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CONSTRUCTION OF ALL STRONG HOMOMORPHISMS 

OF BINARY STRUCTURES 

MlROSLAV NOVOTNÝ, ВгПО 

(Received December 23, 1989) 

1. INTRODUCTION 

We prove that the category of binary structures with strong homomorphisms as 
morphisms is isomorphic with a particular category of mono-unary algebras. Objects 
of the latter category are mono-unary algebras whose carriers are power sets and 
operations are totally additive mappings of power sets. Morphisms of this category 
are totally additive and atom-preserving homomorphisms ofthese algebras. By means 
of the isomorphism of these categories, the problem of constructing all strong 
homomorphisms between two binary structures is reduced to the problem of con­
structing all totally additive and atom-preserving homomorphisms between mono-
unary algebras. Since the construction of all homomorphisms between two mono-
unary algebras is known (cf. [8], [9], [10] where references to this and related 
problems can be found), the construction of all strong homomorphisms between 
two binary structures reduces to the task of finding all totally additive and atom-
preserving mappings among all homomorphisms of the corresponding mono-unary 
algebras. 

We now present the details of our constructions. The instruments of the theory of 
categories used here can be easily found in [7]. 

2. STRONG HOMOMORPHISMS 

We now construct a category STR (category of binary STRuctures) as follows. 
Any object of STR is a set A with a binary relation r ç A x A; it will be written 
as (A, r) and called a binary structure. A morphism t of(A, r) into (A', r') in STR 
is a mapping of A into Ä such that t о r = r' о t holds; such a t will be called a strong 
homomorphism of (A, r) into (A', r'). 

Clearly, l(A,r) is a strong homomorphism of(A, r) into itself. If t is a strong homo­
morphism of (A, r) into (A', r') and t' is a strong homomorphism of (A', r') into 
(A", r"), then (t' o t) o r = t' o (t o r) = t' o (r' o i) = (t' o r') o t = (r" o t') o t = r" o 
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o (ť о t), which means that the composite of two strong homomorphisms is a strong 
homomorphism as well. These facts imply that STR is a category. 

By definition, we obtain the following characterization ofstrong homomorphisms. 

Lemma 1. Let (A, r), (A', r') be binary structures, t a mapping ofA into A'. Then 
thefollowing conditions are equivalent. 

(i) t is a strong homomorphism of (A, r) into (A', r '). 
(ii) For any a є A and any b' є A! the condition (t(a), b') є r' is equivalent to the 

existence of b e A such that (a, b) є r, t(b) = b'. • 

Example 1. A particular case o fa binary structure (A, r) where r i samapping of 
A into A is called a mono-unary algebra; as usual, (a, b) є r is written as b = r(a) if r 
is a mapping. If (A, r), (A', r') are mono-unary algebras and t is a mapping of A 
into Л' such that t o r = r' o ř, then t is called a homomorphism of the mono-unary 
algebra (A, r) into (^4', r'). Hence, for mono-unary algebras homomorphismscoincide 
with strong homomorphisms. • 

Example 2. Let (A, r), (A', r') be ordered sets, t a mapping o f ^ i n t o A'. Write ^ for 
r and jg' for r'. Then í is a strong homomorphism of(v4, ^ ) into (A', 2g') ifand only 
iffor any a є Л and any b' e 4 ' the condition t(a) ti' b' is equivalent to the existence 
of b e A such that a ^ b, t(b) = b'. 

It follows, in particular, that a strong homomorphism is an isotone mapping, but 
an isotone mapping need not be a strong homomorphism. For example, a bijection 
of an antichain with n elements onto a chain with n elements is an isotone mapping 
but is no strong homomorphism. • 

Example 3. Let (A, r), (A', r') be binary structures where r is an equivalence on A 
and r' an equivalence on A'. By definition, if t is a strong homomorphism of (A, r) 
into (A', r'), then for any block B of r there exists a block B' of r' such that {t(a); 
a є B} = B'. • 

3. TOTALLY ADDITIVE AND ATOM-PRESERVING MAPPINGS 

We now investigate relations on power sets. 
For any set A we denote by P(A) its power set, i.e., P(A) = {X; X Ç A}. 

Let A, A' be sets. 

A mapping R of P(A) into P(A') is said to be totally additive if 

Д(и {Xt; і є I}) = (J {R(X,); i e 1} for any system {XL; і є /} 

of subsets of the set A. 
If R is totally additive, then R(0) = 0 and x e I s A implies K({x}) Ç A(X); 

furthermore, Y я X ç= A entails Д(У) £ Д(Х). 
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A mapping R of P(A) into P(A') is referred to as atom-preserving if for any x є A 
there exists у є A! such that #({x}) = {y). 

We now introduce two constructions P, Q that enable us to obtain mappings on 
power sets starting with relations and to obtain relations from mappings on power 
sets. 

Let A, A' be sets. 
If r is a relation from A to A', then for any X є P(A) we put 

P [ r ] (X) = {x' e A'; there exists x є X with (x, x') є r} . 

Particularly, if r is a mapping of A into 4 ' , we obtain 

P [ r ] (X) = { r ( x ) ; x e X } . 

By definition, we immediately obtain 

Lemma 2. If r is a relationfrom A to A', then P [ r ] is a totally additive mapping 
of P(A) into P(A'). D 

Let A, A' be sets. If R is a mapping of P{A) into P{A'), we put 

Q[R] = ( ( x , x ' ) e i x A'- x'eR({x})} . 

Clearly, Q [ # ] is a relation from Л to A'. By definition, we obtain 

Lemma 3. IfR is a mapping ofP(A) into P{A'), then thefollowing assertions are 
equivalent. 

(i) R is atom-preserving. 
(ii) Q [ # ] is a mapping. • 

Corollary 1. IfR is a mapping ofP(A) into P(A') and if Q[K] is a mapping, then 
for any aeA and any a'eA' the conditions a' = Q [ # ] ( # ) , {a'] = R({a])are 
equivalent. • 

Lemma 4. Let A, A' be sets, R a mapping ofP(A) into P(A'). Then thefollowing 
assertions are equivalent. 

(i) jR is totally additive. 
( i i ) * = ( P o Q ) [ * ] . 
Proof. If (i) holds and X e P(A) is arbitrary, then R(X) = jR(U {{x}; xeX}) = 

= U {*(M) ; x є Щ = {*'; x' є A({x}) for some x є Z} = {x'; (x, x') є Q[R] for 
some x є X} = P[Q[A]] (X) = (P o Q) [Я] (X), which is (ii). 

If (ii) holds, then R = P [ Q [ # ] ] is totally additive by Lemma 2. • 

As a consequence of Lemmas 3, 4, we obtain 

Corollary 2. Le/ 4 , Л' be sets and R a mapping of P(A) into P(A'). Then the 
following assertions are equivalent. 

(i) R is totally additive and atom-preserving. 
(ii) Q [ # ] is a mapping and R = (P о Q) [jR] holds. • 
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Lemma 5. If A, A! are sets and r a relation from A to A', then (Q о P) [r] = r. 
Proof. For any xeA, x'eA' the condition (x,x')er is equivalent to x'e 

€ P[ r ] ({x]) which means (x, x') e Q[P[r ] ] = (Q o P) [ r ] . П 

Our main result of the present section is as follows. 

Theorem 1. Let (A, r), (A', r') be binary structures and let t be a mapping of A 
into A'. Then thefollowing assertions are equivalent. 

(i) t is a strong homomorphism of(A, r) into (A', r'). 
(ii) P[ i ] is a totally additive atom-preserving homomorphism of (P(A), P[r]) 

into (P(A'), P[r ' ] ) . 
Proof. If(i) holds, P[t] is totally additive by Lemma 2. Therefore, Q[P[ i ] ] = t 

by Lemma 5 and t is a mapping. Thus, P[r] is atom-preserving by Lemma 3. If 
XeP(A) is arbitrary, then (P[r ' ] o P[i])(Jr) = P[ r ' ] (P[r] (X)) = P[ r ' ] ({i(x); 
xeX]) = {y'eA'; there exists xeX with (t(x),y')er'). By Lemma 1, xeA, 
у' є A', (t(x), y') є r' are equivalent to the existence ofyeA with (x, у) є r, t(y) = y'. 
Thus, the last set equals {t(y); there exist x є X, у є A with (x, y) e r) = P[ř] ({y; 
there exists x є X with (x, у) є r]) = P[f] (P[r] (X)) = (P[i] о P[r]) (X). We have 
proved that P [ r ' ] о P[f] = P[r] o P [ r ] and (ii) holds. 

Let (ii) hold. Then P[ i ] 0 P [ r ] = P [ r ' ] o P[r] and for any x є A we have {i(j); 
у є A, (x, у) є r] = P[ i ] ( { j є Л; (x, y) є r}) = P[ř] (P[r] ({x})) = 
= P[r'](P[t]({x])) = P[r']({t{x)]) = {y'eA'; (t(x),y')er'}. By Lemma 1, we 
obtain that (i) holds. • 

Theorem 2. Let A, A' be sets, R, R', Ttotally additive mappings, viz. R a mapping 
of P(A) into itself, R' a mapping of P(A') into itself, and T a mapping of P(A) 
into P(A'). Then thefollowing assertions are equivalent. 

(i) Q[T] is a strong homomorphism of (A, Q[#]) into (A', Q[# ' ] ) . 
(ii) T is a totally additive atom-preserving homomorphism of (P(A), R) into 

(P(A'),R'). 
Proof. Put t = Q[T] , r = Q[jR], r' = Q[jR']. By Lemma 4, we obtain P[ r ] = Д, 

P [ r ' ] = Я', P[ i ] = T Then (i) coincides with (i) of Theorem 1, and (ii) is the same 
as (ii) of Theorem 1 ; hence, they are equivalent. • 

Example 4. Let A = {a, b, c], r = {(a, c), (b, b), (b, c), (c, b)]. Then the mapping 
R = P [ r ] is given by the following table. 

0 {a} {b} {c} {a,b) {a,c) {b,c} {a,b,c] 

0 {c) {b,c) {b) {b,c) {b,c) {b,c] {b,c} 

The graphs of (A, r) and (P(A), P[r]) are presented below (Fig. 1). 
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(A.r) 

Fig. 1 

-o ^ (P(A),Pin) 

Example 5. Suppose A' = {d, e,f}; let R' be given by the following table. 

0 {d) {e] {f] {d,e) {dJ) {e,f) {d,e,f) 

0 0 {d} {d} M {d, e} {d, e} 

It is easy to see that jR' is totally additive. Then r' = Q[#'] = {(e, d), (f, e)}. The 
graphs of (P(A'), R') and of (A', r') are presented below (Fig. 2). 

M.e.f} 

Ш o— 
{e.} 

- Н Э — m 
-4> 

(P(A'),R') (A'S) 
Fig.2 
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Example 6. Consider the binary structures (A, r), (A', r') from Examples 4, 5. Let t 
be a mapping of A! into A defined by t(d) = b, t(e) = b, t(f) = c. Then P[r] is 
given by the following table. 

0 {d} {e} {/} {d,e) {d,f) {e,f) {d,e,f} 

0 {b} {b} {c} {b} {b,c} {b,c} {b,c] 

By Lemmas 2, 3, 5, P[ i ] is totally additive and atom-preserving. Thus, by Theorem 1, 
t is a strong homomorphism of (Л', r') into (Л, r) if and only if P[ i ] is a homo-
morphism of P(A'), P[r ' ] ) into (P(A), P[r]) . The latter algebra was constructed 
in Example 4, for the former we have P [ r ' ] = P [ Q [ # ' ] ] = R' by Lemma 4. Thus, 
we investigate whether P[ i ] = T is a homomorphism of (P(A'), R') into (P(^) , R). 
We obtain T({e}) = {ft}, (Я o T)({e}) = R({b)) = {b, c}, Я'({«}) = 
= {d}, (ToA')({e}) = {b}. Thus, Д о Г Ф ToR' and T is no homomorphism. It 
follows that t is no strong homomorphism of (A', r') into (A, r). • 

4. A PARTICULAR CATEGORY OF MONO-UNARY ALGEBRAS 

We now dehne a new category PMA (category ofPower set Mono-unary Algebras). 
Its objects are mono-unary algebras of the form (P(A), R) where A is a set and R 
is a totally additive mapping of P[A) into itself. A morphism in PMA of (P(A), R) 
into (P(A'), R') is a totally additive atom-preserving homomorphism of (P(A), R) 
into (P(A'), R'). Since i(P(A),R) is a totally additive atom-preserving homomorphism 
of(P(A), R) into itselfand since the composite oftwo totally additive atom-preserving 
homomorphisms is a totally additive atom-preserving homomorphism, PMA is 
a category. 

Example 7. Let us have A = {a, b, c}9 A' = {d, e}, R(0) = 0, R(X) = Л for any 
X Я A with Z Ф 0 and K'(0) = 0, R'(X) = A' for any X с Л' with X Ф 0. Consider 
the following mappings of P(A') into P(A). 

0 {d} {e} {d,e} 

ТІ 

т2 

0 
0 

{«} 
{a,b} 

{b} 
{c} 

{«. 
{«. 

b, 
b, 

4 
c} 

Then Tl5 T2 are homomorphisms of(P(^ ' ) , R') into (P(^4), # ) ; 7\ is atom-preserving 
but it is not totally additive, T2 is totally additive but it is not atom-preserving. Thus, 
Ti, T2 are no morphisms of(P(A'), R') into (P(A), R) in PMA. 

Consider the following mapping of P(A) into P(A'). 

T3 

TA 

0 

0 
0 

M 

{d} 

{b) 
{d] 
{d) 

{c] 

M 
{d} 

{°,Ъ} 

{d} 
{d} 

{a,c} 

{d,e] 
{d] 

{b,c} 

{d,e] 
{d} 

{a, b, с} 

{d,e) 
{d} 
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Clearly, T3 is a totally additive and atom-preserving homomorphism of (P(A), R) 
into (P(A'), R'), i.e., a morphism in PMA. On the other hand, T4 is a totally additive 
and atom-preserving mapping but it is no homomorphism of (P(A), R) into 
{P{A'), R'). Thus it is no morphism of (P(A), R) into (P(A'), R) in PMA. П 

5. ISOMORPHISM OF CATEGORIES STR AND PMÀ 

We now define two functors: F is a functor ofthe category STR into the category 
PMA and G is a functor of PMA into STR. These functors will be defined by pre­
senting the object mappings Fo, Go and the morphism mappings Fm, Gm. However, 
first we complete our set of constructions by presenting the construction Q. 

We have introduced the construction P putting P(A) = {X; X £ A} for any set A. 
We now define Q{P{A)) = A for any set A. Clearly, P(Q(P(A))) = P(A) which means 
that Q o P is the identity on the class of all sets and that P o Q is the identity on the 
class of all power sets. 

We now introduce the mappings Fo, Fm. If (Л, r) is an object in STR and t 
a morphism in STR, we put 

Fo(A, r) = (P(A), P [ r ] ) , Fm(t) = P[ i ] . 

The definitions of mappings Go, Gm are as follows. If (P(A), R) is an object of 
PMA and T a morphism of PMA, we put 

Go(P(A), R) = (Q{P(A)), Q[R]) = (A, Q[A]), Gm{T) = Q [ r ] . 

We now prove 

Main Theorem. F is a functor of STR into PMA and G is a functor of PMA 
into STR such that F о G and G o F are identity functors. 

Proof. (1) By Lemma 2, Fo(A, r) is an object in PMA for any object (A, r) in 
STR. If (A, r), (A', r') are objects in STR and t is a morphism of (Л, r) into (A', r') 
in STR, then Fm(t) is a morphism ofFo(^4, r) into Fo(A', r') in PMA by Theorem 1. 
Furthermore, Fm(l(/4>r)) (X) = X for any X e P(A) which implies that Fm(liAr)) = 
= lpo(A,r)- If * *s a morphism of (Л, r) into (Л', r') and t' a morphism of {A', r') into 
( 4 " , r " ) ' m S T R > t h e n f o r апУ ^ є Р ( Л ) we have (Fm(t')oFm(t))(X) = (P[t']o 
o P[r]) (X) = P[r ' ] ({r(;c); x є X}) = {t'{t(x)); x e X} = {(ť o ř) (x); x e X} = 
= P[i' o ř] (X) = (Fm(ť o i)) (Z) and, hence, Fm(t') о fm(r) = Fm(i' o ř). 

We have proved that F is a functor of STR into PMA. 
(2) Similarly, Go(P(A), R) = (Л, Q[^R]) is an object in STR for any object 

(P(A), R) in PMA. If (P(A), R), (P(A'), R') are objects in PMA and Tis a morphism 
of (P(A),R) into (P(A%R') in PMA, then Gm(T) is a morphism of Go(P(A),R) 
into Go(P(A'), R') in STR by Theorem 2. 

Furthermore, Gm(liP(AhR)) = {(x,y)eA xA; yel(P(A)tR)({x})} = lÁ = 

— lco(P(A),A)-
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If Tis a morphism of (P(A), R) into (P(A'), R') and T' a morphism of (P(A'), R') 
into (P(A'% R") in PMA, then Q[T] , Q[T ' ] , Q[T ' о T] are morphisms in STR and, 
therefore, mappings. Let xeA, x"eA" be arbitrary. Then, by Corollary 1, the 
condition x" = Q[T ' o T] (x) is equivalent to {x"} = (T' 0 T) ({x}), which means 
{x"} = T'(T({x})). Since T, T' are atom-preserving, we may define x' by {x'} = 
= T({x}). Then x' = Q[T] (x), x" = Q[T ' ] (x') and, hence, x" = (Q[T ' ] o 
o Q[T])(x) . We have proved that Q[T ' о T] = Q[T ' ] о Q[T] , i.e., Gm(T' o T) = 
= Gm(T') o Gm(T). 

It follows that G is a functor of PMA into STR. 
(3) If(i4., r) is an object of STR, then Fo(A, r) = (P(4), P[r]) and Go(Fo(^, r)) = 

= (Q{P(A)), Q[P[r] ] ) = (A, r) by Lemma 5. Similarly, if {P(A), R) is an object 
of PMA, then Go(P(A), R) = (4 , Q[jR]) and Fo(Go(P(A), R)) = (Р(Л), P [Q[#] ] ) = 
= (P(^4), i^) by Lemma 4. Thus Go о Fo is the identity on the class of all objects 
in STR and Fo o Go is the identity on the class ofall objects in PMA. 

If î is a morphism in STR, then Fm(t) = P[ i ] is a morphism in PMA, and 
Gm{Fm(t)) = Q[P[ i ] ] is a morphism in STR. By Lemma 5, we obtain Gm(Fm(t)) = 
= t for any morphism ř of STR. If T i s a morphism in PMA, Gm(T) = Q[T] is 
a morphism in STR, and Fm(Gm(T)) = P [ Q [ T ] ] is a morphism in PMA. By 
Lemma 4, we obtain Fm(Gm[T)) = Tfor any morphism Tof PMA. Thus Gm o Tm 
is the identity on the class of all morphisms of STR and Fm о Gm is the identity on 
the class of all morphisms of PMA. 

We have proved that F o G and G о F are identity functors. П 

Corollary 3. The functor F is an isomorphism of the category STR onto the 
category PMA. Thefunctor G is an isomorphism of the category PMA onto the 
category STR. • 

Corollary 4. Let (A, r), (A', r') be binary structure. 
(i) For any strong homomorphism t of (A, r) into (A', r') there exists a totally 

additive atom-preserving homomorphism T of (P(A), P[r]) into (P(A'), P[r ' ] ) 
such that t = Q[T] . 

(ii) / / T is an arbitrary totally additive atom-preserving homomorphism of 
(P (^ ) ,P [ r ] ) into (P(^ ' ) ,P[ r ' ] ) , then Q[T] is a strong homomorphism of {A,r) 
into (A', r'). • 

This corollary enables us to find all strong homomorphisms of a binary structure 
into another one. Particularly, it can be useful for establishing that no strong homo­
morphism of one binary structure into another one exists. 

Example 8. Suppose A = {a, b, c], Ä = {d, e,f], r = {(a, c), (b, b), (b, c), (c, ò)}, 
r ' = {(e, d), (/, e)} (see Examples 4, 5). If a strong homomorphism t of (Л, r) into 
(A', r') exists, then T = P[r] is a totally additive atom-preserving homomorphism 
of (P(A), P[r]) into (P(>4'), P[r ' ] ) . For any such T, we have T({b, c}) = 0 from the 
fact that Tis a homomorphism (homomorphisms preserve cycles). The total additivity 
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ofTimplies that T({b}) u T({c}) = T({b, c}) = 0 which implies T({b}) = 0 and T 
is not atom-preserving. Hence, there exists no totally additive atom-preserving homo­
morphism of(P(^) , P[r]) into (P(A'), P[r ' ] ) and, consequently, there exists no strong 
homomorphism of (A, r) into (A', r'). • 

6. APPLICATION 

Let A be a set, R a mapping of P(A) into P(A) such that 
(i) X £ A(Z) for any X є P(4) . 

(ii) X s 7 ç Л implies JS(X) £ Д(У). 
(iii) A(jR(X)) = R{X) holds for any Z є P(A). 

Then Л is said to be a closure on Л; the mono-unary algebra (P(A), R) is called 
a closure space. We shall investigate, in particular, totally additive closures. 

Theorem 3. Let (P(A), R) be a closure space. Then Q[i^] is a preordering on A. 
Proof. If xeA, then {x} ^R({x}) by (i) and, therefore, x e # ( { x } ) which 

implies that (x, x) e Q [ # ] ; hence, Q [ # ] is reflexive. 
If ( x j ) e Q [ A ] , {y,z)eQ[R], then yeR({x}), zeR({y}). Thus {y} £ R({x]) 

which implies that zeR({y]) £ A(A({x})) = R({x}) by (ii) and (iii). Thus (x, z ) e 
є Q[Ä] and Q[JR] is transitive. D 

Theorem 4. Let (A, r) be a binary structure where r is a preordering. Then 
(P(A), P[r]) is a closure space with a totally additive closure. 

Proof. P[r ] is a totally additive mapping of P(A) into itself by Lemma 2. 
iïX e P(A) is arbitrary, then for any x є X the reflexivity of r implies x є P[ r ] (Z); 

thus X £ P[ r ] (X) holds, which is (i). The total additivity of P[ r ] implies (ii). 
Furthermore, (i) and (ii) imply that P [ r ] (*) £ p [ r ] ( p [ r ] (jr)). If z є P [ r ] (P[r] (X)), 
then there exists у є P [ r ] (X) with (y, z) e r. Furthermore, there exists x є X with 
(x, j ) є r. The transitivity of r implies that (x, z) є r which means that z є P[ r ] (X). 
We have proved (iii). • 

A closure space with a totally additive closure will be called a totally additive 
closure space. 

Let (P(A), R), (P(A'), R') be closure spaces. A mapping t of A into A' is said to 
be a continuous and closed transformation of (P(A), R) into (Р(Л'), Я') if (and only 
if) P[ i ] is a homomorphism of the algebra (P(A), R) into (P(^')> R% i.e., if and only 
if P[f] o jR = R' o P[ i ] holds. Since t is a mapping, P[f] is always totally additive 
and atom-preserving by Lemmas 2, 3, 5. Thus, we have 

Theorem 5. Let (P(A), R), (P{A'), R') be closure spaces, t a mapping ofA into A'. 
Then t is a continuous and closed transformation of (P(A), R) into (P(A'), R') 
ifand only i /P [ i ] is a totally additive atom-preserving homomorphism o/(P(y4), R) 
into (P(A'), R'). D 
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Since Q[P[f]] = t by Lsmma 5, we obtain, by Theorem 2, 

Theorem 6. Let (Р(Л), R), (P(A'), R') be totally additive closure spaces, t a map­
ping ofA into A'. Then t is a continuous and closed transformation of(P(A),R) 
into {P(A), R') if and only if it is a strong homomorphism of (A, Q[K]) into 
(A', Q[R']). D 

Example 9. Suppose A = {a, b, c}, A' — {d, e,f). Let R, R' be presented by the 
following tables. 

| 0 {a} {b] {c} {a,b] {a,c) {b,c] {a,b,c] 

0 {a,b] {b} {c} {a,b} {a,b,c) {b,c) {a,b,c] R 

0 {d} {e] {./} {d,e] {d,f} {e,f) {d,e,f} 

{d} {d,e] {d,f) {d,e] {d,f] {d,e,f] {d,e,f] R' 

We intend to find all continuous and closed transformations of (P(A), R) into 
(P(A'), R'). The corresponding graphs are presented below (Fig. 3). 

(P(A),R) 
Fig.3 

(P(A'),R') 

We find all totally additive atom-preserving homomorphisms T of ( ^ 4 ) , R) into 
(P(A'), R'). Since Tis an atom-preserving homomorphism it must preserve one-point 
sets and cycles. Thus, the only possibility for fe, c is T({b}) = {d}, T({c)) = {d}, 
and for a we have three possibilities: either T({a}) = {d] or T{{a}) = {e] or 
4{")) = {f}-

309 



Thus, we obtain 

T3 

0 

0 
0 
0 

{a} 

{d} 
M 
Ш 

{b] 

{d} 
{d] 
{d} 

{c] 

{d] 
{d} 
{d} 

{a,b] 

{d) 
{d,e] 
{dJ] 

{a,c] 

{d] 
{d,e] 
{dJ) 

{b,c] 

{d] 
{d} 
{d) 

{a, b, c) 

{d] 
{d,e) 
{d,fi 

By Theorem 5, we obtain all continuous and closed transformations of (P(A), R) 
into (P(A'), R'). They are 

h 
h 
h 

a 
d 
e 
f 

b 
d 
d 
d 

с 
d 
d 
d 

We construct Q[R] = {(a, a), (a, b), (b, b), (c, c)}, Q[R'] = {(d, d), (e, d), (e, e), 
{f, d), (/ , /)}• The corresponding graphs are presented below (Fig. 4). 

(A,Q[R]) U',Q[R']) 
Fig.4 

By Theorem 6, tu t2, t3 are exactly all strong homomorphisms of (A, Q[A]) into 
(A>,Q[R>]). D 

7. CONCLUDING REMARKS 

The concepts and constructions used here are not new. For example, strong homo­
morphisms for preordered sets appeared in [5], [6]. 

If (Л, V,f) is an acceptor (without initial and final states), then A is a set whose 
elements are interpreted to be states, Vis a set interpreted as alphabet,and/is a map­
ping of A x Kinto P(A). For any ve V, we define a binary relation rv = {(a, b) e 
eA x A; b ef(a, v)). In this way, an acceptor may be presented as a set A with 
a family of binary relations rv (v e V). It is easy to see that an acceptor can be recon­
structed from an arbitrary set with a family of binary relations. If an acceptor is 
given as a set A with a family of binary relations rv (v e V), then the set P(A) with the 

310 



family of operations P[ rJ on P(A) is also an acceptor; it is the deterministic variant 
ofthe given one. Cf. [11]. 

The relationship between a mono-unary algebra and a closure space with common 
carriers where continuous and closed transformations of the closure space into 
itselfcoincide with endomorphisms ofthe algebra were investigated in [1], [2], [3], 
[4]. Our Theorem 6 relates to a similar problem. 
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