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SVAZEK 9 (1964) APLIKACE MATEMATIKY CisLo 2

ON OPTIMUM DEFORMATION
OF CANONICAL DOMAINS MINIMIZING THE MODULUS
OF THE DERIVATIVE OF A CONFORMAL TRANSFORMATION

HaNA Svecova

(Received July 9, 1963.)

In this paper a proof is given of existence, unicity and some further properties
of a deformation of a strip which minimizes — within a certain system of
deformations — the upper bound of the modulus of the derivative of the
conformal transformation of the deformed strip onto the strip ~1 < v <7 0.

1. INTRODUCTION

Among technical and physical problems, we can see the growing importance
of problems whose mathematical solution consists not only in solving a given bound-
ary value problem but, moreover, in finding a domain of definition for which the
solution satisfies certain conditions of optimality. As an example, let us mention the
steady irrotational motion of a fluid in a canal with an obstacle the shape of which
may be modified within certain technical limits. We may then take as optimum
shape of the obstacle that which fulfils the technical limiting conditions and causes
the smallest increase of the maximum velocity of the flow. This formulation of the
preblem has a technical application, e.g. in the study of the motion of under-
ground waters, where a too great increase of velocity can cause an undesirable
transport of soil, and thus also a change in the conditions of the motion.

In a mathematical formulation this leads to the problem of finding — among
a given set of allowed deformations of the strip — such a deformation which minimizes
the maximum absolute value of the normal derivative of the solution of the Dirichlet
problem for the Laplace equation with the boundary function constant on every
finite connected part of the boundary of the deformed strip. (See ¢.g. [1].)

We can also find similar problems in other technical and physical branches:
the minimization of the maximum heat-flow, the minimization of shearing stress
concentration of a section weakend by a notch, the minimization of maximum
stress in membranes, the minimization of potential differences in connection with
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the minimization of the possibility of a corona discharge (this problem is studied
in [2]), etc.

Problems of this type may be advantageously treated using conformal mappings.
Then the problem can be formulated as follows: We seck a curve L realizing a de-
tormation of the canonical domain S, which minimizes — in a given family of deform-
ations — the upper bound of the moduius of the derivative of the conformal trans-
formation of the deformed domain onto the domain S. We shall prove existence,
unicity and some basic propertics of the solution of this problem for a certain family
of deformations of the strip

S = E[.Y 4+ iy; =1 <<y < 0].

Analogous theorems concerning other canonical domains can be proved in a similar
manner.

Related problems have been treated by M. A. Lavrentiev in [3], [4], [5] We
shall apply some of Lavrentiev’s results and methods in this paper.

2. FORMULATION OF THE PROBLEM

Let @; (j = 1,2) and I' be three curves lying in the complex plane z = x + iy
and such that the curves @; are described by equations y = ¢ (x) and that the follow-
ing conditions are fulfilled:

1. There exist numbers a;, b; (j = 1, 2) such that
—w - a; - by b, “a, = 0,

¢, is defined for x€ {a,. by, ¢, is defined for x € (by, a,), ¢a;) = 0; x * a;
implies ¢;(x) -~ 0 and lim ¢/{x) = d, where d = — 1 il b, = b, and otherwise
~1<d~=0. o

2. The second derivative ¢’(x) exists for x € («y, by) and x & (b,. a,) respectively.

and the following inequalities hold:

IIA

< k.

”" ’ < - | q},/ *
P S0, o)l £k o, i[‘iT(flff/(l))z]g
i A J

Morecver, we have lim ¢)(x) = 0 and the functions ¢ locally fulfil a Holder

x—aj

condition.
3. Let S denote the strip
S=E[x+iy—1-y<0].

Let ¢ be the segment of the real axis between the points «,, a,, and ¢, the scgment
with end-points b, — i, b, — i. The curve I' passes through the points a,, a, and
is part of the sum g w H, where H < S is the domain bounded by the curves @, @,,
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by the segment ¢ and, i b, - b,, also by ¢,. We shall suppose I" + ¢ (otherwisc
the problem is trivial).

Let G denote the domain bounded by the curves @, (j = 1,2), I' and (in case
that h, - b,) by the rectilinear segment ¢,, G < S. Further, if C is a simplc arc
joining the points «,. «,. let D(C) denote the domain (provided it exists) whose bound-
ary is identical with the boundary of the strip S except for the segment ¢ which is
replaced by the arc C. Finally, let f{z. C) denote a conformal transformation of the
domain D(C) onto the strip S, satisiying

fl= 0. C)= 0. flw.C)=on.

The function f depends on a real additive parameter which we may choose arbitrarily.
Let € be the system of all simple rectifiable arcs € joining the points a,, a,.
satisfying

zeC implies —1 - ImzZ0

and such that at all their points except a, and a, there exists a non-zero angular
continuation of f'(z, C).

Now we are able to formulate the problem.

The problem is to prove the existence and basic properties of a curve L, € € which
satisfies the following conditions:

1. Ly G ;

2.1 Le ¢, Lc G, then
sup [f'(z. L)l =z sup [f'(z. L)l -
-eD(L) zeD(Lo)

Remark. The assumption |a;| <= 0o (j = I, 2) has been included in order to
simplify the formulation; however, it is not necessary, and each assertion in this
paper can be proved without it. Whenever the omission of this assumption would
cause any difficulty of not merely formal character, it will be mentioned in a footnote.

The proof will consist of the following parts:

First we shall assign to every point z, ¢ @, = (b, + ip(by)} a system N(z,)
of curves which for the set x e {a,, Re z,> coincides with @, and fulfils certain
conditions. Then we shall prove — with the aid of the variational principlc of the
theory of conformal mappings — the existence, unicity and other properties of the
solution of the following auxiliary problem: to find a curve L, € M(z,) which minim-
izes the upper bound of the function [f'(z. L)| for Le 9i(z,). After this the continuous
dependence of the solution of the auxiliary problem on the point z; will be shown.
From this it casily follows that there exists precisely one point z, € ¢, =~ {h, +
+ i@,(by)} such that the solution of the auxiliary problem for the point z, coincides
with the solution of the original problem. At the end of the paper some basic proper-
ties of this solution will be stated.



3. AUXILIARY THEOREMS

Theorem 3,1. Let C,, C,€ Q€ be two curves such that D(C,) < D(C,). Then, if
zo is @ common boundary point of both domains D(C,) and D(C,), we have

d |f’('zo’ C)l £ 1f'(z0. C,)
if lmzq > — 1, and

[f'(zo, CI Z 1f (20, C2)l
if lImzy = — 1.

Let us choose a real number v, |v| < /2, and consider the curves Cy, C, in a new
coordinate system X, y obtained by rotating the coordinate system x, y about the
origin through the angle v. If the curves C,, C, can be desribed by single-valued
functions of x © y = ci(x). ¥y = ¢x(x), and if the difference cy(x) — ¢,(X) attains
its maximum at x = x,, then we have

|f’(21» C|)| = |f'(zz, Gyl

where =; =[xy + ic(xo)]. ¢ (j = 1.2). Equality in cither of these relations
implies C; = C,.
Proof. It is obviously sufficient to prove the theorem for the case C, = ¢ (sec
[3]). Let
f(x + iy, Cy) = u(x,p) + iv(x, y),
V(x,y) = o(x, y) — y.

}'is a harmonic function on D(C;) and assumes its minimum at the point z,. Hence
if Imz, - — I, we have (see [6])

oV
— -

oy

0 s

since the direction of the outer normal at z,, is the same as the positive direction of the
coordinate axis y. Similarly, if Im z, = — 1, we have

We have €, e €, and hence there cxists an angular lim arg f'(z, C;). From the
geometric meaning of f'(z, ;) it follows that

2o
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at z,, and hence

(20 O] = i{ =}| + P 2 )

ay

For the proof of the second part of the theorem see [5].

In this paper, we shall always use the symbol s to denote the arc coordinate
measured locally on the considered part of the boundary of the domain C(D)

in such a manner that s increases if x decreases along the straight line E[x, y; v =
= — 1] and s increases if x increases along the other part of the boundary.

Theorem 3.,2. Let K(r, v, My, &) denote a domain bounded by a closed simple
curve A(r, v, My, e) (abbreviated to ) satisfying the two following conditions:

1. The distance of points of 2 and points of some circumference of radius r is
less than er.

2. Ais thrice derivable with regard to the arc s measured along ; if k(s) is the
curvature of A, then

v
|k'(s)] < 1—2 e, |K'(s + h) — &'(s)] Mz—' (f') .
¥ re \r
v =0, M, = const.

Let M, v be positive numbers. Then there exists a positive g, such that for every
e€(0, g9y the following assertion holds:

Let a curve C € € contain an arc y, = Mr, v, M, &); let V(s) denote the modulus
of the derivative of f(z, C) regarded as a function of the arc s of the curve C; let
all the domain K(r, v, My, ¢) be situated outside the domain D(C). Then we have
at all interior points of v,

d? log V(s) dV(s)

ds? ds
This theorem is an obvious modification of a theorem proved in |3].

Theorem 3,3. Let a curve C e € contain an arc y the points of which can be descri-
bed by a function
w(s) = x(s) + iy(s).
Let the function w have n continuous derivatives and satisfy a Holder condition

w(sy) — w2 (s )l S B.|sy —s,|", 0 v <1.

Then there exists a 2-dimensional neighbourhood U of the arcy such that for

zeU n D(C) there exist continuous derivatives f"(z, C), (I =1,2,....n) with
f(z, C) * 0.
This theorem follows immediately from [7].
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Theorem 3,4. Let the boundary of a domain D{(C) contain an arc y, satisfying the
following conditions:

. For every s % s, (s is the arc measured along 7y,) there exists a tangent T
10 y,.

2. If 9(s) denotes the angle between the positive direction of T and the positive
direction of the real axis, then |3s)| < n/2 — 3, & =+ 0. Here for the positive
direction of T we take the direction corresponding to increasing s.

3. If x, and x denote the real parts of the points corresponding to s, and s
respectively on the arc, then for s — s, we have

s — (s N
lm sup )_(S_—L}(—S) R
h—0 h [x — X,
lim ing 2O ) = 96)
h-0 h

and for s > s,

|

- 19(s + h) — 9(s

lim suplwﬁ): el
h—>0 j h |

where N and ¢ are constants.
4. log |f'(z, C)| is bounded for all poinis near to y,.

Then the function p(s) = log |f'(z, C)| is continuous at every interior point of y,.

This theorem follows immediately from [3].

Theorem 3,5. Let the boundary of a simply connected dowmain A in the plane
w = u + iv contain the interval (—1, 1) of the real axis and let a conformal trans-
formation z = F(w) of 4 onto some domain D fulfil the following conditions:

1. The segment (— 1, 0) is mapped onto an arcy with a tangent fulfilling a Hélder
condition.

2. For ue(0,1) we have |F'(u)] = 1.

3. The interval (0, 1) is mapped onto an arcy’ with a bounded rotation (i.e.
the angle between the tangent to 7' at an arbitrary point of 7" and the real axis
has finite variation).

Then the function F'(w) is defined and continuous at w = 0.

For proof sec [3].

Theorem 3,6. Let a curve C € € contain a rectilinear segment o. Let y be a bounded
part of the boundary of the domain D(C) such that C = vy. Let the set y -~ ¢ consist
of two connected parts which belong to different half-planes bounded by the straight
line | © 6. Choose an orientation of | in agreement with that of 6. Let V(s) denote
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the modulus of the derivative of f(z, C), regarded as function of the arcs. Under
these conditions, at all interior points of the straight segment o we have

V'(s) = 0

if the part of the straight line | belonging to some neighbourhood of o is directed
to the exterior of the domain D(C), and

V(s) < 0

in the opposite case. Equality in either of these relations is possible only if C = g.

This theorem is a special case of a theorem proved in [3].

4. THE AUXILIARY PROBLEM AND THE EXISTENCE AND
UNICITY OF ITS SOLUTION

Let z, e ®d; = [{a,} U {by + ip,(b)}]. z; = % + i@(a;). It can be shown by
calculation that for a sufficiently large M and for all a € {h,, a,)>"), the arc with
curvature everywhere equal to M/[(x — o) (« — x)] and containing a peint z,
where x, = Re z, € (aq, ), fulfils in some neighbouhood of z, the conditions posed
on 2 in theorem 3,2. (We take r = (xo — o;)(% — x,)/M. Thisarc can be extended to
a closed curve in any manner so as to satisfy the assumptions of theorem 3.2.)
We shall consider M fixed.

Choose a k - k,, where k, is the upper bound of the functions || and ¢7/[1 +
+ (¢3)*]*. Let 9M(z,) denote the family of all functions 4(x) which fulfil the following
conditions:

I. 7 is defined for xe& (a0, by < o, = ay'), and Az) = (o) (j = 1.2).

o, = sup .
AISEXS]
2. For all xe {ay,a,) we have — 1 - Ax) <0, and A{x) = ¢, (x). provided
@;(x) exists (j = 1,2).
3. 7 has a continuous derivative and |A'(x)] £ k for every x € (o, %,).

4. For every x € (o, %,) we have

i}

(3 + ) — () _ M [+ ()]

lim sup s <
h=0 h (x — o) (o — x)

A(x + h) = X(x)

lim inf > — k[ + (A(x)*]".
h=0 h
Uy In case that u, - o take v, € (by. a), where « is the real part of the point of contact

of the tangent to @, passing through = .
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Let M(z,) denote the family of all curves A satisfying the equation y = A(x)
for 2. M(z,).

Let 4 denote the transformation which to every curve A € M(z,) assigns a curve
L = A(A) described for a; £ x < a, by the equation y = I(x), where

Cpq(x) for a; £ x =2 ay,
0= ) for  ay < x =0,
C0,(x) for a0 £x = a,.

Let N(z,) = A[M(z,)].

In virtue of theorem 3,4, the function |f’(z, L)| is continuous on L if log |f'(z, L)
is bounded on a (2-dimensional) neighbourgood of L. The existence of such curves L
follows from thecrem 3,3. If for a curve Le N(z,) the value [f'(z, L)| at a point =;
does not exist, set |f'(z;. L)| = oo.

In the rest of this paper, the following notation will be used: A (with arbitrary
indices) will always be used to denote a curve belonging to the system M(z,), L with
the same indices will denote the responding curve from the system N(z,). Analogously,
we shall use the letters 4 and I to denote the functions describing the dependence of
the imaginary parts of the points of A and Lrespetively, on their real parts.

Les us now formulate an auxiliary probiem:

To find a curve A* € M(z,) such that if 4 € M(z,), then

sup [f'(z. L) = sup [f'(z, L¥)|.

zel. zel*
Definition. We say that the boundary of a domain is strictly concave (or concave,
or strictly convex, or convex) at a point z if the arqument of its tangent (i.e. the

angle between the tangent and the real axis) is an increasing (or not decreasing.,
or decreasing, or not increasing, respectively) function of the arc at the point =.

Theorem 4,1. Let Ce C and let z = ¢({) be the inverse transformation to f(z, C),
{ = &+ in. Suppose that the function |f'(z, C)| attains its absolute naximum at
a point z* of the boundary and that there exists a neighbourhood U of the point
(% + f(=*. C)such that the function g” is continuous on U n D(C). Then the boundary
of the domain D(C) is strictly concave at the point z*.

Proof. In virtue of theorem 3,1, there exists a point z € C such that [f'(z, C)| - I.
We have | (o0, C)| = I, and therefore the point z* must belong to a finite part of the
boundary. At the point {* = f(z*, C), the function log |g'({)| attains its minimum,
and therefore we have for { = (¥,

dloglg' (Ol _
an
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if Im{* =0 and
dloglg'(Ol
an
if Im {* = — 1. If f(s) denotes the argument of the tangent as a function of the arc,
then for the value s corresponding to the point z = g({) we have fi(s) = arg g'({).

The continuity of the function ¢g” implies that the function log g’ fulfils the Cauchy-
Riemann equations at the point {*. Furthermore, it then follows that at &*,

[0s |
| =1g'(C¥) o
o] )
and hence
& _ .
(—i=1f"(z* C) > 0
ﬁs} ( )
Thus at {* we have
df Odargy’ & ol ’
df _dargg’ oo aloglg’l s ey - o
ds ¢ as on

which implies that f increases at {*, i.e. the boundary is strictly concave.

Theorem 4,2. Let A € WM(z,). Then the function [f'(z, L)| can attain its maximum

on D(L) only for ze A.
Proof. By theorem 3,1 we have max |f'(z, L) - 1. But also |f'(c0, L)| = I,

zeD(L)
If'(aj, L) <1 (j = 1,2). It follows from theorem 4,1 that the function |f'(z, L)l
cannot attain its maximum on any rectilinear portion of the boundary. The curves
¢ ; are convex and, by theorem 3,3, they fulfil the assumptions of theorem 4,1. Hence
the function | f'(z, L)| can attain its maximum only for z € A.

Theorem 4,3. There exists a solution of the auxiliary problem.

Proof. Let
m = inf max|[f'(z, L)|.
LeN(zy) zel.
Obviously m -~ oo. Let {L,} be a sequence of curves such that L,e N(z,) (n =
=1,2,3,...),
m = lim max |f'(z, L,)| .

n—+xn zel,

Let ¢, € L, be the point with the smallest imaginary part amoung all the points of
L,. We can assume that the sequence {L,} is such that there exists a limit

Iin] Cn = CO

ne s
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Suppose for a moment that Im {, = — |. We shall show that this is impossible.
For ne (0, 1 + Im {,> define a real function

hn(") = - hnf(Cn - ”’]' Ln) .

For ne(0, 1 + Im {,) we have

If[gn - ’7 + '71) Ln] '—f( n o ”7* Ln)‘

(h LF(C —in L)l = lim
ni—0y I'III
/ — 1
Z lim | Iu('] + ’71 ’n(n)l — |h’/,(")| .
=04 7]‘

In the interval (0, 1 + Im () there exists a point g, such that

, (1 + Im¢,) — h,(0 1
(2) hi(n,) = (1 -+ C)V ©_ -
I+ 1Im ¢, I+ In¢,

On the other hand, by theorem 4,2, the function |f'(z, L,)| can attain its maximum
only on L, — suppose it happens at the point {*. We have, according to (1) and (2),

lill" |/ ’ LI? I"H)I lixn I»f,(‘g" - ’7"‘ Lﬂ)] = w ;
n—o n— o
but this contradicts our definition of the curves L,.

Thus there exists a positive ¢ such that Imz > 6 for all ze L, (n = 1,2,3,...).
Let M°(z,) = MN(z;) = U(z,), where A(z,) is the family of all those curves Le “2(7
which contain pecints with imaginary parts smaller than 6 — |. From the definition
of the system M(z,) it follows that we can choose a subsequence of {L,} — to be
denoted by {L,} again — which converges uniformly to a curve Ce N°(z)).

The functions |f'(z, L,| convergence on D(C)to [f'(z, C)|. These functions attain
their maximum on the curves L, and C respectively. Hence for z € D(C) we have

[f(z. C) = lim |f'(z, L,)] £ lim max |f'(z, L) = m.

n—or n—>o  zel,

In accordance with the definition of m, we also have

m < max |f'(z, C)|.
zcC
Hence € = L*. This proves the theorem.
Now let x(x) denote the curvature of the curve L* at the point z = x + il*(x),
if it exists [ie. w(x) = P(x)/[1 + (I* (x))*]*], and let p(x) = [f'(x + il*(x), L¥)|.
To simplify, assume

2y =0, o, =2a.
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The following notation will be used:

P = E[xe 0, 2); p(x) - sup [f(L L],
sen(Lx)
. \ s M
P, = I:,[.\'GP: A¥x) = pix), AF(x)] ke =k owk(x) o ]
' N2 — x)
P, = E[xc P k(x) = — k],
Py = E[xe P = ({0} U {x}): 2%(x) = ¢, (x)].
Py = E[xe P; 2¥(x)| = k],
P =E|xeP; r(x) = M .
x(o — x)

By p(.27) we shall denote the Lebesgue measure of the set .o/ . There existsa set N
such that p(N) = 0 and

5
=NuU )Y P,
I=1

From continuity of p it follows that j(P) - 0if P =+ 0.
Lemma & p(P,) = 0.

Proof. Suppose that u(P,) = 0. Choose a point x* ¢ P, such that the intersection
of each neighbourhood of x* with P, has a positive measure. Let K be a neighbour-
hood of x* such that 2*(x) + ¢;(x), |A*¥(x)] - k for every x e K. There exists
a closed set F < P, n K of positive measure, such that the partial function r is
continuous on F. Let | denote the least interval which contains the set F. Choose
five points in I x; - x5 - X3 X, X Forj = 1,234 set

i . - N
I = <'\,i"\/!|/'

Take a curve A such that the following conditions hold: J(x) = ¥(x) for x ¢ (x,. x5),

2'(x3) = 2*¥(x,)., the curvature x of A satisfies

K(x) = K(x)
for almost all x & (x,. x5) = F. and. finally, for every x & I' n I’ we have
w(x) = K(x) + 7,

where 3, 7, are negative and y,, y; positive numbers with absolutc values so small
that

xe {xy, xey implies |A(x)] - k.,
M

xelFnl implies —k — r(x) +y; - --
' x(2% — X)
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and that for Re z € (x;, x5) we have
(L] sup If(C L) = max /(. L¥)] .
EeD(L*) Zel*

That the last relation can be satisfied follows from [4] and from the fact that we can
take the y; arbitrarily small.

We then have for every x € (x,, xs),

A(x) - A*(x) .

Obviously A €M(z,). Then, from theorem 3.1,

max |f'(z. L) max |f(z, L*)| :

el zel*
but this contradicts the definition of the curve L*.

Remark. The curve A in the proof of lemma | can be constructed in the following
manner:

Preserve the notation used in the proof of lemma . First suppose that the y;
are available, and let us seek a formula describing A(x) for x & I’ Let 9(x) and 3(x)

denote the argument of the tangents to the curves A* and A, respectively, as functions
of x. Forj=1,2,3,4,let

Il = {x;,x),

Fil=Fnll.
We have
S dy k(x)
dx  cos .‘i(ix)

and hence, by separating variables,

sin H(x) = j k(1) dr + sin 9(x,) .

X0

An analogous relation holds for 3(x), and hence

sin 9(x) = j k(1) dr + sin 9(x,) =

X0

:J [r(0) + ;) dt + ( k(1) dt + sin 3(x,) =
Fad I i=F,J

Y

= j k(1) dt + 7, f(F7) + sin 3(xo) = sin 3(x) + y; . 1(FD) + ¢;.
I
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where
¢; = sin 9(x,) — sin 9(x,) .
Hence it follows that
A'(x) = tgarcsin [sin arctg 2*'(x) + 3, . u(F2) + ¢;] ,

and on applying

u . v
t i = —————2, Ssinarctgor = ————-
g arcsin u \/(I Y \/(l )
and integration, we obtain
N 2* o u(F ). A]dx s
i) =J' [0 + ;- i(F) + <) A] . ().
po A= 22%(X) [y  w(F2) + ¢;] - A = [y, . i(F) + ¢;]. A*}?

where
A =1+ 2]

Now, the function 4 is to have a derivative at x; (j = 1, 2, 3,4, 5)and A'(x;) = 2*'(x;):
thence

If we choose y, and y;, then the other constants are hence determined. However, we
can make the numbers |y,|, |y,| arbitrarily small by choosing |y,|, |y;| small enough.

Lemma 2. The set P, is empty .

Proof. First note that the following auxiliary assertion holds:

Let Ay, A, € M(z,), A1(x0) = A2(x0), Ai(xo) = A5(x0). iy - Kk, - 0. Let the curves
A;(j = 1, 2) have curvatures r; at the point x, + i4,(x,). Then there exist numbers
X Xg. X5 0 Xg, such that for x e (x,. xy) N (X0, X5) we have A,(x)  7,5(x).

Now suppose that there exists a point x* € P,. Let
o = E[&xc (& x*) = k(x) = — k],

&, = inf & Obviously, the point &, + iA%(&;) does not belong to any of the curves
Geod

@, (j = 1,2). Denote by K(x, ¢) the circumference with radius 1/k + ¢ which con-

tains the point x + i2*(x), has at this point a common tangent with the curve A*

and lies below this tangent.
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Choose a positive &, such that z, = o + iA*(x) is in the exterior of K(&y, ).
(Such an ¢, exists, since we have k(x) = — k and there exists points x € (¢,. )

with k(x) = — k; consequently, the point z, lies in the exterior of K(&;,0).) From
the continuity of the curve A* and its tangent, the set R consisting of all pcints x
such that z, is in the exterior of K(x, &), is open. Therefore there exists @ <, &,

such that (&,, &,) « R. Also &, can be so chosen that
xed{&,, &) implies A%(x) < @i(x),

if ¢ ,(x) exists. From the definition of &, it follows that in the interval (&,, &) there
exists a set % such that (%) > 0 and x(x) ~ — k for xe @.

As a consequence of the auxiliary assertion, there exists an ¢, 0 ¢ = &,
a point & € (&,. &;) N % and its (I-dimensional) neighbourhood O, so that the set-meet
of the interior of K(&, ¢,) (i.e. the open disc bounded by K(Z, ¢;)) with that part
of 2* whose projection onto the real axis coincides with the neighbourhood 0, is
empty. Also ¢, may be taken sufficiently small for

| 1

+ g o,

k ky
where k; is the upper bound of the absolute value of the curvature of the curves
@, (j = 1,2). Let # denote the set of all points & € (&,, &) such that every element
& e # has a neighbourhood which coincides with the projection onto the real axis
of a part of A* which does not intersect the interior of K(&, ¢,). Let &y = sup &
Obviously ¢, ¢ 4. We shall show now that &, ¢ 4. se

The curvature of K(&;, ;) is

-+ g
k
From the definition of &5 and from the auxiliary assertion it follows that for every
x @ (&, &)y we have k(x) < «if 1(x) is defined. If we now denote by 3(x) the argument
of the tangent to K(&5, ¢,), we have

dx To dx

((‘)(,\') _ 9(53) + (\. I\‘(X) N .7}(_\') = "*(53) + [‘ I

Je cos H(x) cos 9(})

for all those x © (&5, &) for which 3(x) is defined. Hence

sin 3(x) = sin H(&;) + J k(x)dx < sin 9(&3) + [ rdx = sin §(x).

3 v &3
and consequently
9(x) < 3(x).
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From the definition of &5 it follows that equality cannot hold at all points of any
interval (&, &3 + 4), since then the points of this interval would belong to 4.
But this implies &5 ¢ 4.

Let  denote the part of A* consisting of all points whose real parts belong to the
interval (&5, ). The interior of the circle K(&5, g,) contains points belonging to .
The set Q of all x such that the interior of the circumference K(x, ¢,) contains points
of the curve s is obviously open. Hence there exists a &, € (£,, &3) such that (&, &;) <
< Q.

Choose a point x, € 4 n (&, ;). All the points of the curve i are situated in the
exterior of K(x;, 0). On the other hand, there are points of ¥ in the interior of K(x,,
£y).

Let K%(x,¢) denote the interior of K(x,e¢). The set of those ¢ which satisfy
KO({],I) Ny =90 is open and non-empty, and similarly for the set of those ¢
which satisfy K°(x;, ¢) ny & (. Therefore there must exist a number &, € (0, ¢;)
which is in neither of these two scts, i.e.

K(x, &)y =0, K(x;.e)ny 0.

Choose a number x, satis{lying
Xy + iA¥(xy) € K(xy, &) N fr .

Since ¢, &, we have x, < «, and consequentiy the circle K(x, ¢,) and the curve
2* have a common tangent at the point x, 4+ iA*(x,). Let 4 be the curve which
contains the upper arc of the circumference K(xy,¢,) = K(x,, ¢,) with end-points
Xy + i2%(xy), x, + i2%(x,) and which satisfies J(x) = A*(x) for x ¢ (x,, x,). Then
A€M(z,), and hence Le €. Let the function |[f'(z, L)| attain its maximum at the
point { € L. In virtue of theorem 4.1, we have Re { ¢ (x,, x,). Consequently. the
point { belongs to the set-meet L~ L*: but then, by theorem 3.1, we have
max |f(z. L) = £ L] - f(E L] max [f(= L9)]

zel. el

this contradicts the definition of A*. This proves the lemma.
Lemama 3. The set Py is emply.

Proofi. Assume that there exists a point v, € P5. Let o/ denote the set of those
x € (0, o) which satisly x + iA¥(x} ¢ @, (j = 1.2). Then o7 = 0, for we have b e .«/.
For by, = b, this follows from the fact that the curve L* cannot contain an angular
point (for then [f'(b; + ¢(b)), L¥)| = o). In virtue of lemmas | and 2, we have
k(x) = 0 for almost all xe P .o/, (If |A¥(x)| = k. then obviously x(x) 0 is
impossible.) Now we shall show that x(x) -~ 0 for no point xe 4 =~ P.

If I < (0,a) = P is an iaterval, then for Rezel we have |f'(z, L¥)| = const.
Hence 2* is analytic at these points and hence, be theorem 4.1, also concave, i.e.

k(x) = 0 almost everywhere on .
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Now assume that there exists a point ¢ € o = P such that «(&) < 0. The set o/
is open, hence there exist &, £, € 0, o) = o/ such that J = ({,.&,) = o, € J.
We shall use the following notation:

: 1
w* =infr(x) <0, o*=—.
xeJ IK*l

Hence there exists a sequence {x,}, such that

x,€J, limk(x,) = x*.

n—o

We can suppose that the sequence {x,} has been chosen convergent:

limx, =x*eJ.

n— o
We shall concern ourselves with the case x* = &,. The treatment of the cases x* € J
and x* = &, is similar.

Thus, assume x* = £,. Now K(x, ¢) will denote the circle with radius ¢* + ¢
which has a common tangent with the curve A* at the point x + iA*(x) and lies
below this tangent. K°(x, ¢) will denote the interior of this circle. From the facts
proved above, it follows that for every x € (¢,, &,) we have

&y + iA%(&) ¢ K°(x, 0) .

Choose a number ¢, > 0, such that

&, + iA¥(E,) ¢ Ko(x*, &) .
There exists a point x; ~ x* such that
x e {x* x> implies  K°(x, 8,) N &, + X&) = 0.

In the interval (x*, x,) there is a point x, such that

1
K(x,) < — e
0"+ &

Denote by # the part of the curve A* whose points have real parts in the interval
{x,. &5, The set R consisting of all the points x satisfying

K(x,eq) 0y £ 0

is open. As we have already shown, there exists no interval with x(x) - 0 almost
everywhere. Consequently, there exists a point x; & (x*, x,) n R with x(x;) = 0.
Hence

K(x.0) iy =0, K(xy, 600y 0.
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Now. as in the proof of lemma 2, there exists a curve A € M(z,) satisfying

max |f'(z, L)| - max [f'(z, L*)|

zel. zel*

but this contradicts our assumption on L*.

We have now proved that x(x) = 0 for almost all x € .o/. This implies that A*
is concave at all points where the equality 2*(x) = ¢,(x) does not hold.

Let x,, x, €.9; A* is concave at all peints where Re z € .o7. On the other hand,
¢, is everywhere convex. This implies that {x,, x,) < .«.

Suppose that there exists a f# =~ 0 such that A*(x) = ¢,(x) for x < <0, ). Let
O(x) = arctg I*(x). The function @ does not increase for x e (0, ), it does not
decrease for x€(f, o) and it does not increase for x € (a, a,). We have O(p) -

O(0) £ 0, O(a) > 0. If © is nonconstant on (0, f), then hence and from the
continuity of @ it follows that there exists an x; € (#, «) such that @(x,;) = O(x,)
and A*(x;) -~ 2*(0) + A*'(0) x,. Construct a curve X, defined for xe {x,.x) by
the function

yo=oa(x) = A*(x) + 2*(0) x; + A¥0) — A*(x,).

Let the function o(x) assume its minimum at a point x,. Denote by &(x) the real
part of the point where the positive portion of the tangent to the curve X at x + iy(x)
intersects the curve L*. Obviously, &(x,) exists and we have O(&(x,)) ~ O(x,) = 0.
For x € (x5, «) we have &(x) > x if &(x) exists.

Let 4 denote the set of all x > x, such that &(x) exists and O(&(x)) - O(x).
Then # is open and nonvoid, and o ¢ 4. Let

x; = inf x.
XE<X2 A A
From continuity of @ it follows that &(x;) exists and @(&(x;)) = ©(x3). Denote by
A the curve described by the equation y = J(x), where

CA*(0) + A*(0) x for 0<x<x,.
(x) = o(x) for x, ~x < xj3,
a(x3) + A*(x3)(x — x3) for x; < x < &(x;).

Now suppose that @ is constant for x ¢ (0, f). Let 0 -~ h - 5. Construct a curve
Y desribed for x € (ff — hcos O(f). « — h cos O(B)> by

v = a(x) = A*(x + hcos O(B)) + hsin O(f).

Let o(x) denote the argument of the tangent to ¥ at x + ig(x). Let &(x) denote the
real part of the point where the positive portion of the tangent to ¥ at x + ig(x)
intersects L*. If we choose the number h sufficiently small, we can. as in the previous
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part of this proof, find a point x, such that O(&(x;)) = O(x;). In this case we shall
denote by /1 the curve defined by y = J(x) where

Ci(x) for 0= x<p — hcos @),
Ax) = a(x) for B —hcosOf) < x £ xy,
o(xs) +oa(x) (X — xy) for Xy £ x < E(xy).

In both cases we have 4 € M(z,), Le C.

Let the function | f’(z, L)| attain its maximum at a point {e L. In virtue of theorems
4.2 and 3,6, there must be x; = Re{ < x; or x; < Re{ £ x;. Also we have every-
where A(x) = A*(x), and the curves A*, A fulfil the assumptions of the second part
of theorem 2.1 at all the points which have real parts belonging to the interval {x,,
X3 or {xy, X;3). respectively. Therefore

(S L) = max |f'(z, LF),
zel*
but this contradicts the assumption concerning the curve A*.

From this and from the definition of « it follows that there exist numbers x, x, €
e o/ such that x, is arbitrarily small and x, -~ « is arbitrarily near to o. This implies
that 0 and o are the only points of equality of the functions A* and ¢;.

This proves the lemma.

Lemma 4. The set P, is empty.
This follows immediately from the concavity of the curve A*.

Lemma 5. Ps = P = [{0} U {«}].

Proof. From the continuity of the function p it follows that the set P = [{0} U
U {a}] is open. From lemmas | to 4, we have

P = [{0} u{x}] =Ps+ Ny, u(N;)=0.

Hence if x; € P = [{0} U {a}] then there exists an interval / < P containing the

point x,, and

= M

x(o — x)

almost everywhere in I. Now from the continuous prolongability of the function x
and from the continuity of the function A*’ it follows that

and consequently N, = 0.

Theorem 4,4. If A* is a solution of the auxiliary problem then for all z € A*,

|f'(=. L) = sup (L LY.

EeD(L*)

98



Proof. Let e (0. 2y be the point where the function p assumes its minimum
value on the interval <0, 2> and let £ P. If & = 0, there would exist an interval
(0. 1) =@ P, and consequently, by lemma 5,

t t M )
Ay = 2*¥(0) = j 2*'(x) dx :j — [T+ (A% (x))*]* dx .
0 0 X(’x - .‘()
However. the mtegral on the right side 1s divergent. Hence & .- 0. Similarly ¢ - 2.
Thus ¢ is an interior poeint of the set P, and hence

M

x(x — x)

I\'(,\‘) =

in a neighbourhood of the point & However, from theorem 3,2 and the choice of
M, the function p{x) cannot assume its local minimum at a point having a neighbour-
hood where

M
x(o— x)

K(x) =

Hence P = @, and consequently

p(x) = sup |f'(¢, L) .

ZeD(L*)
This proves the theorem.
Theorem 4,5. The curve A* is uniquely determined by the point z,.

Proof. Let the curves A, and A, both solve the auxiliary problem for a given point
z,. This implies that
'z, L)l = If (L Lyl = ¢
for all ze A,, (€ A,. Let & be the point where the function |I,(x) — /,(x)| attains
its maximum value. Assume e.g. that [,(&) > [,(£). The curves A; are concave and

/(&) = 15(&). Tt follows that the points & + il,(¢) belong to the curves A;. On the
other hand, from theorem 3.1 it follows that

F(E A+ i24(E), L)l < 1f(€ + i4y(8), L)l -

Consequently 4, = A,.

5. PROPERTIES OF THE SOLUTION OF THE AUXILIARY PROBLEM

Letze @, = {b, + ip,(b,)} and let A¥ denote the solution of the auxiliary problem
for the point =. If z = a,, we define A = q = (a. a,>. Next, denote by y(z) the
point which satisfies

@)} = A ne,.
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Lemma 5,1. Let z,, z, € ®, = {b, + ip,(b;)}, Im z;, > Im z,. Then

Im y(z,) = ITmy(z,)
and
AE(x) - A5(x)
for all x € {(Re z,, Re y(z,)).
Proof. Let
I = (Rez,. min[Rey(z,). Rey(z,)].

Assume that
max [AX(x) — 2% (x)] 2 0.

xel

Let x, be the point where the function A}(x) — 27 (x) attains its maximum on /.
As in the proof of theorem 4,5 we see that x, is also the point where the function
I¥(x) — I (x) attains its maximum for x € {a,, a,). Hence and from theorem 3.1,

(1 /(e + a2 (xg). LD 1f (e + 025 (x)s LI

On the other hand, at the point x, where the function A} (x) — A} (x) assumes its
minimum value (according to the assumption of the theorem there is A)(x,) —
— 2X(x;) - 0) we have

(2) 1f/Cer 4+ ia500) LEDE - 1 (xo + 25 (x2), LY

By theorem 4.4,

iy 4 i) LA = 1f 7 + 25 () LE) = ¢, .
(g 4 5 LA = 1f (e + 025 () LA = ¢

The inequalities (1) and (2) are contradictory, and we have for x €1,

AX(x) < A¥(x).
Hence
Imy(zy) - Imy(z,).
Lemma 5.2. Let z, e @, (n =1,2,...), limz, =z, £ b, + ip,(b,). Then

n—o

“‘n y(Z") = V(ZO) .

n— s

Proof. Let us change the formulation of the auxiliary problem by exchanging the
curves @, and @,. The assumptions posed on these curves are symmetric, and hence
to every u€ d, = {b, + ip,(bh,)} there exists a point u; =y "(u,), u, e d, =
= Ibh, + ip(b,)}. If we define

y*(Re z) ':: Re y(z)
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then y* is a single-valued (by theorem 4,5) and monotonous (by lemma 5,1) function
which maps the interval {a,, b;) onto the interval (b,, a,», and consequently it is
continuous. This obviously implies the assertion of the lemma.

Lemma 5.3. Let z,e ®, (n = 1,2,...), limz, = z,. Then the sequence {I¥} is

n— o
uniformly convergent on the interval {a,, a,).

Proof. We may ignore the trivial case that z, = z, for all n = N. Then we can
choose a subsequence {({,} of the sequence {z,} such that {Im {,} is either decreasing
or increasing. The Arzela theorem implies the existence of a uniformly convergent
subsequence of {/%(x)}. The uniform convergence of the sequence {I;(x)} then
follows from lemma 5,1.

Lemma 54. Let z, e @, (n =1, 2,...),

limz, =zoe @, = ({a,} v {b, + ipi(b))}).

n—= o

and let
lo(x) = lim [¥(x)

for x€ {ay, ay). Then for z€ Ay = ({zo} Y {¥(20)}) we have
If'(z, Lo)l = const = lim [f'({,, L)l

n—>"
o *
where (€ A7 .

Proof. Transform the coordinate system in the direction of the real axis so that
we have b, < 0 < b,. For simplicity we shall write A, instead of A} (n = 1,2,...).
We may assume that the transformations f(z, L,) have been chosen in such a way
that '

f(i2,(0), L,) =0
forn =0,1,2,...

Choose a point v = A, ~ ({zo} N {y(zo)}), and an interval K = (r,, r,) such
that

K = (Re zy, Rey(zy)). ReveK.
Let
Onj = f("j + Mn("j)« L,)
forj =1,2,n = 0,1, 2, ... We shall prove the existence of convergent subsequences
Ok, .j- In this part of the proof g, will denote ¢, ,.

According to lemma 5,2, there exists a number N such that Re y(z,) :» r, for all
n - N. Let g,(B) (for n =N + 1, N + 2,... and n = 0) denote, for fe (0, r,>.
the length of the portion of A, lying in the strip 0 < x < f3,

o () = f " 1

0
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The functions 4, fulfil, on the interval {0, r,), the assumptions of the Arzela theorem:
hence there is a subsequence {4 } uniformly convergent on (0. r,>. and

lim 7, (x) = ZAp(x) .

Hence
3) i g, (f) = ao(f) -

Let ¥, denote the inverse iransformation to f{z, L,) (n = 0,1,2,...). Then also

0,(r2) = fk"lz//;,,(cf)l de = &

0 dl\,,

where d,, = |f'(z, L)\ for z € A,,. In virtue of lemma 5,1 and theorem 3,1, the depend-
ence of the values d,, on Re z,, is monotonous. Hence the sequence {d, } is bounded
and there is a convergent subsequence. This implies that the sequence {d, } is also
convergent. Let

d” =limd, .

n—u

Then there exists

lim g, , = lim[d, .o, (r;))] = d” . ay(ry) = 0,.

n— o n—on

Similarly we have the existence of

limg, 1 =0

<
- o0

if the sequence k, is chosen suitably.

Let I = (g,, 0,). Take any subinterval J = (R,, R,) < [ and let

S=E[¢+in, =1 -—n 0],
Q=E[E+in; R, —& Ry 0=y 1].

Now define a function

() = £ [0 L]

for (S and n =0,1,2,... There exists a v, such that y({)e A, for all (< J,
n - v. The curves A, are analytic, and hence for n - v, there exists an analytic
continuation of the function h, on the domain S U Q. We shall now show that
the sequence {h,({)} converges for { € J.
We have
lim |h,(0)] = limd, = d°

0= n—,



There exists a v, such that J < (g, 1, 0,.2) for n - v,, and consequently
(Ref(Ry), Rey,(Ry)) < (. ry).

Furthermore, there exists a ¢ - 0 and a v = max (v,, v,) such that
[Rez, —ri>q, [Rey(z,) —ral ¢

forn = v.

Let x,(x) denote the curvature of A, at the point =€ A, with Re z = x. Then
A, € M(z,), and hence, from the definition of the systems M(z), there exists a number
M such that for

xe {Rey(R)). Re y(Ry)D
and n - v we have

M M

T - Rez)(Rey(z) —x) g

A

— K é l\'"(x)

'

Denote by s,(&) the arc-length measured along A, at the point ,(&). Then

— arg h,(&) = 1[5,(9)]

is the argument of the tangent to A, at the point Y, (&). For ze J, n .- v we have

|
|

0 arg h,(&)] Sl M I
carg h,,(g)} = Ydt . ds{,“ = |, [Re Y (O] - W) = max |k, ). sup
(1‘&_: i ‘EdS” d’i: l . L]Z nod

n

Also
larg h,(&)| < arctgk -~ o

for all £ and n, and hence there is a subsequence
larg (&)
uniformly convergent on J.
This implies that the sequence
1 (8)) = {exp [lg [y, (O] + iarg h, (O]}

is uniformly convergent on J.

The sequence {|h, (O)I} is uniformly bounded. This and the convergence of the
sequence {h (0)} on J implies, by the Vitali theorem. that the sequence {/; ({)}
almost uniformly converges on S m Q to an analytic function. In accordance with
lemma 5.3, this implies

lim by (C) = f/[‘po(‘:)- Lo] = hy(0)

n—r o0
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for {e S n Q. Hence

lho(E)] = d°
for all e J.
Since J is an arbitrary subinterval of the interval I,
lho(E)l = d°
for all €.
Let

t; = Re (o)),
rn.j :f(tj + iln(tj)’ Ln)

forj = 1,2and n = 0, 1, 2, ... We shall now show that (r,, r,) = (t,, 1,).
Assume that t, - r,. Then obviously

(4) a,(ry) Z a,(t) +ry — 1,

Also, for n N.

(5) O-n(rZ) == 0On2>

o(ty) = — . T,,.
This and (3) implies
(6) limo,(t,) = dlg ."lim T, = 0o(l3) .
For £ € (0,, 0,) we have

ey = b
W = s =

From the assumption 1, - r, it follows that 1, , < o, , for all n = n,. Hence from

(6),

n—or

02

limz, , = d°. oo(1) = d° . f (&) dE = 0, .
0

This and (5) implies

. . |
lima,(1;) = lima,(ry) = — . 05,
n— oo n=o [«

and hence, according to (4), the relation t, -~ r, cannot hold. Therefore ry £1,.
Similarly one proves r; > ¢, .
Since

Reve(ry, ry) < (1), 1,)



we have f(v, Ly)el, i.e.
Lf'(v, Lol = |ho[ f(v, Ly)]l = d°.
Since v is an arbitrary point in
Ao = ({zo} v {1(20)}) »
the lemma is proved.
Theorem 5,1. Let z,e ®, (n =1,2,...),

limz, = zy %+ b, + ip,(b,).

n—on
Then uniformly on {a,, a,),

lim I} (x) = 1% (x).

n—oo

Proof. First assume that z, % a,. According to lemma 5,3, the sequence {/}(x)}
converges uniformly to the function [y(x). By lemma 54, |f'(z, Ly)| = const
for ze Ag =~ ({zo} U {7(2z0)})- Further, by theorem 3,5, the function [f'(z, L,)|
is also continuous at the points z,, 7(z,), and hence these points also satisfy

1f'(z, Lo)l = d°.
If A, + A% then, in consequence of theorems 4,4 and 4,5,
If'(z, LY) = ¢ = d°

for z € AZX. Let the function A} (x) — Ao(x) assume its minimum at the point x, €
€ (Re zy, Re y(z,)>. By theorem 3,1,

¢ = 1f"(x; + i22(x,), LZ))' = d°

in contradiction to (7). Hence A7 = A,.
Now let z, = a,. The curves A} are concave and hence

¢y (Re z,) < I7(x) < @5 (Re y(z,))

for all x € <a,, a,). Both the expressions on the left and right side tend to zero
as n — oo and hence
lim I}/(x) = 0

n-=*on

uniformly on {a,, a,)». This implies that

lim [F(x) = 0 = [} (x)

n— oo

uniformly on {a,, a,). This completes the proof of the theorem.
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6. THE SOLUTION OF THE PROBLEM

The notation is that used in chapter 2. Then we have the
Theorem 6,1. There exists exactly one curve Ly & € such that the following condi-
tions hold:
1. L, < G.
2.0f Lo Q. Le G, then
sup [f'(z. L)l = sup |f'(z, Lo)l -

e D(L) zeD(Lo)
Proof. From the properties of the curves 2 it follows that there exists exactly
one point
Fedy = ({agf v iby + (b))
such that the curve A* = A% touches the curve I' but contains no points in the
domain H = G.
Let (e A* n T Let Le €, L G and L % L*. There exists a point {, ¢ ®, U @,
such that the function [*(x) — I/(x) assumes its minimum at x, = Re ;. (This
follows from the fact that [*(x) — I(x) = 0 for x = Re ({).) By theorem 3,1, at {,

GG D> (GG LR = sup [f'(z, L*)].

zeD(L¥)
This implies that the curve L* = L, is the only solution of our problem, proving our
theorem,

In the following theorem we shall state properties of the curve L,, most of which

have already been proved. The notation is that used in theorem 6.1.

Theorem 6,2. The curve L, consists of three connected parts,
[‘() + Ql J Q()U QZ*
such that
Q;c (l)_i(j =1,2)
and

we Qy implies | f'(w, Ly)l = sup [f'(z, L)l .

zeD(Lg)

The arc Qg is unalytic and strictly concave. The curvature of Qq does not attain
its maximum at any interior point of Q..

Proof. The theorem has already been proved, except for the last assertion.

Assume that the curvature of the arc Q,, attains its maximum at the point z, € Q,,
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and that =, is not an end-point of Q,. Let (&) denote the inverse transformation
to f(z. Ly), and let { = f(z, L,) = & + in. The curvature of Q, at = is

/(= Lo)l . arg (D) -

¢

>

-~

The function |f'(z. Ly)| is constant on Q,, hence {, = f(z,. Ly) is also the point
where the maximum of the function

(Con) = __argP(< + in)

<
is attained. The values of the function arg y'({) at points on the lines y = — |

or n = 0 arc equal to the argument of the tangent to the boundary of the domain
D(L,) with point of contact /() (see [8]). The arc Qy is the only part of the boundary
of D(Ly) which is strictly concave, and therefore the maximum of the function
on Q, is also its maxinium on the strip S. The function 7 is harmonic on S, and thus

. (¢ 0
on
This implies that
Jd ¢ e 0° ,
0 oarg ‘/"(‘:1)1 = . logly (€l
on | o _] o&-

but this contradicts the fact that the function log /()| is constant in the neigh-
bourhood of (.
This concludes the proof of the theorem.
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Vytah

O PROBLEMU OPTIMALNI DEFORMACE KANONICKE OBLASTI
VE SMYSLU MINIMALIZACE MODULU DERIVACE
KONFORMNIHO ZOBRAZENI

HaNA SVECOVA

Prace se zabyva timto problémem: hleda se kfivka urcujici deformaci pasu — 1 -

v - 0, ktera v dané tfidé kfivek minimalizuje supremum modulu derivace kon-
formniho zobrazeni deformovaného pasu na pas — 1 - y < 0. Takto formulovany
problém ma fyzikalni smysl napf. v hydrodynamice, v teorii pruZnosti, v elektro-
statice aj. Za pripustné jsou povazovany kiivky, které leZi v uzavéru jisté oblasti
G (tato oblast je definovana v 2. ¢asti prace) a spliiuji podminku spojité prodluzitel-
nosti derivace konformniho zobrazeni na hranici. Je dokazana existence, jednoznac-
nost a nékteré dalsi vlastnosti feSeni této ulohy. Hledana kfivka se sklada ze tri
obloukii, z nichZ dva krajni jsou ¢asti hranice oblasti G, kdeZto tfeti (oznaéme jej
A) lezi (az na koncové body) uvnitf této oblasti, je analyticky a modul derivace
prislusného konformniho zobrazeni nabyva ve vSech jeho bodech svého maxima.
Body oblouku A dale spliiuji rovnici y = A(x), kde 1"(x) > 0, pfi ¢emZ absolutni
hodnota kfivosti oblouku A nenabyvd v Zadném vnitfnim bodé A svého maxima.

Pe3rome

OB ONNTUMAJILHON JE®OPMALIUN KAHOHUYECKON OBJIACTU
B CMBICJIE MUHUMAJIU3ALMU MOJVYJISI TTPOU3BOAHOM
KOH®OPMHOI'O OTOBPAXEHUA

'AHA HLIBELLIOBA (Hana Svecova)

B craibe uccaeayeTcs cielyrolias 3aiaya: HalkTH JTMHUIO, onpeAeistouyto aedop-
MaLMio monochl — 1 < y < 0, KOTOpasi JaeT MUHUMAJIbHYIO BEPXHIOIO I'PaHHUIY MO-
[yJIst IPOU3BOAHOM KOH(POPMHOro oTobpaxkeHust npoaehOpMUPOBAHHON MOJIOCH Ha
nosocy —1 < y < 0 B naHHOM kJacce nMHUA. Takas GpopMyaMpoBKa 3aaauu UMeeT
CBOE OCHOBAHHE B HEKOTOPBIX 3a/1a4aX I'MAPOAMHAMUKH, TEOPUH YIPYTOCTH, JIEKTPO-
CTAaTHKK U ap. lonyCTUMBIMU CYMTAIOTCS TAKHE JIMHUH, KOTOPBIE JIEXKAT B 3aMbIKaHHH
HekoTOpO# 06macTu G (312 06aCTh ONpeiesieHa BO BTOPOii 4acTH paboTbl) U y0BlIe-
TBOPSIFOT YCJIOBUIO HENPEPLIBHOW MPOJOIKUMOCTH NPOU3BOAHONW KOH(MOPMHOTO
0TOOpaxeHus Ha rpaHuuy. Jloka3bplBaeTcs CylIeCTBOBaHUE, ¢IMHCTBEHHOCTb M HEKO-
10pble JAPyrue CBOWCTBA pelueHUs ITOH 3amaud. Mickomasi JIMHUS COCTOMUT M3 Tpex
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Jyr: ABE M3 HUX COBMAJArOT C 4acTbro rpahuubl obaactu G, TpeTbs (0003HaYUM ee
depe3 A), KoTopast JIEKUT (32 UCKITFOYeHHEM CBOMX KOHILIOB) B 3TOH 06J1aCTH, aHaIN-
THYHA, U MOMYJb MPOU3BOAHON COOTBETCTBYIOLICIO KOH(POPMHOrO OTOOpPAXNKEHUS
JIOCTUTAET BO BCEX €e TOYKaX CBoero Makcumyma. [anee, Touku ayru A yaoBierBo-
psitoT ypaBhenuto y = A(x), rae A”(x) > 0 u aGCcosoTHASL BEIMUMHA KPUBH3HBI IyTH /A
He JIOCTUraeT CBOEro MakCHMyMa HU B KaKOUl BHYTpPEHHeH Touke jayru A.

Adresa autorky: C.Sc. Hana Svecovd, Matematicky ustav CSAV, Zitna 25, Praha 1.
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