right hand side of (9) 

for h = 1 which reads f_ — Cu 0 . The following expression can be deduced by 

induction 

fc-l k-2 

(13) . _ -xA~'fk_x + B*u0 = _ B^A-'f,-A + B--iA"1(f1 - Cti0) 

The expression for G in (10) is thus obtained. 

4, Remainder terms and errors. The remainder term is deduced only for a net with 

regular meshes (Ax, = Ax; Atk_t = At) and for DUi + Uk = const = D. Introducing 

the dimensionless quantity a = D At/(Ax)2, (7) is transformed into 

(14) 1-tUijk-i ~ a(l - <r)A*2tt,_L,fc - ceo A*2M,-i,fc-i + M5 = 0 

(l = 2 , 3 , . . . L - l ) . 

Inserting the remainder terms of (4), (5) and (6), e.g. 

^ 2 = {(^ - ?)AtJ(x)l-l,l,k-l. - T2^J(X)l-ltl,k-l} A t = 

= {- (a - _) A2

xtu^uk__ + Y_Alt2u^uk-t} D At/Ax -

- {(a - _) AtM3 - £A?2#3} Ar 
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into (7) and supposing5) the approximate validity of (14), we have 

(15) 0ts = ̂ 4 At/Ax = a { ^ + (i - O) a} {(1 - a)A$4ul_2>k + ( r A > ^ 2 , f e _ 1 } + 

+ 2V2{2a(l - a)2 A6
6w /_3jA+1 + (1 - cr) (4Oa + O - i)A6

6w,_3,fe + 

+ a(2aa + a - i ) A6
6u /_3jfc_1} - ^ ^ { ( l - a)2 A®8M,_4Jk + 1 + 

+ 2cr(l - G) A®8W,-4,fc + tf2 A ® 8 w , - 4 . * - i } • 

The term ulk — ulk„t is exact, as only the time-dependence is concerned (we have 
not differentiated with respect to time). As stated in [1], the stability condition (in 
our case 1 + 4a(^ — a) g: 0) can be deduced from a physical principle (in our case, 
from the following theorem: "In the absence of diaphragms, diffusion from a locality 
of low concentration to one of high concentration cannot occur".). 

The propagation of errors6) is determined in accordance with Bruyevitch's theory 
of accuracy of computing mechanisms and linkages in the modified reading of [2] 
and [8] by using the G — matrix. The error $(A^) of the element A^ of A when 
used in the s-th time step causes an error &(upk) of the result uPy in the k-th time step. 
The matrix A - 1 is denoted by J^, the elements of Bfc are denoted by [Bfc]/,-y, 

(16) 3 M = (£[.#-% F„ -i[Bk-%Fy,)J(x)^(An,)IA^ 
y = l y=l 

(k ,5 = 1,2, . . .K ; p,ri = 1,2,... L; £ = rj - 1 or { = rj + 1) . 

The error of the result caused by errors #(uf0) of the initial values and by errors 
&(J(x)ak) anc* &(J(X)bk) of the boundary values can be calculated by substituting #(u /0) 
for ul0 and S(J(x)ak) or - S(J{x)bk) for flk into (13). 
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