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1. INTRODUCTION

In the present note, we study properties of countable von Neumann regular rings.
Finite regular rings have simple homological properties since they are completely
reducible (i.e., finite direct sums of full matrix rings over division rings). The same is
far from being true of the countable ones. There are various examples of non-com-
pletely reducible countable regular rings, usually constructed as endomorphism rings
of infinite dimensional linear spaces or direct limits of completely reducible rings
(see [3]). Homological properties of such rings may be independent of ZFC. For
example, the Whitehead property of all (or some) non-zero countable modules over
any simple countable non-completely reducible regular ring is independent of
ZFC + GCH (see [7]). In fact, this property is assured by Jensens diamond,
but excluded by a combinatorial principle due to Shelah.

In our note we show that a version of Shelah’s principle is even equivalent to
a property concerning the bifunctor Ext that is close to the Whitehead property.
We also get a structure theorem for countable regular ®-rings. Finally, we obtain
a splitting-type theorem for modules over regular rings such that each left ideal is
countably generated.

2. PRELIMINARIES

In what follows, an ordinal is identified with the set of its predecessors and a cardinal
is an ordinal which is not equipotent with any of its predecessors. If x is a cardinal,
then cf (i) denotes its cofinality and x* denotes the successor cardinal to x. For
a set A, the cardinality of 4 is denoted by card (4). Let E be a subset of 1 ). Then E
is cofinal if sup E = y,. Further, E is closed if sup F € E U {x,} for every non-empty
subset F of E. We say that E is stationary if E n F # 0 for every closed and cofinal
subset F of x;. We say that E is costationary if y; — E is stationary.

1 %o —denotes the cardinality of the set of all natural numbers, x1 —denotes the successor car-
dinal to xq.



In what follows, all rings are associative with unit. If R is aring and n > 0 a natural
number, then M,(R) denotes the full matrix ring of degree n over R. The Jacobson
radical of a ring R is denoted by Rad (R) The ring of integers is denoted by Z.
A subset {e, |« < k} of R is a set of orthogonal idempotents if, for each « < «,
e, is a nontrivial idempotent of R and e,e; = 0 whenever « + f < x. For a ring R,
the categories of unitary left and right R-modules are denoted by R-mod and mod-R,
respectively. A unitary left R-module is simply called a module. A sum and a direct

sum of submodules are denoted by ) and ), respectively. Let M be a module. If x
is an ordinal, k > 0, then M®) and M* denote the direct sum and the direct product,
respectively, of k copies of M. If x € M, then Ann (x) denotes the left annihilator
of x in R. Further, M is said to be properly x-generated if x is the smallest cardinal
such that there is a generating set of M of cardinality k. The Z-module of rational
numbers is denoted by Q.

A ring is said to be a ®-ring if there are only trivial orthogonal theories of the
tensor product bifunctor (see [5, Introduction]), i.e. M @ N = 0 for each non-zero
M € mod-R and N € R-mod. Recall that by [2, Appendix A] a ring is a left T-ring
if there are only trivial orthogonal theories of the Ext bifunctor, i.e. Ext (M, N) 0
for each non-projective module M and each non-injective module N. Further con-
cepts and notation can be found e.g. in [1].

3. HOMOLOGICAL PROPERTIES OF COUNTABLE REGULAR RINGS

3.1. Lemma. Let R be a simple non-completely reducible regular ring, M a sin-
gular module and K = End (M). Assume that the right K-module M is countably
generated. Then there are orthogonal idempotents e;, i < y, such that M =
=Y eM.

i<yo

Proof. Let {x; | i < 7o} be a generating set of the right K-module M. We construct
the idempotents e;, i < ¥, by induction. First, put ¢, = 1 — e, where e is any non-
trivial idempotent such that e e Ann (x,). Assume orthogonal idempotents e, ...

coey_ysuch that 1 #f=¢y + ... + e,., and Y x,K < Ze,-M have been con-
structed. If x, ez e;M, let e, be any non-trivial idempotent of the ring (1 — f).
i<n
. R(1 — f). Otherwise, put y, = (1 — f) x,. Since Ann (y,) is not finitely generated,
[3, Propositicn 2.11] easily yields the existence of orthogonal idempotents fo, f1,
satisfying Rf = Rf, and f;eAnn(y,), j=0,1. Put e, = (1 —f,)(1 —f)
Then f, e, are orthogonal idempotents and f + e, + 1. Moreover, y, = e,y, and
the induction works.

3.2. Lemma. Let R be a regular ring. Then the following conditions are equi-
valent:
(i) R is a @-ring.



(i) I + J *+ R for each maximal right ideal I and each maximal left ideal J.

Proof. (i) implies (ii). Easy.

(ii) implies (i). Assume 4 ® B = 0 for some non-zero A € mod-R and B € R-mod.
Then, for each cardinal x, Hom; (4 ® B, (Q/Z)*) = 0, whence
Hom (B, (Homy (4, Q/Z))*) = 0. Since A4 is a flat right R-module, the module
Homy (4, Q/Z) is injective and not a cogenerator. By [1, Proposition 18.15], there
is a simple module W such that Hom (W, (Homy (4, Q/Z))*) = 0 for all cardinals .
Hence A ® W = 0. Using the right-hand homomorphisms, we get similarly the
existence of a simple right R-module Vsatisfying V ® W = 0. Now, let I be a maximal
right ideal with ¥ ~ R/I and J a maximal left ideal with W ~ R/J. Using the com-
mutative diagram of [1, 19.17], it is easy to see that the canonical inclusion V. J — V
is a Z-isomorphism, whence I + J = R.

3.3. Lemma. Let R be a regular ring. Then

(i) if R is a @-ring, then R is simple;

(ii) if each maximal right ideal is countably generated and all simple modules

are isomorphic, then R is a ®-ring;

(iii) if R is a simple left and right T-ring, then R is a @-ring.

Proof. (i) By 3.2, every two-sided ideal is a superfluous submodule of R and hence
is contained in Rad (R) = 0.

(ii) Let I and J be a maximal right and left ideal, respectively. By [3, Proposition
2.14], there are a cardinal ¥ < y, and orthogonal idempotents e;, i < x such that

I =Y eR Putl =Y Re;. Then I' + R, whence Hom (R/I', R[J) % 0. Let re R
i<k i<k
be such that r ¢ J and e;r € J for all i < k. Then even r¢I + J, and 3.2 applies.
(iii) By [6, Theorem I1.3], [2, Proposition A.3.5] and (ii).

3.4. Theorem. Let R be a countable regular ring. Then R is a ®-ring if and only
if there are a natural number n > 0 and a division ring D such that R ~ M,(D).

Proof. The sufficiency is easy. Assume R is a countable regular ring. If R is not
simple, then 3.3 (i) shows R is not a ®-ring. If R is simple and non-completely
reducible, take a simple module M and put K = End (M). Then dimg (M) = ¥,
and 3.1 yields the existence of orthogonal idempotents ¢;, i < y, such that M =

= Y e;M. Let I be a maximal right ideal containing all e;, i < %o, and J a maximal

i<xo .
left ideal such that M ~ R/J. Then I + J = R and, by 3.2, R is not a ®-ring.
Hence, R is simple and completely reducible, q.e.d.

Let E be a subset of y; and F the set of limit ordinals of E. Let gg =\(nv I ve E)
be a sequence of strictly increasing yo-sequences such that, for each v € F, sup nv(i) =
= v, and, for each i < xo and v € F, there is a limit ordinal p,(i) with n,(i) = p,(i) +
+ i + 1. Denote by C(g ) the following combinatorial principle: ,,for any sequence
(h, [ v € E) of functions from y, to x, there is a function f: x; = ¥o such that Vv eF

E!]‘<XOV1>]‘ (n, () f = (i) h,”.



Let R be a simple countable non-completely reducible regular ring and let & =
= (I, | v € F) be a sequence of properly y,-generated left ideals of R. By [3, Proposi-

tion 2.14], for each ve F there are orthogonal idempotents e;,, i < ¥, such that
I, = ) Re;,. Denote by Mg, s the module R*’/G, where G is a submodule
i<yo

of R®" generated by the elements g;, € R¥*, i < xo. v e F, the v-th projection of g;,

being —e,,, the n(i)-th projection being e;,, and all other projections being zero.

Let P be a simple module. Then the right dimension of P over End (P) is o, and

by 3.1, there are orthogonal idempotents e;, i < x, such that P = z e;P. Denote
i<xo

by I, the left ideal of R generated by the sct {e; | i < o} and by .9’: the constant

sequence (Ip | veF).

3.5. Theorem. Let R be a simple countable non-completely reducible regular
ring, let E be a subset of xy, and let g be as above. Then the following conditions
are equivalent:

() Cieorrs

(ii) Ext (Mg 5.9y, N) = 0, for any countably generated module N and any &;

(iii) there is a simple module P such that Ext (Mg . »,), P) = 0.

Proof. (i) implies (ii). An easy generalization of [7, Theorem 2.2].

(ii) implies (iii). Obvious.

(iii) implies (i). Let (h, | v e E) be a sequence of functions from g, to xo. Let e;,
i < 3o, be orthogonal idempotents such that P = ) e,P. Since R is simple and

l<xo
countable, for each i < y, there is a bijection r;: ;P — y,. Define p € Hom (G, P)
by (i) p = (i) hyri! for i < yo and ve F. Since Ext (Mg ., o, P) = 0, there is
a g € Hom (R*", P) such that (g;,) ¢ = (i) h,r; ' for each i < y, and v € F. Define
a function f: y; = xo by of = (e lnv(i)q) r; if there are i < y, and v € F such that
o= nv(i), and af = 0 otherwise. Now, for each v e F, there is a j, < y, such that

l.qe Z e,P, whence e;1,g =0 for all i > j,. Hence, for each ve F and each

isjv

i>j,, we get (’) h, = (giv) qr; = (ei lnv(i)q — € 1v‘1) ry = ("v(i))f, q.e.d.

3.6. Remark. Note that if E is a stationary costationary subset of %, then, for any
05> C(g op Is independent of ZFC 4 GCH (see [4]). If E is not stationary, then, for
any simple module P and any ¢g, the module Mg, +,) is projective, and hence
C(£ o) holds for any gg.

3.7. Lemma. Let k be an infinite cardinal and R a ring such that each left ideal
is k-generated. Let ). > 0 be a cardinal, F = R™,_ and I a submodule of F. Then I
is max (k, 1)-generated.

Proof. We prove the assertion by induction on A. It is clear for A = 1. For 1 <
= A < 1o, let I be a submodule of R**D | = %" Rx,. In fact, x, = (y,, z,), Where

a<pu
Vo€ R™ and z, € R for each & < p. Hence, there is a set A S g such that card (4) <

4



< x and, for each « < p, there are a finite subset 4, = 4 and elements r,; € R,
BeA, such that z, = ) ryzs. Put B = {(y, — Y r,y; 0)|oce(n — A)}. Then
Peda Peda

B U {(y,, z,) | x € A} is a generating set of I. By the premise, B can be replaced by its
subset of cardinality <x. For A infinite (i.e. A a limit ordinal), take a cofinal subset
of ordinals ,, @ < cf (2). Then clearly I = U (I n R”%) and the induction works.

a<cf(i)
Let R be a regular left hereditary ring, F a free module, and I a submodule of F.

Let x be the cardinal such that I is properly r-generated. By [1, Corollary 26.2] and
[3, Proposition 2.14], there are x, €I, o < x such that I = ) Rx,. We can assume

a<k

that F = R for a cardinal § > 0. For k < § denote by &, the k-th natural projection
of Fto R. For B < k put J; =Y Rx,, and for C < 0 put Fc = Y F&. If there is

aeB keC
a finite set C < d such that I = F., we say that I belongs to case 1. If there is a count-

able set C = 4, C = {¢; I i < xo}, such that I € F¢, but I & Fg,, for each n < y,
and C, = {¢; ] i < n}, we say that I belongs to case 2. Further, denote by
SPLIT (I, F, «) the following splitting property: ,,there is a subset A < k such that
card (4) = x and J, is a direct summand of F”. Denote by WSPLIT (I, F, k) the
following (wekaer) splitting property: ,,there is a submodule M < I such that M
is properly x-generated and M is a direct summand of F”. If SPLIT (I, F, ) for any
free module F and any properly x-generated submodule I of F, we write SPLIT ().

3.8. Theorem. Let R be a regular ring such that each left ideal is countably
generated.

(i) If x # %o, then SPLIT (x).

(ii) Let k = yo, let F be a free module and I a properly yo-generated submodule

of F. Then either

(1) I belongs to case 1 and not WSPLIT (I, F, y,), or

(2) I belongs to case 2 and WSPLIT (I, F, y,).
If (2) holds, then SPLIT (I, F, y,) iff there is a subset A = y, such that card (4) = o
and J 4N Fc, is finitely generated for all n < y,. Moreover, if R is not completely
reducible and (2) holds, then both possibilities (i.e. SPLIT (I, F, y,), or
WSPLIT (I, F, 7,) but not SPLIT (I, F, y,)) can occur.

Proof. (i) Take a fixed free module F = R and a properly x-generated submodule
I of F. By 3.7 we have k < max (i, 6). If 1c < y,, then the assertion is well-known
([3, Theorem 1.11]). The rest of the proof of part (i) follows from the next two
lemmas:

3.9. Lemma. Assume xo < k < & and cf () # . Then SPLIT (k).

Proof. We generalize the proof of [6, Theorem I1.3] as follows. Let N be a module.
Let P = Hom (I,N) and 2, = card (P), i.e. P ={p,|7 < Z4o}. For i < z,, put
Aivy = A and let 2 = sup ;. Clearly, cf (1) = xo- Let Ny, i < 70, and N, be as

i<xo



in [6, Lemma IL2]. Then N*/N, is injective, whence Ext (F/I, N*|N,) = 0. Define
feHom (I, N*N,) by x,f = n, + N,, a < K, where n,r, = x,p, if v< Ay, n,m, =
=X, if v=24; 4+, i <y, £ <Xy, and n,m, = 0 otherwise. Then there exist
y.€N* k < & such that (; X6 — ng) €N, for each a < x. For i < x,, put

A;={a <x|(XxLy—n)eN}. Then A; S Ay, i<y and x = U 4,
k i<xo

whence thereis a j < x, such that card (Aj) = K. Put A = A4;. Then for each 1; <
< v < Aand each a€ 4, () x,&y, — n,)n, = 0. Let g € Hom (J,, N). Then there
k

is'a y <y such that p,/J, = g. Put uy = 4; + y. Then for each xe 4, x,g =
= n,m,, = (3 X&) T, Define he Hom (F,N) by 1,h = ym,,, k <. Then
k

Ho>

x,g = xz;h for each ae A. Now, consider the particular case of N =1 and ¢
the canonical inclusion of J, to I. Denote by g; the canonical inclusion of J, to F
and by g, the canonical projection of I to J,. Then 1;, = g;hg,, whence J, = im g,
is a direct summand of F.

3.10. Lemma. Assume o, < x < J and cf (k) = y,. Then SPLIT (k).

Proof. Let (x;|i < o) be a sequence of regular cardinals such that x, = 0,
Xo < Ky, K; < K;41, I < Xo and sup k; = k. By induction on i < y, we construct
sets of ordinals B; < x and C; & g, i < yo such that x; € B; € B;,q, C; = Cjyy,
card (B;) = card (C;) = k;, Jp, S F¢,and J_p,) 0 F¢, = 0. Put By = Cy = K, and
assume that B; and C; are defined for some i < y,. Let Dy = C; U {k < § |3 <
< Kip1: X.E #0}. By 3.7, card (Dg) = K;4;. Assume D; is defined for some j < x,
so that Dy < D; and card (D;) = k;.. Let 2 be the set of finite subsets H = x
satisfying Jy n Fp, # 0 and J. 0 Fp, = 0 for any proper subset H' < H. Using
3.7 it is easy to see that card () = K;4y. Put D;y = D; U {k < | dHe #
Ju € H: x,&, * 0}. Then card (D;, ) = k;.;. Now, it suffices to put C;,y = U D,

J<Xo
and B, = {a < k|x,€Fc,, }. Further, for i <y, put 4; = B;,; — B;. If
i > 0and ae A, then x, = (y,, z,) for some y, € F¢, and z, € F(c,,,-c,. Note that
the elements z,, a € 4;, are independent, as J_p,y N Fc, = 0. If a € 4y, we put
z, = X,. Anyway, it follows from 3.9 that for each i < y, there is a subset A; = A4;

such that card (4}) = k;;, and Z Rz, is a direct summand of Fi¢,, _c,. Now, it
suffices to put 4 = |J 4. zedi!
i<xo

(ii) If I belongs to case 1, then obviously not WSPLIT(I, F, ¥,). Assume I belongs
to case 2. Then the assertion concerning SPLIT (I, F, xo) follows immediately from
the fact that a submodule N of F is a direct summand iff N n F¢,_is finitely generated
for all n < y, (see the proof of [6, Lemma IIL3]). The rest of the proof of part (ii)
follows from the following lemma:

3.11. Lemma. Let I belong to case 2. Then WSPLIT (I, F, %o). If R is not complete-



ly reducible, there exist I, and I, such that SPLIT (I, F, Xo)» and WSPLIT (I, F, Xo)
but not SPLIT (I, F, o).

Proof. Define a set {y; el | i < 7o} as follows. First, Yo = X,. Assume y;, i < n
are independetn for some n < yo. Let j be the least natural number such that

> Ry; = F¢,. Take i < y, such that x; ¢ Fc,. Then there are some u; € F¢, and

0+ v; € Fc_c, such that x; = (u;v;). Let eeR be the idempotent such that
Ann (v;) = R(1 — e) and put y,+; = ex;. Then y;, i < n + 1 are independent and
> Ry; is a direct summand of F¢. Hence, WSPLIT (I, F, xo). To prove the second
i<yo

assertion, consider a set {e,- | i< xo} of orthogonal idempotents of the ring R.
For n < y,, let 1, be the element of R*® such that 1,¢; = 0if i + n, and 1,&, =

= 1. For i < yo, put x; = 3. €;—, 1,. Then I; = R*” and I, = ) Rx; provide the
required examples. nsi i<zo

3.12. Remark. Theorem 3.8 is formulated for the class % of all regular rings such
that each left ideal is countably generated. Clearly, % contains all countable regular
rings. Nevertheless, ¥ contains also all direct limits of countable directed systems
of arbitrary simple completely reducible rings. Hence, % contains rings of ar-
bitrary infinite cardinality.
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