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SVAZEK 4 (1959) APLIKACE MATEMATIKY CisLo 3

ON A TWO-SAMPLE PROCEDURE FOR TESTING STUDENT'S
HYPOTHESIS USING MEAN RANGE

JosEr MACHER
(Received September 9th 1958) DT:519.271

Stein’s two-sample procedure for testing a hypothoesis coneerning the
mean of a normal distribution is modified for the case where the
usual mean-square estimate of the standard deviation is replaced by an
estimate based on sample range or on mean range of several samples.
Expregsions for the mean nwnber of necessary observations are derived
and somo illustrative tables given. Tables of 5%, and 109, critical points
of the corresponding test statistic are given.

1. INTRODUCTION AND STATEMENT OF PROBLEM

Throughout the paper we shall be concerned with one-sided tests of a hypo-
thesis about the mean of a normal distribution where the value of the popul-
ation standard deviation is not known and it is nevertheless desired that the
power-function of the test pass through two prescribed points. Thus we shall
consider tests which have to provide a given protection not only against
an unjust rejection of the hypothesis when the mean takes the value specified
by it, but also against accepting it when the mean has a given value different
from that specified by the hypothesis. Morcover, we shall try to make the test
rather simple in application.

The need for such tests is most likely to oceur in probl ms of sanpling
inspection. An example is provided by acceptance sampling of materials;
suppose, e. ¢., that a lot of material, say a chemical, is to be sampled. A quanti-
tative characteristic such as concentration or percentage content of some
ingredient is relevant for the quality of the material. Lots with values of this
characteristic smaller than a given standard are perfectly suitable and should
be accepted on the average at least in a prescribed proportion of cases, say 95
per cent. With increasing values of the characteristic the quality of lots de-
creascs so that lots in which the relevant characteristic has a value as high as
another given constant or higher are unacceptable (we may well imagine
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that the use of them is associated with serious difficulties) and the consumer is
prepared to run ouly a risk of no more than one in ten, say, of accepting such
lots. If the standard deviation of the results of corresponding analyses were
known and some further assumptions (concerning the homogeneity of the
lots and the method of sampling) valid, the construction of a sampling plan
would present no ditficulties of principle. If the standard deviation cannot
be regarded as known, the solution is more complicated.

The problem may be desecribed as follows: Let us have a population whose
distribution is normal, with mean w and standard deviation . Both g and ¢
are unknown. Two numbers are given, j, and A (A = 0). Tt is desired to test
the hypothesis p

1 against the alternative u > py, and the test has
to satisfy the following conditions (P(u) denotes the power of the test, i. e.
the probability that the hypothesis will be rejected when g is the true value
of the mean):

Pliy) = o, ]

(1)

Py 1 1) =1—4. ]
Here v and f are previously fixed numbers from the interval (0, 1), usually
equal to 0-10, 0.0% or the like. They represent, respectively, the highest pro-
bability of rejecting the hypothesis if it is in faet true and the least probability
of rejecting the hypothesis if 1 is at the distance A or larger from the largest
value in the hypothesis. Thus ~ is what is called producer’s risk in quality
control problems and f the consumer’s rigk.

It has been proved [1], that no single-sample test satisfying (1) exists. Tt is
possible, however, to devise a test employing two samples (the size of the
first sample being fixed and the size of the second directed by the ohservations
in the first) that insures the fulfillment of requirements (1) whatever be the
value of 6. The idea is due to (‘h. SrrEIN [2]. In statistical quality control -
as far as is known — Stein’s method is not widely used, although with attri-
bhute sampling two-sample inspection plans (and indeed more complicated
plans) are used occasionally. At the gsame time with the problem just stated
the two-phase procedure is not merely a means for reducing the number of
observations, hut the only way to ensure the fulfillment of (1). The reason
for which Stein’s procedure has not so far been used more extensively seems
to be that its application requires the computation of sample standard de-
viation which jg not suitable for routine work. Therefore we propose a modi-
fication of Steiy’s procedure in which the usual estimate of standard deviation
is replaced by mean range — an estimate that is common in quality control
problems. In section 2 the modified procedure is desceribed, in section 3 the
theoretical hackground is explained and the construction of tables described.
In section 4 the formulae for average sample size are developed and the average

L=

samnple size tahled for a particular case.
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2. TILE TEST PROCEDURE

The test procedure satisfying requirements (1) involves the following steps:

1. A random sample of an arbitrary size n, —= kn is drawn (& and » are
integers). Suitable choice of »n, will be diccussed in section 4. This sample is
composed of & mutually independent subsamples of size n. From this sample
we compute: the mean, to be denoted by x;, the range of each subsample,
Ly, Iy, ..., B, and the mean range of all subsamples,

R—Z;i[i,.

The sample is decomposed in subsamples for two reasons; first, for larger
values of kn (say, kn = 12) the mean range of k groups of » is — when band »
have been suitably chosen — a more cfficient estimate of ¢ than the range
of the total sample of kn; second, it is easier to pick out the extreme obser-

vations in a smaller group than in the total sample.

2. Another sample is drawn the size of which, n,, is given by the formula

. I e o
Hy == Min ls T8 - e — Wy, 8 & positive integerp. (2)

A2Zz

In words, n, is the least positive integer greater thau — n,. Thus if

B2)(A272) <2 ny, we have n, = 1 if

wy + 8 —1

we have n, = .

[n formula (2) Z denotes a number depending on the chosen risks + and g,

1 ; . . . .
Z = - La The numbers z, o5 and 7z, , are for certain combinations of L and
2, - 2y
n given in tables 1 and 2, respectively. From the data in the second sample

the mean &, is computed.

3. The root « of the equation

18 determined,

The solution of (3) and the determination of u, from (2) are the only more
complicated operations in the application of the procedure. However, if the
test is to he nsed on repeated oceasions with data vegarding the same quality
characteristic, suitable charts may be devised for these operations so that the
computational fabour is reduced to a minimum,



Table 1.

&

Values 4.4, defined by the relation 7’[—37 = Zgupst = 0-05 (& has a normal distribution with zevo
w

mean and unit variance, w is distributed independently of & as the mean range of k¥ mutually
independent samples of size » from a normal distribution with unit variance).

o | | |
U 5 6 | 7 1 8 9 10 1 15 20
— 7 N
S _ L U R S S _
0-869 | 0-765 | 0-698 | 0-648 | 0616 0 588 | 0-566 | 0-544 | 0-510 | 0-464
0-780 | 0:703 | 0654 | 0612 | 0:583 | 0:560 | 0-541 ‘ 0525 1 0-490 | 0.452
0754 | 0.684 | 0-635 | 0600 | 0-573 0 551 n 538 | 0-518 | 0-484 | 0-448
0742 | 0-675 | L 0-568 | 0-547 | 0529 \ 0-515 | 0-482 | 0-446

0735 | 0-669 | 0-624
0-730 | 0-666 | 0-622
0-726 | 0-663 | 0:620
0724 | 0-662 | 0-618 !
0722 | 0-660 | 0-617

0-591 | 0565 | 0-544 | 0-527 | 0-513 | 0480 | 0-445
0-589 1 0563 | 0:543 | 0-526 | 0-511 0-479 | 0-444
0-587 | 0562 | 0.542 ‘\ 0-H25 | 0-510 | 0-478 | 0-444
0-586 | 0-561 0-h41 0-524 1 0-510 | 0478 | 0-443
0-585 | 0560 | 0-540 | 0-523 | 0-509 + 0-477 | 0-443

(b 0-539 | 0-523 | 0-509 | 0477 | 0-443

|
i

0-629 1 0-594
i

SThO & % ~1S U1 000 =

1 0.-721 0:659 | 0.616 | 0-584 |
1 0-718 1 0657 | 0-615 | 0-583 0-539 | 0-522 | 0-508 | 0-476 | 0-442
1 0716 | 0-656 | 0-613 | 0.-582 0538 | 0-521 0-507 | 0476 | 0-442 |

0-537 0-521 | 0-507 \ 0-475 0-441
0-536 | 0520 | 0-506 | 0475 | 0-441
0-535 | 0:519 | 0-505 | 0474 0-441
‘ . 0-534 | 0-518 | 0-505 | 0-474 | 0-440

| ! |

30 | 0712 | 0-652 | 0-611 | 0-580
0-579
0-578

0-709 | 0-651 0-610

|
7] i 0-707 ‘ 0-649 | 0-608

|
|

20 | 0714 | 0-654 | 0612 \ 0-581
\

Table 2.
(£ .. |
Values Zge10 defined by the relation Pl-\“ = Zgegr == 010 (& has a normal distribution with zero
w

mean and unit variance, w is distributed independently of & as the mean range of & mutually
independent samples of size # from a normal distribution with:unit variance).

R { |
| | 5 6 | 7 8 9 10 11 12 l 15 0 |
AN 1 | |
. !
[ 1 J |
1 | 0-558 | 0-514 | 0-484 | 0460 | 0-441 | 0426 | 0-413 | 0-384 | 0-354
2 0-530 | 0-493 | 0466 | 0445 | 0428 | 0:414 | 0.403 ‘ 0-376 | 0-349
3 0-522 | 0-487 | 0-461 | 0440 | 0-424 | 0411 | 0400 | 0-374 | 0-347
4 0-517 | 0-483 | 0-458 | 0-438 | 0422 | 0:409 | 0-398 ‘ 0-373 | 0-346
L5 0515 | 0481 | 0-456 | 0437 | 0421 | 0:408 | 0-397 | 0372 | 0-345
o6 0-514 | 0-480 | 0-455 | 0-436 | 0420 | 0407 | 0-396 l 0-372 | 0-345
o 0-512 ‘ 0-479 | 0455 | 0435 | 0420 | 0407 | 0-396 | 0-371 | 0-344
8 0512 | 0479 | 0454 | 0435 | 0419 | 0.407 | 0.306 | 0371 | 0-344
9 5% | 0-511 i 0-478 | 0-454 | 0-434 | 0419 | 04406 | 0-395 | 0-371 | 0-344
10| 0557 | 0-510 | 0478 | 0453 | 0434 | 0419 | 0406 | 0395 | 0:371 | 0.344
12| 0556 | 0510 | 0477 | 0-453 | 0434 | 0418 | 0-406 | 0:395 | 0-370 | 0-344
15| 0555 | 0509 | 0476 1 0-452 | 0433 | 0-418 | 0405 | 0395 | 0370 | 0-344 |
20 | 0554 | 0-508 | 0476 | 0452 | 0433 | 0418 | 0.405 | 0-394 | 0-370 | 0-344 |
30| 0553 0-507 | 0475 | 0-451 | 0432 1 0417 | 0405 | 0-394 | 0:370 | 0:344
60 | 0-552 | 0-507 | 0475 | 0451 | 0432 | 0417 | 0404 | 0-394 | 0-370 | 0-343 |
o | 0551 0506 0474 | 0450 | 0-432 | 0417 | 0404 | 0-393 1 0-369 | 0-343
o USSR SR A SO MU (OO IO N,

4. The hypothesis p %y is accepted if the test statistic

mo ey A (1 —a)xy — g
T A7 (4)
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does not reach the eritical value z, from table 1 or 2 (according to the chosen
risk x) corresponding to the pair £ and »n that has been employed in subdividing
the size of the first sample, and rejected otherwise.

By a modification of the inequalities we obtain a test satisfying the conditions
- P(pg) = o,
Plitg — A) =,
i. e. a test of p¢ ==y, directed against the alternatives

mo< g -

3. THEORETICAL BACKGROUND

Let us examine the distribution of the random variable
ait, + (1 fa)iz s

AZ ?
where z, and z, are the means of two random samples from a normal popula-
tion with mean g and standard deviation o taken in accordance with the
principles enumerated in section 2, a is a function of the first sample given
by equation (3), 4 and Z have the same meaning as in section 2. First we con-
sider the conditional distribution of £, given E. This distribution is normal
(since it is a linear combination of means of two normal samples) and has the
expectation

£ =

1
AZ

E{ax, + (1 —a)x, —u} =0

and variance

i{aﬁz . (1 —a)z} a?

A2Z2 \n, g R
(the last equality follows from (3)).

Thus the conditional distribution function of £ given R is

PR zR
Pr(z) =P{{ = 2z| R} _(D(G),
where @ denotes the distribution function of the normal distribution with zero
mean and unit variance. And the unconditional distribution function of the
random variable ( is
[ee]
P(z) = P{{ =2} = [ () pra(v) dv, (5)
0
where p, (v) denotes the probability density of the distribution of mean
range of k£ mutually independent samples of size » from a normal population
with unit variance. It may be easily verified that (5) is the distribution function
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of the ratio of two random variables, say X/V, where X has a normal distri-
bution with zero mean and unit variance and Y is distributed as mean range
of £ independent samples of size n from a normal pepulation with unit variance.
Also, this is the distribution of the test statistic 7" under the hypothesis p¢ = u,.

The numbers z, in tables 1 and 2 ave the solutions of the equation
1~ Plz) = q ' (6)
for ¢ = 0-05 and ¢ = 0-10, vespectively.

It is seen that the procedure described in section 2 satisfies the requirements
(1) of section 1 since

Plug) =P{T Z 2, [t = o} =1 — P(z,) = o
and

. . 1
P(u, + 4) =P{T =z, [ fo=tyg+ A} =1 -—P (za—f) =1--P(—z5) =

Z
—1—§.

The last equality follows from the symmetry of the distribution of (.

The values in tables 1 and 2 have been computed by means of an approxim-
ation auggested by P. B. Parvarg {3]. Numerical comparisons which have
been made so far show that the approximation is very close. We shall describe
it briefly, since we shall have occasion to use it in section 4 in the calculation
of the average number of necessary observations.

Patnaik’s approximation consists in the replacement of the distribution of
mean range by the distribution of the random variable cl,/ %%/, where x? has
a x* distribution. with » “degrees of freedom’ and ¢ is a positive constant. The
constants ¢ and » are determined so that the first two moments of ¢ l/ %2y coincide
with the first two moments of mean range. Thus the “number of degrees of
freedom” may assume non-integral values, t0o. The numbers ¢ and » depend,
of course, on the number of subsamples, &, and on their size, n. A table of ¢
and » values for some combinations of £ and » is given in [4]. For the purposes
of the present paper a more detailed table had to be prepared.

The critical values z, were then computed as follows. Let & have a normal
distribution with zero mean and unit variance, further let w be distributed
as mean range of £k independent samples of size n from a normal population
with unit variance; assume that w is independent of &. Since w is distributed
approximately as cV}ﬁA/;, the ratio &/w is distributed approximately as the

ratio S/[CV'/V‘,,;’;], i e.

p {f - } ~rf fos } — o), )
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where @, denotes the distribution function of Student’s distribution with »
“degrees of freedom”. The values z, defined by (6) are thus approximately
given by

2 = (8)

where £, ., is the 100(1 — ¢} percent fractile of Student’s distribution with »
“degrees of freedom™.

For some particular values of ¢ the critical values z, may be computed from
the values tabled by Lorp in [5]. Lord’s tables are constructed for a two-sided
test of Student’s hypothesis when an unbiased estimate of o based on mean
range is used. Accordingly they give, for selected values of ¢ and for a number
of combinations of k& and n (i. e. the number of subsamples and their size),
the values u, defined by the relation

€l
Pi—— > u =
{w/rl,,, — Y s

where & is a random variable with a normal distribution with zero mean and
unit standard deviation and w is a random variable that is distributed as mean
range of k¥ mutually independent samples of size » from a normal population
with unit variance; d,, is the expectation of the range of a sample of n elements
from a unit normal population, tabled c. g. in [4] or [6]. The critical values z,
are connected with u, through the relation

Haq

2o =g (9

n

4. THE AVERAGE SAMPLE SIZL
.

In the procedure described in section 2 only the first sample has a fixed size
n,; the size of the second sample, n,, depends on the mean range of the first
sample. The total number of observations necessary to reach the deeision,
N = n, -|- n,, is thus, in fact, a random variable. Its mean valuc is

E(N} = (n, + 1)P{R < AZ |ln, 4+ 1} + z /cP{/c — 1

k-my 2

2 2 72 >, A2 72 (e —
—(ny 4+ 1) p{_l_{ < A2 Z2(ny - ])} |- Z ]p{_]/‘(/ )

52 P

Lon =2
The meaning of the symbols B, 4, Z and o? is the same here as in sections |
and 2. Denote by § the “distance between the hypothesis and the alternative™,
expressed in terms of the population standard deviation, d = /jo and apply
Patnaik’s approximation described in section 3 to the expression for E{N}.
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We have

E(N} ~ (ny + 1) P{y‘ﬁ PR AUR SO

2
O R — ), 8y
4' Z ]u P‘l C‘Z“ S = xﬁ < 0,2 R R

kamng 2

where »2, 1 and ¢ have the same meaning as in section 3. If we denote by F,
the distribution function of the y2-distribution with » “degrees of freedom”,
we may write the expectation £{N} as

A

(N} ~ (0 + 1) F(dya) + 2 [ AP (@),

PR k-1

where A4, stands for (02Z2kv)/c®. In the second term on the right-hand side we
A

a

[ . .
now replace the summands by 527 f xd F (x), thus introducing a further
0°L°Y

A‘—]
approximation. We obtain ’
. c?
E(V} & (a4 1) Fo(dy) + 5o fxdF,,(x) ,
Ang+1
Integrating by parts we get finally
T nl c* nl
BN}~ (n, + 1) F(4,,.41) -+ Y7 [1—7F,(4,,.1)]. (10)

If the first sample is large, the number » will usually be large, too, and the ex-
pression (10) may be replaced by

c2

sl — o(|24,,., —]/2v +3),

(11)

where @ denotes the distribution function of the normal distribution with

E(N} ~ (ny + 1) D()/24,,., —)2v —1) -+

zero mean and unit variance,

Thus the mean number of observations depends on the population standard
deviation o, on the size of the first sample and on the way of its subdivision
into subsamples, 1. e. on k and n. It is natural to choose the size n, and its
subdivision so as to make the mean number of observations as small as possible.
To this end it is necessary to have some idea of the value of the population
standard deviation, to fix the size of subsamples into which the first sample
will be divided, to compute E{N} using (10) or (11) for several values of n,
and to minimize it by trial and error. Numerical comparison shows that the
dependence of the expected number of observations upon the method of the
subdivision of the first sample is not too strong. Table 3 gives values E{N}

corresponding to various choices of k and »n for n, = kn = 100 and to various
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values of 4, when the risks are & = 0.05 and f = 0-10. For § = 0.4 the ex-
pected number of observations is approximately 101, so that for ¢ as high as
0-4 the second sample will usually be of size 1, it will consist of a single obser-
vation. This means that for 4 = 0-4 the first sample of size 100 is unnecessarily
large (in this connection see Table 4 and the corresponding comments). Further
it is seen from Table 3 that the expected number of observations is at its mini-
mum value when the subsamples have sizes somewhere between 5 and 15.
This is in agreement with the well known fact that the mean range as an estimate
of the standard deviation is most efficient when the size of subsamples is
about 8.

Table 3.

Expected number of observations for the two-sample procedure
with n; = 100, « = 0-05, f = 0-10.

Number of Size of Difference betwccn hypothesm and alternative in terms
subsamples subsample of population s. d. o
k n 0= 0025 = 0:05[5 =010 [0 = 020[ 5 ~ 0
B ! l .
5 20 21 954 3513 878.2 219-5 106-2 101-0
10 10 21 863 ‘ 3498 8745 218-6 102-5 101-0
20 5 21 897 i 3 503 8759 219-0 102:7 | 1010
50 2 22 234 1 3557 889-3 222.3 108-2 i 101-0
Size of single sample for 91 418 | 3497 857 ‘\ 214 95 54
d known | i

Thus it is sufficient for the determination of the optimal »n, to compute
E{N} for n, growing by steps of 10, beginning with », equal to about one half
the size of sample necessary for the attainment of the same power with the
single-sample test with known standard deviation, and to use subsamples
of size 10. In table 3 the sizes for the single-sample test with the same power
(the same risks) when the standard deviation is known are shown in the last
Tow.

For illustration which n, is approximately optimum we give another table,
Table 4, which gives the values E{ N} corresponding to various sizes of the first
sample, n,, and various values of (3, when & = 0-05 and = 0-10 as before.
It is assumed that the first sample is divided into subsamples of size 10,
Tables 4 and 3 have been computed by means of formulas (10) and (11).

The last two rows of Table 4 give, respectively, the size of the sample ne-
cessary for the single-sample test having the same power 1 -- p against the
alternatives specified by d for the case when o is known, and for the case when
o is estimated by means of the common mean-square cstimate (these values
are quoted from [7]). It is scen that the minimal expected number of observa-
tions does not exceed much the size necessary for the single-sample test with
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Tahle 4.

Expected number of observations for the two-sample procedure with various sizes
of the first sample.

| Size of first Difference between hypothesis a:nddalat.ernutive in terms of population
{ sample O
0
ny [ e e e
0-25 0-30 0-35 ‘ -40 0-45 0-50 0-60
| | |
10 1712 118-9 J‘ 874 i 66-9 52-9 42.9 29.9
F 20 152-9 1062 780 ¢ BY-8 47-3 38-5 27.9
l 30 147.3 102-3 YR Y 46-1 38-6 32.2
40 144-7 100-4 | 73.8 i 571 474 43.0 41-1
50 143-0 99-3 f 733 | b8T 527 51-2 51-0
60 1421 98-7 T4l 63-6 61-3 61-0 61-0
70 141-6 98.6 ' 772 71-6 710 71-0 71-0
80 140-8 99-1 | 831 81-1 81-0 81-0 8.0
90 140-4 1062+ 913 91-0 91-0 91-0 91-0
100 140-2 105-7 1011 101-0 101-0 101.0 101-0
120 141-2 121-5 121-0 l 121-0 121-0 121-0 121-0
130 ’ 154-2 151-0 ¢ 1510 | 1510 151.0 151-0 151-0
S R | L : -
Sizo of single {
sample for ¢ ‘
known: 137 95 70 ’ 54 42 34 | 24
e e _ L R - e _
Size of single ! ‘ |
sample, ¢ esti- 1 ‘
mated by mean- ; : |
square estimate: | 139 97 72 55 44 36 | 26
! ; | | ‘

known o. Further it is at first sight surprising that no reduction in the number
of observations results from the decomposition of the test into two phases
in the case of unknown standard deviation, It must be remembered, however,
that the described two-sample procedure is devised to satisfy one condition
more, viz. the given power against A irrespective of ¢. If this condition were
replaced and the requirement on the power stated only in terms of § (that is
in terms of o), then, it is believed, it would be possible to find a more economical
procedure. This, however, constitutes another problem.
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Souhrn

TEST STUDENTOVY HYPOTHESY DVOJIM VYBEREM PRI UZITI
PRUMERNEHO ROZPETT

JosEF MACHEK

(Doflo dne 9. zdfi 1958.)

V éldnku je popsdna modifikace Steinova dvojfazového testu hypothesy
o pramdéru normaintho rozdéleni, pii kteréd se na misté obvyklého odhadu
smérodatné odehylky uziva vybérového rozpdti, resp. primérného rozpéti
nékolika vybéra.

Podstata tlohy je tato: Je dan zakladni soubor, jen# ma normalni rozdéleni
s neznamou sttedni hodnotou 4 a ¢ neznamou smérodatnon odchylkou o. Jest
ovéfiti hypothesu u = u, proti alternativeé g = u,. Test ma spliovat pozadavky
(1), kde P(y) znadi pravdépodobnost, Ze testovand hypothesa u < g, bude
zamitnuta, kdyz skuteénd hodnota praméru je ;i; A je dané éislo (piedpokla-
dame 4 > 0) a x a f jsou zvolena risika chybnych rozhodnuti. Pozadavky (1)
maji byt splnény nezdvisle na hodnoté smérodatné odchylky o.

Je dokazano, 7e neexistuje test, zaloZeny na jediném vybéru, ktery by mél
pozadované vlastnosti ([1]). Juze viak sestrojit test, zaloZeny na dvou vybé-
rech, z nich? druhy ma rozsah zavisly na pozorovanich z prvniho vybéru,
ktery spliuje (1) pii jakémkoliv o ([2]).

P¥i uZiti rozpéti na misté obvyklého odhadu smérodatné odehylky zahrnuje
test tyto kroky:

1. Vezme se vybér libevolného rozsahu n, = kn (kde & a » jsou celd &isla).
Vybér je slozen z k navzajem nezavislych diléich vybéra rozsahu n. Vypodte se
aritmeticky pramér celého prvniho vybérm, rozpéti kazdého = diléich vybéri
a pramérné rozpsti R viech diléich vybéri.

2,V zavislosti na zvolenych hodnotich ~ a g se urdi Sislo Z = L. -

M T
kde z, jsou pro ¢ == 0,05 a ¢ == 0,10 uvedena v tabulkich 1 a 2. Provede se
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druhy vybér, jehoZ rozsah n,, je din vyrazem (2), a vypodte se jeho aritme-
ticky pramér @,.

3. Urdl se konstanta o fesenim rovnice (3).

4. Vypodte se hodnota testové charakteristiky (4) a testovand hypothes:
ge zamitne, jestlize 7' = z,. Kritické hodnoty testové charakteristiky jsou uve-
deny v tabulkach 1 a 2.

V § 3 je odvozeno rozdéleni testové charakteristiky; charakteristika 7' mé
rozdéleni jako podil dvou navzajem nezavislych ndhodnych veli¢in, X/Y,
kde X ma rozdéleni normalni s parametry 0 a 1 a ¥ ma rozdéleni jako pri-
mérné rozpcti k navzajem nezavislych vybért rozsahu » ze zakladniho souboru
g normalnim rozdélenim s jednotkovym rozptylem.

P¥i popsaném postupu je rozsah druhého vybéru, a tedy i celkovy podet
pozorovani, N, nutnych k dosazeni rozhodnuti, ndhodnou veli¢inou. Jeji p¥i-
blizna stfedni hodnota je ddna vyrazy (10) a (11). Zavisi na smérodatné
odchylce o zdakladniho souboru. Pomoci formuli (10) a (11) byla vypodtena
tabulka 4, uddvajici stiedni hodnoty poétu pozorovani pii réiznych volbach n,
a pii riznych hodnotéach é = Ajo. Formuli (10) a (11) lze uzit pii volbé opti-
malnfho n,, tj. takového, p¥i kterém st¥edni hodnota celkového rozsahu vy-
béru je minimalni.

Pesiome

KPUTEPUI JIJST TIPOBEPKU TUIOTESLI CTBLIOTEITTA
ABOMHON BhiBOPKOI

NOCE®D MAXEK (Josef Machek) .
(IlocTymmno B pepaiio 9/IX 1958 r.)

B erarhe pacemarpusaercs ciedyoulas 3ajava: Pacupegenenne remepasi-
HOIT COBORYHHOGTH HOPMAILIO ¢ HCU3BCCTHLIMI HapaMeTpaMit ¢ (cpeiiec sia-
yeHne) W oo (cranmgapriaoe  orrymowenwe). Tpebyercs npoBepurs  runoresy
[ pg TIPOTHR ANLTCPHATHBHON THNOTE3LL 0 > pe. Ofosmavyum uepes P(u)
BCPOSTHOCTH TICHPUHATHA TIPOBCPHCMOIT PHIIOTER, CJIC HECTHHHOC 3HAUCHUHC
cpeHero pasno g Kpurepnil Jims mpoBepRI JLOJReH YIOBICTBOPATL TpedoRa-
s (1), 751e A —— 3a;1aHH0C YMET0 1T X v ff — 3apaiiee BoidpPalminie BOPOSITHOCTI
OIMGOUHBIX PETTeNuil, He3aBHCHMO 0T HCW3BCCTHOTO 3HAYCHUA NapaMeTpa a.

WxgecrHo, 910 HPH HOMOUIH OJIHOR BLIGOPKY HTa 3ajaua He Mosker OnTh pe-
wena. Jlag ce pemenus 1eo0X0;MMO BOCHOIB30OBATHES JIBYMs BHOOPRAMM, HpH-
HeM O0BeM  BTOPOR U3 HUX sipasierest yuinmei HalJIoen i, HOJYyUCIIinLX
woneppofi suifopre. Jror meroj npunauieskut X. Hreitny [2]0 B nacrosimen
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ctathe Metorl Hreitna BUIOWAMCHCH TAR, YTO B KaUCCTBC OHCHIZI HeHABCCTHOLI 0
llapamMerpa o HEHoJAL30BAIl pasMaX BLIOOPIN WK CPCUNHT patMax HeCROALRIX
BLINOpOR.

Hposepra Br/novacT eaeyOnue maru:

L. M coBoryunocti 1pomssoar BHOOPKY TPONSROALIOLO ofbeMa 7, ==
= kn, rne k u n — neavie wpesna, Dty BeGopry pasofnior Ha & QacTituibiX Bhi-
60po1r OOBEMA 7 M 3aTEM HOJCUHTAIOT CPEANCE RECH BHBOPKIL %y, PasMax RasoI
U3 9acTHINLIX BUGOPOK W PN pasMax BeeX £ yacrndiblX BLIOOPOK k.

2. Bo: o . . a v O YT ol (2 S
2. BoabMyT BTopyIo BHOOPRY, ODBEM KOTOPOIT By sajai Popmysioii (2), rie
Z = (2, - 25) % 3HAUCTIN Zg 95 W 2410 JULH PABIMANLIX coueTasmii & 1 7 npune-

aennt B rabiviax Lo 20 Ho paiinniy sropoil seHopiy noJeuuralor ¢pejiiee z,.

3. Hojcunraor siauciue kpurepust 7' sanainoro Gopmyaoit (4), e a cers
peimenue ypasnenus (3). Tunoresa g =y orsepruyra, ccun T 2z oz, rne
& -— 3apance QUKRCHPOBAHLAL YPOBCTHL 3HAMWIMOCTR.

I3 pasjiesie 3 mpusejiedo pacupenesacuue kpurepus T upn runorese i upu
aNLTePHATURAX.

Ipu #oNBRO YTO OHHCAHHOM KPWTCPUN WHeIo HadiiofeHuil, Heol X0 MMBIX
JULsL PeUICHMH, SIBISICTCH CILy 9aiiHOM Besrnauoif. Ke MaTeMaTnaeckoe ojkuamnmne
MPUOIMBUTELI0 3ajiano Gopmytami (10) wirn (11), viae F, obosHauaer QyHr-
IO PACLPEICTCHMS BeJARUIHLL 2 ¢ v crenensmu ¢BoDON, T ¢ — TOCTosnHast,
sapvicumast o1 k non (¢ u v rabenuposanst, nanpumep, n [4]), 8 = Ajo, ® —
QGynKLUA HOPMAILITOro pacupeiencund ¢ napamerpamn 0 3 Lo [To gopmyitam
(10) 1 (11) Omna cocrapmena Tabuuia 4, B KOTOPOH NPUBCJACHLI MatTeMATHYCC-
KNE ORI Tuerra naGaoferns JUis ekoTophlX sHaucnil 6 u #y. Dopmynt
(10) u (11) Moryr GbTbL HCIONLBOBAMLL JUIT ONTUMATLHOIO BLIGOpa 00heMa
HePBOIL BHOO PRI, J@AIOMEr0 MUUMMATLIOC CPCIHCE WIEH0 HabIo e L.
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