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S V A Z E K 9 (1964) APLIKACE MATEMATIKY ČÍSLO 2 

ON OPTIMUM DEFORMATION 
OF CANONICAL DOMAINS MINIMIZING THE MODULUS 

OF THE DERIVATIVE OF A CONFORMAL TRANSFORMATION 

HANA SVECOVA 

(Received July 9, 1963.) 

In this paper a proof is given of existence, unicity and some further properties 
of a deformation of a strip which minimizes — within a certain system of 
deformations — the upper bound of the modulus of the derivative of the 
conformal transformation of the deformed strip onto the strip 1 < y < 0. 

1. I N T R O D U C T I O N 

Among technical and physical problems, we can see the growing importance 
of problems whose mathematical solution consists not only in solving a given bound­
ary value problem but, moreover, in finding a domain of definition for which the 
solution satisfies certain conditions of optimality. As an example, let us mention the 
steady irrotational motion of a fluid in a canal with an obstacle the shape of which 
may be modified within certain technical limits. We may then take as optimum 
shape of the obstacle that which fulfils the technical limiting conditions and causes 
the smallest increase of the maximum velocity of the flow. This formulation of the 
problem has a technical application, e.g. in the study of the motion of under­
ground waters, where a too great increase of velocity can cause an undesirable 
transport of soil, and thus also a change in the conditions of the motion. 

In a mathematical formulation this leads to the problem of finding — among 
a given set of allowed deformations of the strip — such a deformation which minimizes 
the maximum absolute value of the normal derivative of the solution of the Dirichlet 
problem for the Laplace equation with the boundary function constant on every 
finite connected part of the boundary of the deformed strip. (See e.g. [1].) 

We can also find similar problems in other technical and physical branches: 
the minimization of the maximum heat-flow, the minimization of shearing stress 
concentration of a section weakend by a notch, the minimization oi' maximum 
stress in membranes, the minimization of potential differences in connection with 
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the minimization of the possibility of a corona discharge (this problem is studied 

in [2]), etc. 

Problems of this type may be advantageously treated using conformal mappings. 

Then the problem can be formulated as follows: We seek a curve L realizing a de­

formation of the canonical domain S, which minimizes — in a given family of deform­

ations — the upper bound of the modulus of the derivative of the conformal trans­

formation of the deformed domain onto the domain S. We shall prove existence, 

unicity and some basic properties of the solution of this problem for a certain family 

of deformations of the strip 

S = E[x + iy; - 1 < y < 0] . 

Analogous theorems concerning other canonical domains can be proved in a similar 

manner. 

Related problems have been treated by M. A. LAVRENTIEV in [3] , [4] , [5] . We 

shall apply some of Lavrentiev's results and methods in this paper. 

2. FORMULATFON OF THE PROBLEM 

Let <Pj (j = I, 2) and F be three curves lying in the complex plane z = x + iy 

and such that the curves <£ • are described by equations y = (Pj(x) and that the follow­

ing conditions are fulfilled: 

1. There exist numbers ap bj (j = 1 , 2 ) such that 

— co O{ < bj ^ b2 < a2 < oo , 

cpl is defined for xe <Dt. bj>, cp2 is defined for xe <b2, a2}, ^/(Oy) = 0; x 4= af 

implies (pj(x) < 0 and lim (p ,{x) — d, where d = — 1 if b, < b2 and otherwise 

- 1 = d < 0. *-*hj 

2. The second derivative (p'j(x) exists for x e (au bx) and x e (b2, a2) respectively. 

and the following inequalities hold: 

cpTx) < 0 , \<p'Lx)\ < kt < oo , ! ^ ^ < fc, . 

Moreover, we have lim cp'j(x) = 0 and the functions cp'j locally fulfil a Holder 

condition. x^aj 

3. Let S denote the strip 

S = E[x 4- iy; - 1 < y < 0] . 

Let cj be the segment of the real axis between the points au a2, and c/t the segment 

with end-points 6, — /, b2 — /". The curve F passes through the points O,, a2
 an<^ 

is part of the sum q u II, where II c= S is the domain bounded by the curves </->,, <£2, 
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by the segment q and, if b{ b2, also by qA. We shall suppose F =1= q (otherwise 
the problem is trivial). 

Let G denote the domain bounded by the curves <Pj (j = 1,2), F and (m case 
that bx < b2) by the rectilinear segment qx, G cz S. Further, if C is a simple arc 
joining the points ax, a2, let D(C) denote the domain (provided it exists) whose bound­
ary is identical with the boundary of the strip S except for the segment q which is 
replaced by the arc C. Finally, Iei/(z, C) denote a conformal transformation of the 
domain D(C) onto the strip 5, satisfying 

/ ( - oo, C) = - oo , /(co, C) = oo . 

The function /depends on a real additive parameter which we may choose arbitrarily. 
Let (5 be the system of all simple rectifiable arcs C joining the points ax, fl2-

satisfying 

z e C implies — 1 < Im z ^ 0 

and such that at all their points except ax and a2 there exists a non-zero angular 
continuation of / ' (z , C). 

Now we are able to formulate the problem. 

The problem is to prove the existence and basic properties of a curve L0 e (5 which 
satisfies the following conditions: 

1. L 0 <= G ; 

2. If Le S , Lcz G, then 

sup |/ '(z, L)| ^ sup |/ '(z, L0)| . 
zeD(L) zeD(Lo) 

Remark. The assumption \aj\ < oo (j = 1,2) has been included in order to 
simplify the formulation; however, it is not necessary, and each assertion in this 
paper can be proved without it. Whenever the omission of this assumption would > 
cause any difficulty of not merely formal character, it will be mentioned in a footnote. 

The proof will consist of the following parts: 

First we shall assign to every point zx e <PX — {bx + i(px(bx)} a system lU(z,) 
of curves which for the set xe <a1? Rez,> coincides with &x and fulfils certain 
conditions. Then we shall prove — with the aid of the variational principle of the 
theory of conformal mappings — the existence, unicity and other properties of the 
solution of the following auxiliary problem: to find a curve LZl e Ti(z,) which minim­
izes the upper bound of the function |/ '(z, L)\ for Le 9t(zt). After this the continuous 
dependence of the solution of the auxiliary problem on the point z, will be shown. 
From this it easily follows that there exists precisely one point z, e<Px ~- {hx + 
-!- i(pi(bx)} such that the solution of the auxiliary problem for the point z, coincides 
with the solution of the original problem. At the end of the paper some basic proper­
ties of this solution will be stated. 

83 



3. AUXILIARY THEOREMS 

Theorem 3,1. Let Cx, C2 e (5 be two curves such that D(Ct) a D(C2). Then, if 
z0 is a common boundary point of both domains D(C,) and D(C2), we have 

|f'(z0, d)l S lf'(z0, C2)| 

if I in z0 — i, a/td 

|f '(z0, d ) | £ |f '(z0, C2)| 

if Im z0 = - I. 

Let us choose a real number v, |v| < Ir/2, and consider the curves C1? C2 iw a new 
coordinate system x, y obtained by rotating the coordinate system x, y about the 
origin through the angle v. If the curves C1? C2 can be desribed by single-valued 
functions of x : y = ct(x), y = c2(x), and if the difference c2(x) — cx(x) attains 
its maximum at x = x0, then we have 

|/'(z„ C,)| ^ |/'(z2, C2)| , 

where ij = [x0 + /cy(xo)]- ^'v 0 = 1' ^)- Equality in either of these relations 
implies C, — C2. 

Proof. It is obviously sufficient to prove the theorem for the case C2 = q (see 
[3]). Let 

f(x + />. C,) = u(x, >) + m(x, y) , 

V(x, y) = i<v, y)- y. 

I is a harmonic function on 0(C,) and assumes its minimum at the point z0. Hence 
if Im z0 > — I, we have (see [6]) 

since the direction of the outer normal at z0 is the same as the positive direction of the 
coordinate axis >. Similarly, if Im z0 = — 1, we have 

dv->o. 
dy 

We have C{ei5, and hence there exists an angular lim argf;(z, C,). From the 
geometric meaning off'(z, C,) it follows that z_>z° 

du- = 0 
<lv 
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at z 0 , and hence 

lЯ-o. c, + 
(IV 

= l/'(z0, C2 

For the proof of the second part of the theorem see [5] . 

In this paper, we shall always use the symbol s to denote the arc coordinate 

measured locally on the considered part of the boundary of the domain C(D) 

in such a manner that s increases if x decreases along the straight line E[x, y; y = 

= — 1] and s increases if x increases along the other part of the boundary. 

Theorem 3,2. Let K(r, v, Mu e) denote a domain bounded by a closed simple 

curve X(r, v, Ml,s) (abbreviated to A) satisfying the two following conditions: 

1. The distance of points of A and points of some circumference of radius r is 

less than sr. 

2. A is thrice derivable with regard to the arc s measured along A; if K(S) is the 

curvature of A, then 

Иs)l 
i 

|к'(s + h) - к'(s)\ 
M, fhү 

0, M, const. 

L<?t M,, v /nj positive numbers. Then there exists a positive r,0 such that for every 

e e (0, e0> the following assertion holds: 

Let a curve Ce (5 contain an arc y0 a X(r, v, M J ? e); /et F(s) denote the modulus 

of the derivative of f(z, C) regarded as a function of the arc s of the curve C; let 

all the domain K(r, v, M t , s) be situated outside the domain D(C). Then we have 

at all interior points of y0, 

d 2 log V(s) 

d.v2 

d_V(s) 

ds 

This theorem is an obvious modification of a theorem proved in [3]. 

Theorem 3,3- Let a curve Ce 2 contain an arc y the points of which can be descri­

bed by a function 

w(s) = x(s) + iy(s) . 

Lei the function w have n continuous derivatives and satisfy a Holder condition 

|w<">(s.) - w<'%s2)| á B . |5, 0 i 

Then there exists a 2-dimensional neighbourhood U of the arc y such that for 

zeUnD(C) there exist continuous derivatives / ( / ) ( z , C), (I = 1,2, //) with 

f'(z, C) * 0. 

This theorem follows immediately from [7 ] . 
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Theorem 3,4. Let the boundary of a domain D(C) contain an arc y0 satisfying the 

following conditions: 

\. For every s =# $0 (s is the arc measured along y0) there exists a tangent T 

to y0. 

2. If $(s) denotes the angle between the positive direction of T and the positive 

direction of the real axis, then \&(s)\ < TT/2 — O\ S > 0. Here for the positive 

direction of T we take the direction corresponding to increasing s. 

3. If x0 and x denote the real parts of the points corresponding to s0 and s 

respectively on the arc, then for s s0 we have 

$(s + h) - 3(<0 N 

Jim sup — — < , 
h-+o h \x - x 0 | 

r . S(s + h)-S(s) 
lim inf — — — c , 

and for s > s0 

lim sup 
/ Î ^ O 

B(s + h) - »(s)\ 
c , 

where N and c are constants. 

4. log | f ' (z , C)\ is bounded for all points near to y0. 

Then the function p(s) = log | f ' (z, C)\ is continuous at every interior point of' y()m 

This theorem follows immediately from [3] . 

Theorem 3,5. Let the boundary of a simply connected domain A in the plane 

w = u + iv contain the interval (— 1, 1) Of the real axis and let a conformal trans­

formation z = F(w) of A onto some domain D fulfil the following conditions: 

1. The segment (— 1, 0) is mapped onto an arc y with a tangent fulfilling a Holder 

condition. 

2. For ue(0, 1) we have \F'(u)\ = 1. 

3. The interval (0, 1) is mapped onto an arc y' with a bounded rotation (i.e. 

the angle between the tangent to y' at an arbitrary point of y' and the real axis 

has finite variation). 

Then the function F'(w) is defined and continuous at w = 0. 

For proof see [3 ] . 

Theorem 3,6. Let a curve C e S contain a rectilinear segment o. Let y be a bounded 

part of the boundary of the domain D(C) such that Cay. Let the set y — a consist 

of two connected parts which belong to different half-planes bounded by the straight 

line I => CT. Choose an orientation of I in agreement with that of a. Let V(s) denote 
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the modulus of the derivative of f(z, C), regarded as function of the arc s. Under 

these conditions, at all interior points of the straight segment o we have 

V'(s) Z 0 

if the part of the straight line I belonging to some neighbourhood of o is directed 

to the exterior of the domain D(C), and 

V'(s) ^ 0 

in the opposite case. Equality in either of these relations is possible only if C = q. 

This theorem is a special case of a theorem proved in [3], 

4. THE AUXILIARY PROBLEM AND THE EXfSTENCE AND 
UNldTY OF ITS SOLUTfON 

Let z, e(pt — [{flj} u {b. + icp^bi)}], zx = OLX + iq>i(oLx). It can be shown by 

calculation that for a sufficiently large M and for all a e <b2, a2}
1), the arc with 

curvature everywhere equal to M/[(x — ax) (a — x)] and containing a point z0 

where x0 = Re z0 e (a t , a2), fulfils in some neighbourhood of z0 the conditions posed 

on X in theorem 3,2. (We take r = (x0 — a t)(« — x0) /M. This arc can be extended to 

a closed curve in any manner so as to satisfy the assumptions of theorem 3,2.) 

We shall consider M fixed. 

Choose a k > ki9 where kx is the upper bound of the functions \(p'j\ and <p"jl[\ + 

+ ((Pj)2~\*- L e t yft(z\) denote the family of all functions X(x) which fulfil the following 

conditions: 

1. /. is defined for xe <a,, a2>, b2 ^ a2 ^ fl2'), and X(af) = (pj(oCj) (./ = 1, 2), 

a2 = sup £. 
A ( £ ) * < / > 2 ( £ ) 

2. For all x e <a t , a2> we have — 1 •: X(x) :g 0, and X(x) ^ </>;(x), provided 

</>;(•*) exists 0" = U 2)-
3. / has a continuous derivative and \X'(x)\ ^ k for every x e <aj, a2>. 

4. For every x e ( a , , a2) we have 

X'(x + h) - X'(x) ^ M n /-// u2V 
lim sup - - -/ ^ ^ — - —- [I + (X (x))2] = , 

/»-0 /? (x — a j (a2 — x) 

lim inf ^ + H)- X'(X) Z - / + + (A'(x))+ . 

l) In case that a2
 ; /' take \7 e <(b?, a>, where a is the real part of the point oi^ contact 

of the tangent to 02 passing through z{. 
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/ <pl(x) for ^ l = x = al , 

X(x) for «! í X ^ 0Í2 , 
4 <Pi(x) for a2 = X = ^ 2 • 

Let ^ ( z j denote the family of all curves A satisfying the equation y = X(x) 
for Xem(zx). 

Let A denote the transformation which to every curve A eS^Zj) assigns a curve 
L = A (A) described for ax :g x ^ a2 by the equation y = /(x), where 

/(x) 

Let 9l(-,) = A[^(Zl)]. 
In virtue of theorem 3,4, the function \f'(z, L)\ is continuous on Lif log \f'(z, L)\ 

is bounded on a (2-dimensional) neighbourgood of L. The existence of such curves L 
follows from theorem 3,3. If for a curve Ledl(zx) the value |/ '(z, L)| at a point z;-
does not exist, set \f'(zj, L)| = oo. 

In the rest of this paper, the following notation will be used: A (with arbitrary 
indices) will always be used to denote a curve belonging to the system 20?^), Lwith 
the same indices will denote the responding curve from the system ^(z-). Analogously, 
we shall use the letters X and / to denote the functions describing the dependence of 
the imaginary parts of the points of A and Lrespetively, on their real parts. 

Les us now formulate an auxiliary problem: 

To find a curve A* e Wi(z{) such that if A 6 SDû Zj), then 

sup |/ '(z, L)\ Z sup |/Tz, L*)| . 
zeL ZGL* 

Definition. We say that the boundary of a domain is strictly concave (or concave, 
or strictly convex, or convex) at a point z if the argument of its tangent (i.e. the 
angle between the tangent and the real axis) is an increasing (or not decreasing, 
or decreasing, or not increasing, respectively) function of the arc at the point z. 

Theorem 4,1. Let Ce 2 and let z = g(Q be the inverse transformation to f(z, C), 
C = % + in. Suppose that the function \f'(z, C)\ attains its absolute naximum at 
a point z* of the boundary and that there exists a neighbourhood U of the point 
C* + f(z*, C) such that the function g" is continuous on U n D(C). Then the boundary 
of the domain D(C) is strictly concave at the point z*. 

Proof. In virtue of theorem 3,1, there exists a point z e C such that \f'(z, C)\ 1. 
We have |/'(oo, C)\ = 1, and therefore the point z* must belong to a finite part of the 
boundary. At the point (* = /(z*, C), the function log \g'(Q\ attains its minimum, 
and therefore we have for £ = £*, 

gjogjgXOI < 0 
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if Im C* = O and 

3 log \g___ 
0Y\ 

0 

if Im (* = — 1 • -f P(s) denotes the argument of the tangent as a function of the arc, 
then for the value s corresponding to the point z = g(Q we have p(s) = arg g'(Q. 
The continuity of the function g" implies that the function log g fulfils the Cauchy-
Riemann equations at the point £*. Furthermore, it then follows that at £*, 

ds_ 

ft 

and hence 

Thus at C* we have 

\g'(C*)\ < oo 

\f'(z*, C)\ > 0 . 

_8 _ da3J' d_ _ _ a jog j^ l ( ± | / / ( z # ) c ) | ) > Q 

d.s dc 3 s OY/ 

which implies that ft increases at £*, i.e. the boundary is strictly concave. 

Theorem 4,2. Let A G^^z^. Then the function |/ '(z, L)\ can attain its maximum 

on D(L) only for z e A. 

Proof. By theorem 3,1 we have max |/ '(z, L)\ 1. But also |/'(oo, L)\ = I, 
zeD(L) 

\f'(aj9 L)\ < 1 (j = 1,2). It follows from theorem 4,1 that the function \f'(z9 L)\ 
cannot attain its maximum, on any rectilinear portion of the boundary. The curves 
(pj are convex and, by theorem 3,3, they fulfil the assumptions of theorem 4,1. Hence 
the function \f'(z, L)\ can attain its maximum only for z e A. 

Theorem 4,3. There exists a solution of the auxiliary problem. 

Proof. Let 

m = inf max \f'(z, L)\ . 
Le$l(z{) zeL 

Obviously m < GO. Let {L„} be a sequence of curves such that Lne^l(zi) (n = 
= 1,2,3,.. .), 

m = lim max \f'(z, Ln)\ . 
n~*oo zeL„ 

Let C„ e Ln be the point with the smallest imaginary part amoung all the points of 
Ln. We can assume that the sequence {L,,} is such that there exists a limit 

l i m Cn = Co • 
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Suppose for a moment that Im Co = — V We shall show that this is impossible. 
For n e <0, 1 + Im C„) define a real function 

h(n) = ~ Im/(C„ - "7, L„) . 

For n G (0, 1 + Im C„) w e have 

(I) | n C - iff, L„)| = lim Wkz. ^±l^^l(kz.^L^ ^ 

;> lim I^OL+J^iLzJ!^ = |/,;(,;)|. 

fi—o+ n, 

In the interval (0, 1 + Im Cn) there exists a point nn such that 

hn(\ + lmQ-hn(0) 1 (2) IЌШ 
I + Im C„ I + ím C„ 

On the other hand, by theorem 4,2, the function \f'(z, Ln)\ can attain its maximum 
only on Ln — suppose it happens at the point C*. We have, according to (1) and (2), 

lim | f ' ( C Ln)\ ̂  lim \f'(Zn - *„. K)\ = oo ; 
n ~* oc n -+ oo 

but this contradicts our definition of the curves Ln. 

Thus there exists a positive O' such that Im z > 6 for all z e Ln (n = 1, 2, 3, . . . ) . 
Let 9l°(z,) = 9t(z,) -̂  2l(z,), where 2((z,) is the family of all those curves Le^z^ 
which contain points with imaginary parts smaller than 3 — 1. From the definition 
of the system v.P((z,) it follows that we can choose a subsequence of {Ln} — to be 
denoted by {Ln} again — which converges uniformly to a curve CG?V(z1). 

The functions |/ '(z, Ln\ convergence on D(C) to |/ r(z, C)|. These functions attain 
iheir maximum on the curves Ln and C respectively. Hence for z e 0(C) we have 

!/ ' (- , C)! = lim |/ '(z, L„)| ̂  lim max |/ '(z, L„)| = m . 
n-Kr. n-*oo zeL„ 

In accordance with the definition of m, we also have 

m ^ max |/ '(z, C)| . 
zcC 

Hence C = L*. This proves the theorem. 

Now let K(X) denote the curvature of the curve L* at the point z = jc + /7*(N), 
if it exists [i.e. K(X) = l*"(x)/[\ + (/*' (x))2]*], and let p(x) = \f(x + il*(x), L*)|. 
To simplify, assume 

oq = 0 , ot2 = a . 
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The following notation will be used: 

M 

л(a 

P = E[xє <(),«>; p(x) sup | / '(ç, L*)|], 

v є P ; Я*(x) Ф <Pj(xl \Å*'(x)\ < k, - k ф) 

P2 = E[x є P; ф) = - k] , 

P, = E[x є P - ({0} u {«}); Я*(x) = <P/(л-)] . 

P 4 = E[.v є P; |Я*(.v)| = /v] . 

Лí 
P5 = E л є P ; ф ) = -

л(a — л) 

By /*(«£/) we shall denote the Lebesgue measure of the set .«/. There exists a set N 
such that n(N) = 0 and 

5 

P = N U ^ Pz . 
/ = 1 

From continuity of v it follows that fi(P) 0 if P 4= 0. 

Lemma !. D(P,) = 0. 

Proof. Suppose that /4Pj) > 0. Choose a point x* e P. such that the intersection 
of each neighbourhood of x* with P, has a positive measure. Let K be a neighbour­
hood of x* such that A*(x) =f= q>j(x), \A*'(x)\ < k for every x e K. There exists 
a closed set F cz P, n K of positive measure, such that the partial function KF is 
continuous on F. Let / denote the least interval which contains the set F. Choose 
five points in I: X, x7 <:x? . .\ 

/ __ 

л 5 . Ғor j — I, 2, 3, 4 set 

<x./,.v,+ 1 > . 

Fake a curve A such that the following conditions hold: \(x) = A*(x) for x $ (xlt. x5), 
//(x3) — A*'(x3), the curvature /c of A satisfies 

K(X) = K(X) 

for almost all x e (.*,, x5) — F, and, finally, for every x e F n I' we have 

/v-(x) = K(X) + y,-, 

where yt, y4 are negative and y2, y3 positive numbers with absolute values so small 
that 

xe(.v,,Xc) implies |A'(x)| k , 

x E F n F implies — k /c(x) + y; 

M 

л(a - л) 



and that for Re z e (x,, x5) we have 

|/ '(z, L)\ < sup |/'(C, L*)| = max |/'(C, L*)| . 
ZeD(L*) £eL* 

That the last relation can be satisfied follows from [4] and from the fact that we can 
take the yi arbitrarily small. 

We then have for every x e(x j , x5), 

l(x) < A*(x) . 

Obviously / I G ^ Z , ) . Then, from theorem 3,1, 

max |/ '(z, L)| max |f'(z, L*)| ; 

but this contradicts the definition of the curve L*. 

Remark. The curve A in the proof of lemma 1 can be constructed in the following 
manner: 

Preserve the notation used in the proof of lemma 1. First suppose that the yj 
are available, and let us seek a formula describing l(x) for x e IJ. Let S(x) and #(x) 
denote the argument of the tangents to the curves A* and A, respectively, as functions 
of x. For j = 1,2, 3, 4, let 

/ i = <*,-, * > , 
FJ

X = F n 1i . 

We have 

d3 _ fc(x) 

dx cos #(x) 

and hence, by separating variables, 

sin <9(x) к(t) át + sin S(x0) 

An analogous relation holds for #(x), and hence 

sin !i(x) = 

[к(f) + 7,] dŕ 

к(ŕ)df + sin £>(x0) = 

к(f) dř + sin ã(,*0) 

к(() dr + 7 j • /i(rí) + sin ð(x0) = sin Э(x) + 7 ; . џ{F{) + c,-
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where 

cj = sin v9(x0) - sin 9(x0) . 

Hence it follows that 

l'(x) = tg arcsin [sin arctg /l*'(x) + y7- . f.i(F
J
x) + c;] , 

and on applying 

tg arcsin » = T ( + ^ + 8™ ' ^ " = jJTTJ) 

and integration, we obtain 

f p*(x) + ( y , . . ^ ) + Q).^]dx f . 
J / x J {I - 2A*'(x) [y; • Ai(F )̂ + cj] . A - [y ; . ,i(F>) + c,] . /)2}<- ' " ' 

A(x) 

where 

/. = [ . + A*'2(x)]" 

Now, the function A is to have a derivative at x ; (/ = 1, 2, 3, 4, 5) and l'(x3) = /*'(v3); 
thence 

c, = c3 = 0 , c2 = y, . //(F;.J . c4 = y3 . /i(F^) . 

7 - - = - - ^ . y , , y 4 = - ^ . y , . 

M O /-(F.:5) '-
If we choose y, and y3, then the other constants are hence determined. However, we 
can make the numbers |y2|, |y4| arbitrarily small by choosing |y,|, |y3| small enough. 

Lemma 2. The set P2 is empty . 

Proof. First note that the following auxiliary assertion holds: 

Let A,, A2 e5)c(z,), A,(X0) = A2(x0), A',(x0) = A2(x0), /c, *. K2 0. Let the curves 
Aj(j = 1,2) have curvatures Kj at the point x0 + /A,(x0). Then there exist numbers 
x, x0, x2 > x0, such that for x G(X, , X()) n (x0, x2) we have A,(x) A2(x). 

Now suppose that there exists a point x* e P2. Let 

st = E[t; x G <C, x*> => K(X) = - / < ] , 

£, = inf LJ. Obviously, the point C, + /A*(c,) does not belong to any of the curves 

<PI (j = 1,2). Denote by K(x, c) the circumference with radius \jk + e which con­
tains the point x + /A*(x), has at this point a common tangent with the curve A* 
and lies below this tangent. 
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Choose a positive e0 such that z2 = a -f- /A*(a) is in the exterior of K(CA, e0). 

(Such an e0 exists, since we have /v(x) ^ — k and there exists points x e ( £ , , a) 

with K(X) > — k; consequently, the point z2 lies in the exterior of K({,, 0).) From 

the continuity of the curve A* and its tangent, the set R consisting of all points x 

such that z2 is in the exterior of K(x, e0), is open. Therefore there exists a £2 c , , 

such that (£2, £,) c R. Also £2 can be so chosen that 

x e {£2, c,} implies A*(x) < </>/x) , 

if </>/x) exists. From the definition of £, it follows that in the interval (<J2, <;,) there 

exists a set & such that fi(^) > 0 and JC(X) > — k for x e ^ . 

As a consequence of the auxiliary assertion, there exists an £,, 0 < 8t ^ s0, 

a point £ G (c2 , £,) n 0 and its (i-dimensional) neighbourhood O, so that the set-meet 

of the interior of K(|, fix) (/.£. the open disc bounded by K(£, 8,)) with that part 

of A* whose projection onto the real axis coincides with the neighbourhood 0, is 

empty. Also e, may be taken sufficiently smali for 

1 1 
+ £. < — , 

k kx 

where k, is the upper bound of the absolute value of the curvature of the curves 

4>j (j = 1,2). Let (M denote the set of ali points £ G (£2, £,) such that every element 

(T G $ has a neighbourhood which coincides with the projection onto the real axis 

of a part of A* which does not intersect the interior of K(£, e,). Let c3 = sup c. 

Obviously c, £ :^. We shall show now that £3 <£ M. ^ 

The curvature of K(£3, e,) is 

From the definition of £3 and from the auxiliary assertion it follows that for every 

x G (£3, £,) we have /c(x) :g /c if K(X) is defined. If we now denote by ,9(x) the argument 

of the tangent to K(c3, £,), we have 

к(x) ---*-•• -, ,9(x) = Щ3) + 
cos ,9(x) 

,'9(x) = ,9(^,) + 

for all those x G (£3, c,) for which ,9(x) is defined. Hence 

sin ,9(x) - sin ,9(£3) 4 

and consequently 

,л ~ dx 
K - - - — -

ąг cos ,9(x) 

к(x) dx <: sin .9(č3) + j к dx = sin ,9(x), 
$3 

Hx) ѓ 9(x). 
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From the definition of £3 it follows that equality cannot hold at all points of any 
interval (£3, £3 + A), since then the points of this interval would belong to M, 
But this implies £3 £ :3. 

Let (// denote the part of A* consisting of all points whose real parts belong to the 
interval (£3, a). The interior of the circle K(£3, s t) contains points belonging to xjj. 
The set 0 of all x such that the interior of the circumference K(x, sr) contains points 
of the curve \j/ is obviously open. Hence there exists a £4 6 (£2, £3) such that (£4, £3) cz 

Choose a point x1 6 M n (£4, £3). All the points of the curve t// are situated in the 
exterior of K(x-, 0). On the other hand, there are points of ti> in the interior of K(xl9 

Let K°(x, e) denote the interior of K(x, s). The set of those s which satisfy 
K°(x1? s) n \\J = 0 is open and non-empty, and similarly for the set of those s 
which satisfy K°(xj,e) n t// 4= 0. Therefore there must exist a number e2 e (0, sx) 
which is in neither of these two sets, i.e. 

K°(xu H) rMJ/ = 0 , K(xu s2) n \\J + 0 . 

Choose a number x2 satisfying 

x2 + iX*(x2)eK(xlis2) n *// . 

Since s2 e(), we have x2 < a, and consequently the circle K(xu s2) and the curve 
A* have a common tangent at the point x2 + //*(x2). Let A be the curve which 
contains the upper arc of the circumference K(xt,e2) = K(x2, s2) with end-points 
xA + il^(xx), x2 + //*(x2) and which satisfies l(x) = A*(X) for x <£ (x1? x2). Then 
^ ^ ( z j ) , and hence Le (L Let the function |f'(z, L)\ attain its maximum at the 
point £ e L. In virtue of theorem 4,1, we have R e ( c ( x 1 , x 2 ) . Consequently, the 
point ( belongs to the set-meet Ln L*; but then, by theorem 3,1, we have 

max |f'(z, L)\ = |/'(C, L)| < |/'(C, L*)| g max |/ '(z, L*)| ; 
zeL =€L* 

this contradicts the definition of A*. This proves the lemma. 

Lemma 3. The set P3 Ls empty. 

Proof. Assume that there exists a point x0 e P3. Let sJ denote the set of those 
x G (0, a) which satisfy x + ?*A*(x) £ d>; (/ = 1, 2). Then ,c/ + 0, for we have bj e s/. 
For by = b2 this follows from the fact that the curve L* cannot contain an angular 
point (for then |/'(b,- + <Pj(bj), L*)| = oo). In virtue of lemmas 1 and 2, we have 
/c(x) ^ 0 for almost all xsPns/. (If |A*(x)| = A:, then obviously /c(x) 0 is 
impossible.) Now we shall show that K(X) 0 for no point x G A — P. 

If / c= (0, a) - P is an interval, then for Re z e 1 we have |/ '(z, L*)| = const. 
Hence A* is analytic at these points and hence, be theorem 4,1, also concave, i.e. 
K(X) ^ 0 almost everywhere on I. 
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Now assume that there exists a point t; e jtf — P such that K(£) < 0. The set stf 
is open, hence there exist £u £2

 e <0, a> — s/ such that J = (£,, £2) <= «a/, £ G J. 
We shaii use the following notation: 

K** = inf /c(x) < 0 , O* = — . 

•XGJ | f C * | 

Hence there exists a sequence {x„}, such that 

x„ E J , lim /c(x„) = K* . 
/ , - > GO 

We can suppose that the sequence {xn} has been chosen convergent: 

lim xn — x* e J . 

We shall concern ourselves with the case x* = £.. The treatment of the cases x* e J 
and x* = t2 is similar. 

Thus, assume x* = £>x. Now K(x, e) will denote the circle with radius O* + c 
which has a common tangent with the curve A* at the point x + iX*(x) and lies 
below this tangent. K°(x, c) will denote the interior of this circle. From the facts 
proved above, it follows that for every x e <£l9 £2) we have 

£2 + f A*(?2) * K°(x, 0) 

Choose a number c0 > 0, such that 

£2 + il*($2) 4 K°(x*, e0) . 

There exists a point x, > x* such that 

x G <x*, x,> implies K^x^o) n £2 + LA*(c2) - 0 . 

In the intervai (x*, x{) there is a point x2 such that 

K ( X 2 ) < - — - ! - - - . 
O* + C0 

Denote by «/> the part of the curve A* whose points have real parts in the intervai 
<x2, £2>. The set R consisting of ail the points x satisfying 

K°(x, c0) n ^ * 0 

is open. As we have already shown, there exists no interval with K(X) 0 almost 
everywhere. Consequently, there exists a point x3 e (x*, x2) n R with /v(x3) ^ 0. 
Hence 

K (x3, 0) n i/t = 0 , K°(x3, c0) n i/j + 0 . 
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Now, as in the proof of lemma 2, there exists a curve A e lW(z,) satisfying 

max |/'(z, L)| < max |/'(z, L*)| ; 
zeL -*--* 

but this contradicts our assumption on L*. 

We have now proved that /c(x) ^ 0 for almost all xesrf. This implies that A* 
is concave at all points where the equality X*(x) = <p/x) does not hold. 

Let x,, x2 e $0\ A* is concave at all points where Re z e ,s/. On the other hand, 
<PI is everywhere convex. This implies that <x,, x2> c= sf. 

Suppose that there exists a p 0 such that X*(x) = cp{(x) for xe <0, /?>. Let 
<9(x) = arctg /*'(x). The function O does not increase for x e (0, /?), it does not 
decrease for x e (/?, a) and it does not increase for x e (a, a2). We have <9(/?) < 

(9(0) r̂  0, (9(a) > 0. If 6> is nonconstant on (0, /?), then hence and from the 
continuity of 6> it follows that there exists an x, e (/?, a) such that <9(x,) = <9(x0) 
and /*(x,) < A*(0) + A*'(0)x,. Construct a curve I , defined for x e <x,, a> by 
the function 

o(x) = Я*(x) + Я*'(0)x, + Я*(0) - л*(x{) . 

Let the function o(x) assume its minimum at a point x2. Denote by £(x) the real 
part of the point where the positive portion of the tangent to the curve I at x + iy(x) 
intersects the curve L*. Obviously, £(x2) exists and we have <9(£(x2)) > &(x2) — 0. 
For x e (x2, a) we have £(x) > x if £(x) exists. 

Let $ denote the set of all x > x2 such that £(x) exists and <9(£(x)) G(x). 
Then M is open and nonvoid, and a £ $%. Let 

x3 = inf x . 
XG<X2 ,1 " •% 

From continuity of (9 it follows that c(x3) exists and <9(£(x3)) = 6>(x3). Denote by 
A the curve described by the equation y = X(x), where 

X*(0) + A*'(0) x for 0 ^ x 5 ^ x, , 
J(x) = o(x) for x, < x < x3 , 

o(x3) + A*'(x3)(x - x3) for x3 ^ x £ £(x3) . 

Now suppose that 0 is constant for x c (0, (i). Let 0 h /?. Construct a curve 
I desribed for x e (fi - h cos <9(/?), a - h cos O(P)) by 

y = cr(x) = A*(x + h cos <9(/0) + h sin <9(/>) . 

Let o(x) denote the argument of the tangent to I at x + io(x). Let £(x) denote the 
real part of the point where the positive portion of the tangent to I at x + io(x) 
intersects L*. If we choose the number h sufficiently small, we can, as in the previous 
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ФiOO for 0 _ x й ß - h cos 6>(/Î) , 

ф) for /? - Ä cos 6>(/?) _ X _ x3 , 
ã(x3) + <x'(x3) (x -- íз) for x 3 _ x _ ç(x3) . 

part 01 this proof, find a point x3 such that &Q(x3)) = 0(x3). In this case we shall 
denote by A the curve defined by y = X(x) where 

Д-v) = 

In both cases we have A e ?P?(_,), Le (J. 
Let the function |/'(z,L)| attain its maximum at a point £eL. In virtue of theorems 

4,2 and 3,6, there must be x t _ Re £ _ x3 or xt _ Re c _ x3. Also we have every­
where A(X) _ /l*(x), and the curves A*, A fulfil the assumptions of the second part 
of theorem 3,1 at all the points which have real parts belonging to the interval <x t, 
x3> or <x t, x3>, respectively. Therefore 

|/'(C, E)l < max \f'(z, L*)\, 
ZGL* 

but this contradicts the assumption concerning the curve A*. 
From this and from the definition of a it follows that there exist numbers x t , x2 e 

e stf such that xt is arbitrarily small and x2 < a is arbitrarily near to a. This implies 
that 0 and a are the only points of equality of the functions X* and q>-r 

This proves the lemma. 

Lemma 4. The set P4 is empty. 
This follows immediately from the concavity of the curve A*. 

Lemma 5. P5 = P - [{0} u {a}]. 

Proof. From the continuity of the function p it follows that the set P — [{0} u 
u {a}] is open. From lemmas 1 to 4, we have 

P - [{0} o {a}] = P5 + N! , p(N,) = 0 . 

Hence if x t e P — [{0} u {a}] then there exists an interval I a P containing the 
point x t , and 

M 
K(X) = 

x(a — x) 
almost everywhere in 1. Now from the continuous prolongability of the function K 
and from the continuity of the function X*f it follows that 

( \ M 

/c(xt) = x t(a — x t) 

and consequently N1 = 0. 

Theorem 4,4. If A* is a solution of the auxiliary problem then for all z e A* 

\f(z9 L*)| = sup |/'(C, L*)| . 
^D(L*) 
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Proof. Let c e <0, a> be the point where the function p assumes its minimum 
value on the interval <0, a> and let £ e P. If £ — 0, there would exist an interval 
(0, t) a P, and consequently, by lemma 5, 

X*'(t) - A*'(0) - f A*''(x)dx - f =— [I + (X*'(x))2f dx . 
J o J o x(ot - x ) 

However, the integral on the right side is divergent. Hence £ > 0. Similarly £' a. 
Thus c is an interior point of the set P, and hence 

K(X) = 
x(a - x) 

in a neighbourhood of the point £. However, from theorem 3,2 and the choice of 
M, the function p(x) cannot assume its local minimum at a point having a neighbour­
hood where 

K(X) = —-
x(a - x) 

Hence P = 0, and consequently 

p(x) EE sup |/'(C, L*)| -
£eD(L*) 

This proves the theorem. 

Theorem 4,5. The curve A* is uniquely determined by the point zt. 

Proof Let the curves A] and A2 both solve the auxiliary problem for a given point 
z,. This implies that 

| / '(z, L,)| = |/'(C, L2)| = c 

for all z e / l j , C e -^2- Let <" be the point where the function i/t(x) — /2(x)| attains 
its maximum value. Assume e.g. that lx(£) > l2(£). The curves Aj are concave and 
l'i(0 = I'liO* ^ follows that the points £ + //7(s) belong to the curves Aj. On the 
other hand, from theorem 3,1 it follows that 

\f(t + imi L,)I < i/xi + w2(o, L2)I . 
Consequently A{ = A2. 

5. PROPERTIES OF THE SOLUTION OF THE AUXILIARY PROBLEM 

Let z G 0j — {bj + '</>i(bi)} and let A* denote the solution of the auxiliary problem 
for the point : . If z = au we define A* = q = <at, a2>. Next, denote by y(z) the 
point which satisfies 

{?(-)} = A*n<P2. 
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Lemma 5,1- Let z„ z2 e </>, — (b, + /<Pi(bi)}- Im z, > Im z2. Thefi 

Im y(zx) : Imy(z2) 

and 

A*(x)> A*(x) 

/or a// x e (Re z2, Re y(z2)>. 

Proof. Let 

/ = <Rez 2, min [Re y(z,). Re y(z2)]> . 

Assume that 
max[A*(x) - A*(x)] ^ 0 . 

xel 

Let Xj be the point where the function A*2(x) — A*(x) attains its maximum on /. 
As in the proof of theorem 4,5 we see that xx is also the point where the function 
/*(x) — /*(x) attains its maximum for xe <O,, a2}. Hence and from theorem 3J, 

(1) |/'(x, + /A*(x,), L*)| |/'(x, + /A*(x,), L*)| . 

On the other hand, at the point x2 where the function A*2(x) — A*(x) assumes its 
minimum value (according to the assumption of the theorem there is A*(x2) — 
— A*(x2) 0) we have 

(2) |/ '(x 2 + /A*(x2), L*;)| |/'(x 2 + M * ( X 2 ) , L*)| . 

By theorem 4,4, 

|/'(x, + /Я*(x,), L*)| = |/'(x 2 + /Я*(x2), L* c, 

|/'(x, + ,U*(x,), L*)| = |/'(x 2 + /A*(x2) L*)| = c2 . 

The inequalities (1) and (2) are contradictory, and we have for x e/, 

4 ( x ) < l * ( x ) . 

Hence 
Imy(z,) Imy(z 2 ) . 

Lemma 5,2. Let zne (Px (n = 1, 2, . . .), lim z„ = z0 =j= b, + i(px(bx). Then 
n-* cr 

lim y(z„) = y(z0) . 
»—• / 

Proof. Let us change the formulation of the auxiliary problem by exchanging the 
curves <PX and <P2; The assumptions posed on these curves are symmetric, and hence 
to every u e &2 — {b2 + i^ii^i)} there exists a point ux = y~~l(u2), u\ G ^i — 
- {b, + 'Vi(bi)}- IT we define 

y*(Rez) = Rey(z) 
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then y* is a single-valued (by theorem 4,5) and monolonous (by lemma 5,1) function 
which maps the interval (au bx) onto the interval (b2, a2}, and consequently it is 
continuous. This obviously implies the assertion of the lemma. 

Lemma 5,3. Let zne<Px (n = 1,2, . . . ) , lim z„ = z0. Then the sequence {/*J is 
n~* oo 

uniformly convergent on the interval <# 1? a2). 

Proof. We may ignore the trivial case that zn = z0 for all n > N. Then we can 
choose a subsequence {£fc} of the sequence {zn} such that {Im £fc}

 ls either decreasing 
or increasing. The Arzela theorem implies the existence of a uniformly convergent 
subsequence of {l*(x)}. The uniform convergence of the sequence {/*.(*)} then 
follows from lemma 5,1. 

Lemma 5,4. Let zne(t>l (n = 1,2,...), 

lirnz,, = z o G 0 , - ({a,} u {fe, + i<p, (&,)})> 
n~* oo 

and let 

l0(x) = lim l*n(x) 
n-* oo 

for x e <«,, a2>. The/i for z e A0 — ({z0} u {y(z0)}) we have 

\f'(z, L0)\ = const = lim |/'(C„, L* )| , 
M - * OO 

where £„ 6 A*n. 

Proof. Transform the coordinate system in the direction of the real axis so that 
we have bx ^ 0 S b2. For simplicity we shall write An instead of A*n (n = 1, 2, . . .) . 
We may assume that the transformations f(z, Ln) have been chosen in such a way 
that 

/ ( /^(O), L„) = 0 
for n = 0, 1,2, ... 

Choose a point v = A0 — ({z0} n {y(z0)}), and an interval K = (r,, r2) such 
that 

K cz (Re z0, Re y(z0)), Re v e K . 
Let 

QnJ = / ( 0 + ^n(0)^ --„) 

forj = 1, 2, f? = 0, 1, 2, ... We shall prove the existence of convergent subsequences 
Qkn j . In this part of the proof gn will denote Qn 2. 

According to lemma 5,2, there exists a number IV such that Re y(zn) > r2 for all 
n N. Let on(p) (for n = N + 1, N + 2, ... and n = 0) denote, for /?e(0, r2>, 
the length of the portion of An lying in the strip 0 S x S P, 

°»(ß)= Ґ{1 +røx)]2}'d.v 



The functions Â  fulfil, on the interval <0, r2>, the assumptions of the Arzela theorem; 
hence there is a subsequence {X'kn} uniformly convergent on <0, r2>, and 

lim Xkn(x) = A'0(X) . 
n-* oo 

Hence 

(3) lim ffJ/J) = ff0(/J). 

Let i/j„ denote the inverse transformation to /(z, LJ (// = 0, 1, 2, . . .) . Then also 

r * * » . . . , . , . . . O, - / c „ 

ŕ/*., 
"JO = Ш0\ dž = 

where dm = \f'(z, Lm)\ for z 6 Am. In virtue of lemma 5,1 and theorem 3,1, the depend­
ence of the values dm on Re zm is monotonous. Hence the sequence {dkj is bounded 
and there is a convergent subsequence. This implies that the sequence {dkJ- is also 
convergent. Let 

d° = lim dk . 
n -* oo 

Then there exists 

l i m Qkn,2 = l i m [ 4 n • ̂ ( ^2) ] = ^° • °o(r2) = Q? • 
n -» co n —> 00 

Similarly we have the existence of 

l i m £ / c „ . l = C?l 
n-> 00 

if the sequence k„ is chosen suitably. 

Let / = (Oj9 D2). Take any subinterval J = </?., R2> c 1 and let 

S = E[£ + fy; - \ <Y\ < 0] , 

Q = F[c + iff; R, < C < R2< 0 ^ / 7 < I ] . 

Now define a function 

w = /'WO. <J 
for £ e S and n = 0, 1,2, ... There exists a vt such that ij/n(Qe An for all ( e J, 
n > v. The curves Xn are analytic, and hence for n v, there exists an analytic 
continuation of the function hn on the domain S u Q. We shall now show that 
the sequence {hn(Q} converges for C e J. 

We have 

lim |h„(C)| — lim d„ = d° . 
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There exists a v2 such that J a (O,, t, O„ 2) for /? v2, and consequently 

<Re^( .R 1 ) s Re^(K 2 )> <= O v ' z ) • 

Furthermore, there exists a a > 0 and a v __ max (v,, v2) such that 

|Rez n - r_|><_, |Rey(zfl) - r2\ < q 

for n > v. 

Let Kn(x) denote the curvature of Xn at the point ze/l„ with R e : = x. Then 
An e 2JJ(z,,), and hence, from the definition of the systems 50?(z), there exists a number 
M such that for 

xє {RQФXR,), Reфn(R2)) 

and n ; v we have 

fc š *„(*) ś 
M м 

(x - Re z„) (Re y(z„) - x) t,2 

Denole by s„(0 the arc-length measured along A„ at the point $„(£). Then 

- arg /,„(£) = -_•„(£)] 

is the argument of the tangent to Aw at the point i/J„(0- For z G -I- /? v w e n a v e 

v arg ћ„(í) | _ | dт d_ 

ds„ dč 
| = |к-„ [Re ф„(OÌ\ • \Ш)\ = ™* (k- M

2) • S U P ' 
! V r) - <i 

Also 
|arghB(<_)| __ arctgfc < GO 

for all c and /i, and hence there is a subsequence 

{arg \ K » 

uniformly convergent on J. 

This implies that the sequence 

{/, JC)} = {exp [lg \hkn(£)\ + i arg //,,,(£)]} 

is uniformly convergent on J. 

The sequence {\hkn(Q\} is uniformly bounded. This and the convergence o\^ the 
sequence {hkn(£)} on J implies, by the Vitali theorem, that the sequence {hkn(Q} 
almost uniformly converges on S n 0 to an analytic function. In accordance with 
lemma 5,3, this implies 

lim hkn(Q = T|>0(C), L0] = h0(Q 
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for [ e S n Q. Hence 

IhOvOl = d° 
for all C G J. 

Since J is an arbitrary subinterval of the interval 1, 

\K(0\ = d° 
for all £el. 

Let 
tj = Re i / /0(O ,) , 

*nj =f(tj + iK(tj),Ln) 

for j = 1 , 2 and n = 0, 1, 2, ... We shall now show that (r., r2) c (/,, t2). 
Assume that t2 r2. Then obviously 

(4) an{r2) = <7„(t2) + r2 - t2 . 

Also, for n IV, 

(5) °n(r2) = v • ^„,2 > 

•^('2) = 7 ' ^ . 2 • 

This and (3) implies 

(6) lim an(t2) = _ . lim T„ 2 = <r0(/2). 

M-*or d n-» OC 

For £e(Di,O2) we have 

1 1 Wó(0l = 
Ш d° 

From the assumption t2 < /-2 it follows that T„ 2 ^ g„ 2 for all n #?,. Hence from 
(6), 

lim T„>2 = d° . a0(t2) = d° . 

This and (5) implies 

\Ш)\ àí = <?2 
0 

lim an(t2) = lim an(r2) = - . O2 , 
/i ~> 00 n -+ oc a 

and hence, according to (4), the relation t2 r2 cannot hold. Therefore r2 ^ t2. 
Similarly one proves rx > / 

Since 

R e v e ( r , , r 2 ) c= (/,, /2) 
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we have /(v, L0) G 1, i.e. 

\f'(v, L0)\ = \h0[f(v, L0)]| = rf° . 

Since v is an arbitrary point in 

A 0 - ( { z 0 | u { ? ( z 0 ) } ) , 

the lemma is proved. 

Theorem 5,1. Let zne<Px (n = 1, 2, ...), 

limz,, = z0 =# bj + /> t (b , ) . 
n—> oo 

Thet? uniformly on <al9 «2>, 

iim /*(x) = /* (*). 
n-> oo 

Proof. First assume that z0 =# ax. According to lemma 5,3, the sequence {/*n(x)J 
converges uniformly to the function /0(x). By lemma 5,4, |/ '(z, L0)| = const 
for z e A0 — ({z0} u {y(z0)}). Further, by theorem 3,5, the function \f'(z, L0)| 
is also continuous at the points z0, y(z0), and hence these points also satisfy 

| / '(z, L0)\ = d° . 

If A0 4= /1*0 then, in consequence of theorems 4,4 and 4,5, 

| / ' (z , Lz*0)| = c < d° 

for z 6 A*o. Let the function A*0(
x) ~~ ^o(x) assume its minimum at the point x. G 

G <Rez0, Re y(z0)>. By theorem 3,1, 

c = |/ '(x, + ,M*(x.), L*)| > <f 

in contradiction to (7). Hence A*n = A0. 
Now let z0 = ax. The curves A*t are concave and hence 

q>\ (Re z„) g /*;(x) ^ cp2 (Re y(zn)) 

for all XG <aj,a2>. Both the expressions on the left and right side tend to zero 
as n -> oo and hence 

lim /*'(x) = 0 

n-* oo 

uniformly on <a,, a2>. This implies that 

lim /*(x) = 0 = /*(*) 
n-*oo 

uniformly on <a«, a2>- This completes the proof of the theorem. 
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6. THE SOLUTION OF THE PROBLEM 

The notation is thai used in chapter 2. Then we have the 

Theorem 6,1. There exists exactly one curve L0 e CE such that the following condi­

tions hold: 

1. L f l c G. 

2. / / L e 6, L c G , //.c-/. 

sup | / ' ( z , L)\ £ sup | / ' ( z , L0)| . 
zeD(L) zeD(Lo) 

Proof . From the properties of the curves A* it follows that there exists exactly 

OUQ point 

z*G<J>, - ( { < 7 , } u { 6 . + i > , ( f t , ) } ) 

such that the curve /l* = A** touches the curve F but contains no points in the 

domain H — G. 

Let C £ A* n F. Let Le (5, L c= G and L =# L*. There exists a point ( t <£ &\ u ^2 

such that the function l*(x) — l(x) assumes its minimum at xi = R e d . (This 

follows from the fact that l*(x) ~ l(x) ^ 0 for x = Re (£),) By theorem 3,1, at (1 

| / ' (C i ,L) | > | / ' ( C t , L * ) | = sup | / ' ( z , L * ) | . 
ZGD(L*) 

This implies that the curve L* = L0 is the only solution of our problem, proving our 

theorem . 

In the following theorem we shall state properties of the curve L0, most of which 

have already been proved. The notation is that used in theorem 6,1. 

Theorem 6,2. The curve L0 consists of three connected parts, 

L0 + Qx u Q0u Q2, 

such that 

Qjcz <fi.(j = 1,2) 

aпd 

w e Q0 implies |/'(w, L 0 ) | = sup |/ ' (z , L0) 
zeD(Lo) 

7/?e Ore Q0 is analytic and strictly concave. The curvature of Q0 does not attain 

its maximum at any interior point of Q0. 

Proof . The theorem has already been proved, except for the last assertion. 

Assume that the curvature of the arc Q0 attains its maximum at the point z, e Q(), 
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and that r , is not an end-point of Q0. Let }/!(£) denote the inverse transformation 

to / ( z , L0), and let C = /(Z, Lo) = £ + '"'/• The curvature of Q0 at z is 

| / ' ( z , Lo)| - -~; arg t//(C) . 

The function | / ' ( z , L0)| is constant on Q(), hence £, = / ( z , , L0) is also the point 

where the maximum of the function 

T(C, //) = v arg (//'((; + />/) 

is attained. The values of the function arg t//(C) at points on. the lines rj = — 1 

or ;/ = 0 are equal to the argument of the tangent to the boundary of the domain 

D(L0) with point of contact *//(() (see [8]). The arc Q0 is the only part of the boundary 

of D(LQ) which is strictly concave, and therefore the maximum of the function i 

on Q0 is also its maximum on the strip S. The function i is harmonic on S, and thus 

V-(C): 0 . 
( I ] 

This implies that 

дč 
arg i/ź c, — 2

: ' 'óg l^'(Ci)l 

but this contradicts the fact that the function íog |^'(Ci)l *s constant in the neigh-
bourhood of Ç,. 

This concíudes the proof of the theorem. 
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Výtah 

O PROBLÉMU OPTIMÁLNÍ DEFORMACE KANONICKÉ OBLASTI 
VE SMYSLU MINIMALIZACE MODULU DERIVACE 

KONFORMNÍHO ZOBRAZENÍ 

HANA ŠVECOVÁ 

Práce se zabývá tímto problémem: hledá se křivka určující deformaci pásu — 1 
v 0, která v dané třídě křivek minimalizuje supremum modulu derivace kon­

formního zobrazení deformovaného pásu na pás — 1 y < 0. Takto formulovaný 
problém má fyzikální smysl např. v hydrodynamice, v teorii pružnosti, v elektro­
statice aj. Za přípustné jsou považovány křivky, které leží v uzávěru jisté oblasti 
G (tato oblast je definována v 2. části práce) a splňují podmínku spojité prodlužitel-
nosti derivace konformního zobrazení na hranici. Je dokázána existence, jednoznač­
nost a některé další vlastnosti řešení této úlohy. Hledaná křivka se skládá ze tří 
oblouků, z nichž dva krajní jsou částí hranice oblasti G, kdežto třetí (označme jej 
A) leží (až na koncové body) uvnitř této oblasti, je analytický a modul derivace 
příslušného konformního zobrazení nabývá ve všech jeho bodech svého maxima. 
Body oblouku A dále splňují rovnici y = Á(x), kde l"(x) > 0, při čemž absolutní 
hodnota křivosti oblouku A nenabývá v žádném vnitřním bodě A svého maxima. 

Р е з ю м е 

ОБ ОПТИМАЛЬНОЙ ДЕФОРМАЦИИ КАНОНИЧЕСКОЙ ОБЛАСТИ 
В СМЫСЛЕ МИНИМАЛИЗАЦИИ МОДУЛЯ ПРОИЗВОДНОЙ 

КОНФОРМНОГО ОТОБРАЖЕНИЯ 

ГАНА ШВЕЦОВА (Напа ^ е с о у а ) 

В статье исследуется следующая задача: найти линию, определяющую дефор­
мацию полосы — 1 < у < 0, которая дает минимальную верхнюю границу мо­
дуля производной конформного отображения продеформированной полосы на 
полосу — 1 < у < 0 в данном классе линий. Такая формулировка задачи имеет 
свое основание в некоторых задачах гидродинамики, теории упругости, электро­
статики и др. Допустимыми считаются такие линии, которые лежат в замыкании 
некоторой области С (эта область определена во второй части работы) и удовле­
творяют условию непрерывной продолжимости производной конформного 
отображения на границу. Доказывается существование, единственность и неко-
торые другие свойства решения этой задачи. Искомая линия состоит из трех 
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дуг: две из них совпадают с частью границы области С, третья (обозначим ее 
через Л), которая лежит (за исключением своих концов) в этой области, анали-
тична, и модуль производной соответствующего конформного отображения 
достигает во всех ее точках своего максимума. Далее, точки дуги Л удовлетво­
ряют уравнению у = Я(х), где Х"(х) > 0 и абсолютная величина кривизны дуги Л 
не достигает своего максимума ни в какой внутренней точке дуги /1. 

Айгеш аШогку: С.%2. Иапа Зюесспт, Магетатлску й$1ау С8АУ, 2кпа 25, РгаНа V 
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