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SVAZEK 10 (1965) APLIKACE MATEMATIKY CisLo 3

AN EXAMPLE OF A SET OF PRINCIPLES
FOR THE CONSTRUCTION OF LINEAR FINITE
DIFFERENCE OPERATORS

JIRi KAFKA

(to topic ¢)

1. Physical statement of problem. The partial differential equation which is to be
solved by a numerical method is usually considered as given a priori. Inquiring into
the origin of this partial differential equation, in most cases, it describes a physical
system. The main task is not to solve the mathematical problem, but the physical one
(on the other hand, the solution of the physical problem may be auxiliary to, e.g.,
the development of a new machine). The algorithm for the solution of the problem
should therefore start from the physical statement of the given problem. For the
purpose of further discussion, all principles of physics are to be used in their integral
form (viz. in that form obtained by generalising experimental results), e.g. the Gauss’
theorem of electro-statics is to be used when solving potential problems. The proce-
dure contains four steps corresponding to four sections of the presented paper.

Let us take the diffusion equation as an example of a partial differential equation
describing a lamellar field. The finite-difference method will be used to solve a mixed
boundary and initial value problem.

The following notation is used:

@ ... three-dimensional domain; V ... volume of @;
Q ... surface (boundary of ©); S ...area of Q;
t .. time; u ...concentration [amount of mass
Jy) --- component of the vector of in unit volume (usually denoted
mass flow density in the direc- by ¢)];
N tion of the external normal D ... diffusion coefficient;

to Q.

The phenomena under consideration are governed by the law of conservation of
matter

(1) ‘ 'Ue{u(rz) — u(ty)} dV + j‘:dl”\QJ(v) ds =0.
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A second physical law, the diffusion law [5], also applies
(2) J=—Dgradu.

In sections 2 to 4 we shall concentrate on one-dimensional diffusion. Diffusion can be
considered as one-dimensional e.g. in the case of a narrow tube with impermeable
walls. The cross-section of this tube will be denoted by S, (fig. 1).

2. The decomposition of the domain in which the solution is to be determined. The
interval (a, by on the x-axis is divided into L intervals with lengths Ax, (=1, 2, ... L);
the time-interval {to, tx) is divided into K intervals with lengths A, (k =0, 1, ...
... K — 1) (fig. 2). The domain in the xt-space is thus decomposed into rectangles
which will be called “elementary domains”. Their total number is N = K . L.

A weighed directed graph which will be called “‘the net” is now constructed. The
boundaries of these elementary domains do not from the meshes of the net. In every
elementary domain a point is chosen; these points are to be the vertices of the net.
The position of the vertex is determined by the requirement of minimum remainder
term (therefore it is placed in the centre of the Ax;, — interval) and by the requirement
of stability (therefore it is placed on the end of the At,_, — interval). The absolute
values of non-diagonal elements of the super-matrix H in (9) or (10) are the weights
of the edges. The connection matrix of

this graph is then obtained by writing a ?
“one” for every non-zero elementof H, ", | __ ) - O L_
and then zeros in the main diagonal. | !
2 o —
| | |
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Fig. 1. One elementary interval in the diffu- Fig. 2. The net in the neighbourhood of an inter-
sion tube. nal vertex. One elementary domain is shadowed.

3. The construction of the finite difference operator at interior and boundary points.
The principle (1) is applied to every elementary domain. Both integrals are ap-
proximated by quadrature formulae written with their remainder terms in footnotes?)
and 3), The first integral is computed according to the tangent rulez), The expression
for the remainder term 2, is valid if the function u(x, 1) fullfils a Lipschitz condition
and the following condition of second order')

(3) [AZu(x, )] £ MP(Ax)* xela,b)

Footnotes ') 2) 3) see next page.
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with M® independent of x and Ax. The result of the operation is the following finite
difference formula

t

k
(= Jeor-1.1) +

tie—1

4 (4 — g —1) So Ax; + S, +J‘
+ Jori+1(t) Sodt = 0.

This equation is divided by S, and the integration along the t-axis is carried
out according to the generalised trapezium rule®) (in this case the condition
[A%T o, t)l < M{P(At)? is assumed), o € €0, 1) is an arbitrary parameter,

(5) (e — o) Ax, + 2, — (1 — o) Jeoi-1 +
+ GJ(x)l—I,l,k—l) Aty_y — Ry +

+ ((1 - 0) Jeonisth T 0T oririp—1) Aoy + #3100 = 0.

The gradient in (2) is approximated by means of the central difference formula®)
(in addition to (3), the condition |AJu(x, 1)] < M(Ax)? is required)

(6) Jeoyrr1ux = — (“1+1.k - ulk) Dy wlBx sy — R .
This expression is inserted into (5) and the resulting equation divided by Af, _,

(7) upgAx /Aty + (1 — ) {(uy — Up—y ) Doy Doy +
+ (ulk — typy 3) Dipe i DX it} + Crmgpmiti— i p-1 +

+ Cipmttiig—1 + Cruvtp-ttisi oo + 24 =0 (I=2,3,...L—1).

The remainder term £, will be analysed in section 4. The symmetrical three-diagonal
matrix C,_ hasin the main diagonal theelements Cyp—y = — Axy/Af_y — 0y L,
- Cpyp—1 = — Axp/At_y + U(Dﬂ—l,ﬁ,kvl/Axp-x,/l + Dy pyip- [/A-\‘/L/1+1)~ in the

1y Au(x, ) = u(x + Ax, 1) — u(x, t); Aulx, 1) = u(x, t + At) — u(x, 1).

) ffyde = (b — @ f(3a + b)) + 2y 2 = (b — @) F5b — )’ [ 5 € {a — F(b — a),
b + »%(b — a)). If the condition (3) is fullfilled, then the remainder term #; may be approximated
as (b — @) 75 A f(a — b — a)).

3) [Bfx) dx = (b — a) (1 — 0) f(B) + o f(a) + Zy; Ay= (b —a){(c — 1 Af(a) —
— T'g(b — a)zf”(E)}; & € {a, b). 1f the function f(x) fullfils the condition (3), then the remainder
term #, can be approximated as #, = (b — a) {(c — 1) Af(a) — —1—17A2f(a)}.

H (df)[dx)x=p = (f(b + 1Ax) — f(b — 1A Ax + Ry, Ry = A%EV(AX)Zf”’(S); fe
€ (b — Ax, b + Ax). If the function f(x) fullfils the following condition |A3f(x)| = M3)(Ax)?,
then the remainder term may be approximated as Ry = —7'¢A3f(l) — %Ax)/.’kx.
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lower diagonal the elements Cg g1 k-1 = — 0Dg_y 4, 1/Ax;_; 5 and in the upper
diagonal the elements Coppr1 -1 = — ()’Dﬂ,ﬂ+1’k_l/Axﬂ’ﬂ+1_. According to the type
of the chosen quadrature formulae, various types of finite difference formulae can be
obtained; e.g. for o = 0, (7) becomes the four-point implicit formula. The latter can
be solved by means of an electrical network designed by G. Liebmann [2] [3] [4].

_4’)zx

Ax

Fig. 3. The boundary condition on the left end of the tube.

If the boundary conditions of the second kind are prescribed (i.e. if the flux densities
J e and J ., are given), the finite difference equation at the points I =1 and [ = L
(vertices neighbouring to the boundary) reads

(8) Uy Ax Ay + (1 = 0) (ugy — ) Dy o afAXy 5, +
+ Crap—1t1x-1+ Croprtlagoy — f1e=0,
upAx (Al + (1 - U) (“Lk - “L—1,k) DL—I,Lk/AxL—~1,L +
+ Crr-1p-1lp-10-1 + Crpp—1Up i1 _ka =0

143

t
where f ; =J Jou(t) dt/AL_y and f; = —J J (1) dt/At,_ (. Tt will be

Tk -1 te—1

useful to set fo, = f34 = ... = fr—14 = 0. The finite difference equation at the
points | = 1and | = L — 1is written whithout its remainder term. Since the boundary
values are given exactly, they do not contribute to the remainder term and the
remainder term of this equation is of the same order as the remainder term £, of
equation (7) discussed in section 4.

For 1 = const the equations (7) and (8) represent a set of L simultaneous linear
equations

L L
(9) Z Aﬁyku)'k + z Cﬂ)’,k—lu‘y,k—l = fﬁk (ﬁ = 1, 2, aee L) or
y=1 y=1
Au +C_u_=f,

where u, and f, are column vectors and A, is a three-diagonal symmetrical matrix.
The elements of the main diagonal of A, can be expressed as Agg, = Axg/At,_, —
— XX 1(y4p Apn There are K of such sets of equations and the matrix H of the
complete set of N = K. L simultaneous equations is composed of submatrices as
shown below. The inverse of H is denoted by G to indicate its relation to the Green’s
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function of the given boundary-value problem. The matrix G is written only for A,
and C,_, independent of time (see (13))

(10) H = [A,

G=H!=7A"!
BA™! A!
BZA~! BA™! Al

|B*-1A~1 B<-2A~1 . BAT A"

where B = — A71C. The form of G = H ™' can be deduced in the following manner:
The simultaneous equations (9) are solved by means of the inverse of the matrix A,
(11) u =AM~ ATC o = A+ By

This operation is repeated for f = #,_,, and u,_, is inserted into (11)
(12) u = A 'f + Bk—lAk_—llfk + B By_yu_,.

Let now Aty, Dy, (and therefore also A, C,_,, B,_,) be independent of time, At, =
= At, Dy, = Dy, etc. The initial conditions u, belong to the right hand side of (9)
for k =1 which reads f; — Cu,. The following expression can be deduced by
induction

k—1 k-2
(13)  u, =Y B*A7'f,_, + By, = Y B*A™'f,_, + B*"'A!(f, — Cu).
=0 =0

The expression for G in (10) is thus obtained.

4. Remainder terms and errors. The remainder term is deduced only for a net with
regular meshes (Ax; = Ax; At_; = At) and for Dy ;414 = const = D. Introducing
the dimensionless quantity o = D At/(Ax)?, (7) is transformed into

(14) Aty — ol — 0) A2,y 4 — a0 Abtly oy + Rs =

(1=2,3,...L—1).

Inserting the remainder terms of (4), (5) and (6), e.g.

It

142

R, = {(0' - ]f) AJoyi—1 k-1 — TgAtZ'](x)l—l,z.k—l} At

= {- (‘7 - %) Ait“l—l,k—l + I’léAill”"l-"“l} D At]Ax
— {(0 — 1) ARy — 50L%5} At

|
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into (7) and supposing®) the approximate validity of (14), we have

(15) 25 = Ry At]Ax = “{1‘12' + (3 —0)a} {(1 = o) Afaty_p 4 + 0 ALty g 41} +
+ 5407 20(1 — 0)? Aletty_3 401 + (1 — 0) (40 + 0 — 4) AJeu;_5 4 +
+ (200 + 0 — §) ASett; 341} — I;’§“3{(1 — o) Afslty 4 pes1 +
+20(1 — o) Adsuy_ gy + 02 ASstty_g s e} -

The term u,, — u,,_, is exact, as only the time-dependence is concerned (we have
not differentiated with respect to time). As stated in [1], the stability condition (in
our case 1 + 4a(+ — o) = 0) can be deduced from a physical principle (in our case,
from the following theorem: “‘In the absence of diaphragms, diffusion from a locality
of low concentration to one of high concentration cannot occur”.).

The propagation of errors®) is determined in accordance with Bruyevitch’s theory
of accuracy of computing mechanisms and linkages in the modified reading of [2]
and [8] by using the G — matrix. The error 9(A,,) of the element A, of A when
used in the s-th time step causes an error 9(ug,) of the result u,, in the k-th time step.
The matrix A™" is denoted by #, the elements of B* are denoted by [ B*];,,

(]6) 9(“3‘&) = (7;1 [Bk_s]ﬂv Fw - izl[Bkﬂ]I’v F?’C) J(x)rléss(AnC)/Ani

y=

(k,s=1,2,...K; Bn=1,2,...L; {=n—1or { =n+1).

The error of the result caused by errors 9(u,,) of the initial values and by errors
9(J (xyax) and H(J ) of the boundary values can be calculated by substituting 9(u,)
for u,o and H(J ya) of — (J ) for £y into (13).
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