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INTRODUCTION

In this paper we continue the investigation started in [2] As in our first paper on
the Losik cohomology, we work exclusively with objects of class C*. All manifolds
are supposed to be paracompact and Hausdorff, and the terms Lie group and Lie
subgroup are used in the sense of [13, Chap. I, § 4].

To start with, let us recall the definition of the cohomology algebras H,(Z;; &)
introduced in [2]. Let M be a manifold of dimension m, let G be a Lie subgroup
of GL(m, R) and let ¢ be a G-structure on M, i.e. a reduction in the sense of [13]
of the principal GL(m, R)-bundle By = (By, Py, M, GL{m, R)) of all frames on M
to the subgroup G. Let & = &, be the sheaf of all real functions on M, let Z = %'y
be the Lie algebra sheaf of all tangent vector fields on M and let £, be the Lie
algebra subsheaf of Z consisting of all infinitesimal automorphisms of the structure £.

By definition [2, p. 79], a k-cochain of order < r on #,, where r is a non-negative
integer, is an alternating multilinear map

w][[f&L:> &
of vector space sheaves such that the value o(Xj,...,X,)(x), whenever defined,
depends only on the r-jets at x of the vector fields X4, ..., X,. Let Cf,)(éf’g; &) denote
the vector space of all k-cochains of order < r on Z,. Since the usual exterior product
« A B of a k-cochain of order < r and of a I-cochain B of order < risa (k + I)-

cochain of order £ r, the direct sum
Co\Zs &) = k(_'_BO Cr(Zs &)

becomes in this way a commutative graded algebra. On the other hand, the invariant
formula for the exterior differentiation need not in general define a differential
on Cin(Zs &). If, however, the structure ¢ is r-regular in the sense that the function
dy: M = R defined by d,)(x) = dimg J’ Z(x), where J” Z(x) denotes the vector
space Of rjets jX(X) of germs X € Zy(x), is locally constant, this cannot happen

625



[2, Proposition 1.2). Consequently, in this case the exterior differentiation makes
Ci(Ze &) into a differential graded algebra and we define H (& &) as the
cohomology algebra of C(Z,; &). Similarly, if the function d, is locally constant
for all sufficiently large r, then there is a differential graded algebra C(w)(ﬁf’;; &)
of all cochains of locally finite order and H(m)(,i”,:; &) is defined as its cohomology
algebra.

As we have already remarked in [2], in the case of £, = % the differential graded
algebras C(;(ZLg &) and C(,\(L &) can be canonically identified with M. V.
Losik’s algebras B and C respectively, which were intrcduced and studied in [14].

While in [2] it was our main aim to calculate, under the assumption of the re-
ductivity (and connectedness) of G and the I-transitivity of &, the cohomology
algebra H; (Z,; &) in similar ierms as M. V. Losik had calculated H(B), the present
paper is concerned, under the assumption of the infinitesimal homogeneity of the
structure ¢, with sufficient conditions for the bijectivity of the canonical homo-
morphisms ’

Viw Ho( L &) = Ho(L5 )

induced by the inclusion homomorphisms
Vi C(Ze &) = Co(Zes &)

and also, more generally, with the relationship between the algeras H,(Z,; &) and
H (&L &) for 1 <1 < s £ oo, and provides a generalization of [14, Theorem 1],
which asserts that the inclusion homomorphism B (Q C induces an isomorphism
H(B) ~ H(C) of the associated cohomology algebras.

The main results of the paper were announced at the Baku International Topo-
logical Conference, Baku, October 3 to 9, 1987. They are formulated in Section 1,
while their proofs are postponed to Section 4. The remaining two sections are of
auxiliary character. Section 2 contains a brief review of the basic notions and results
of the theory of principal structures of higher order and prolongations of principal
structures which are needed in Section 4, and in Section 3 a result on the invariant
de Rham cohomology of principal bundles is proved, which forms a substantial
part of the theorems 1.14 and 1.15 and may be of interest by itself.

1. MAIN RESULTS

Throughout this section, M denotes a connected m-manifold, G a Lie subgroup
of GL(m, R), g the Lie algebra of G and ¢ a G-structure on M.

1.1. For any point x € M and any integers 0 < r < s, let J; gg(x) be the kernel
of the canonical projection J* Z¢(x) — J* Z¢(x) and, for any point x € M and any
integer r > 0, let ‘

gix) = Jo Ldx), 61dx) = T Ldx).
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Since the r-jet at x of the Lie bracket [ X, Y] of vector fields X and Y with zero values
at x depends only on the r-jets of X and Y at x, gg(x) is a Lie algebra in a canonical
way and g} «(x) is an ideal in g}(x). Moreover, for 0 < r < s the canonical projection
restricts to the homomorphisms of Lie algebras

(1.1) ;: gy(x) - gi(x) »

(1.2) W} 0 81 (x) = g1 o(x).

If the G-structure ¢ is homogeneous, the isomorphism class of the pair (g%(x), g} «(x))
and the isomorphism classes of the homomorphisms (1.1) and (1.2) do not depend

on x. In this case we choose a base point x, € M and write g and g] ; instead of g%(x,)
and g7 (x,), respectively. Finally, let

(1.3) wP*: H*(g}; R) » H*(g3; R),
(1.4) wPy: H¥(gh 5 R) > H¥(g5 & R) .
denote the homomorphisms of cohomology algebras induced by the homomorphisms
(1.1) and (1.2), respectively, let
H*(g¢'; R) = lim H*(g; R), H*(97y; R) = lim H¥(g} 55 R),
and let
wp*: H¥(gy; R) - H*(7; R), opi™: H¥(9) ¢ R) » H*(97 5 R)
be the canonical homomorphisms into the inductive limits.

P

1.2. Theorem. Let 1 < r < s < oo and let us suppose that the structure & is
infinitesimally homogeneous (see 2.5). If (1.3) is an isomorphism, the canonical
homomorphism

(1.5) Vs Hp(Ls &) > H (L &)
is an isomorphism, too.

1.3. Remark. It follows from the Hochschild-Serre spectral sequence for Lie
algebras, see [11] or [7, Chap. XVI, Section 6], that (1.3) is an isomorphism if (1.4)
is an isomorphism. Consequently, we would obtain a weaker theorem if we replaced
the assumption of the bijectivity of (1.3) by the assumption of the bijectivity of (1.4).

We recall that a graded vector space is said to be of finite type if all its homogeneous
components have finite dimensions.

1.4. Theorem. Let us suppose that the structure & is infinitesimally homogeneous
and that M, G and & satisfy one of the following conditions:
(@) M is 1-connected and either dimg Hpr(M; R) < o0 or H*(gZ; R) is of finite
type;
(b) G is connected, & is locally flat and either dimg Hpr(M; R) < o0 or H¥(g7; R)
is of finite type;
(¢) M is compact.
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Then the homomorphisms vy, 4 (1 < r < o) induce an isomorphism

(1.6) Voo %m, Hy(ZLs P) ~ Hoy(Ls F) .

1.5. Remark. The theorem cannot be strengthened by replacing H *(g? ; R) with
H*(g7¢; R) because, by the same argument as in Remark 1.3, if the latter graded
vector space is of finite type, the former one has this property, too.

1.6. Let f: (M, x,) = (R™, 0) be a local diffeomorphism and let v?, ..., v™ be the
coordinate system in a neighbourhood V of x, induced by f from the canonical
coordinate system on R™. Any element a € Jg Z(x,) can be represented in the unique
way by a vector field X = Y7';_, a’v/(9/ov,) on V, where a} are real constants. As-
signing j;o(X) to a we obtain a Lie algebra monomorphism

(1.7) o, Jo Z(x0) = Jo Z(xo) -

1.7. Definition. Let r be a positive integer or co. We shall say that the structure &
is r-infinitesimally flat at a point x, of M, if there is a local diffeomorphism
f:(M, x,) = (R™, 0) such that o, (g{) = gifor 1 <s <r + 1.

We shall say that the structure & is r-infinitesimally flat if it is r-infinitesimally
flat at each point of M.

1.8. Remark. Obviously, if £ is homogeneous then it is r-infinitesimally flat if
and only if it is r-infinitesimally flat at some point of M, and if it is locally flat then
it is oo-infinitesimally flat.

1.9. For an integer r = 1, let 7 denote the representation of the Lie algebra g;
in the cohomology algebra H*(g’l,g; R) which is associated to the exact sequence
of Lie algebras

0-gi:—%a; —»“’“gé—)O,

and let 7, denote the representation of g; in the algebra, H*(g5,; R) which is the
inductive limit of the representations %, 1 < r < oo. Finally, for any integer r = 1
or r = oo, let H*(g} s; R),«=0 denote the invariant subalgebra of the represen-
tation 7.

1.10. Theorem. Let r = 1 be an integer or oo and let us suppose that the following
conditions are satisfied:

(a) the Lie subalgebra g of gl(m, R) is reductive in gl(m, R);

(b) the structure & is infinitesimally transitive and r-infinitesimally flat;

(c) H™°(g%,5 Ry +=0 = 0.
Then the canonical homomorphism

(1.8) Vowt Hy (L &) > Hy(L s F)

is an isomorphism.
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1.11. Corollary. Let r be a positive integer or oo and let G and & satisfy the fol-
lowing conditions:

(a) g contains the unit matrix and is reductive in gl(m, R);

(b) & is infinitesimally transitive and r-infinitesimally flat.

Then the canonical homomorphism (1.8) is an isomorphism.

The remaining part of the section deals with the case of a locally flat structure with
the connected structure group.

1.12. For any positive integer r, let g be the (r — 1)-prolongation in the sense
of the subsection 2.3 of the Lie sublagebra g = gl(m, R), and let gi” be the kernel
of the canonical projection of g™ onto g = g.

For any integers s = r = 1, let us denote by

@y g0 = ¢, @ g - o
(1.9) @y*; H(g®; R) > H*g®; R), @}1: H*(e?; R) » H*(sP; R)
the canonical projections and the corresponding induced homomorphisms of
cohomology algebras, and putting
H*(g*); R) = lim H*(g™; R), H*(s{™; R) = lim H*(g{; R) ,
r r

let us extend the notation of (1.9) in an obvious way to the case of s = co.

Finally, let 97(1 < r < o) be the representation of the Lie algebra g in the
cohomology algebra H*(g([); R) which is associated to the exact sequence of Lie
algebras

0- gl 5gM%"g 50,
let 9% be the representation of g in the algebra H*(g{*; R) defined as the inductive
limit of the representations 9;, 1 < r < oo, and let H*(g{”; R)g . (1 < r < o0)
be the invariant subspace of the representation 9;.

1.13. Remark. Using the isomorphisms g, and g, of the subsections 2.6 and 2.7,
respectively, it can be proved that in the case of ¢ locally flat and G connected there
are canonical graded algebra isomorphisms

H*(g; R) ~ H*(g™; R), H*(9}5 R) ~ H*(g{; R),
the latter of which restricts to an isomorphism
H*(Q;g; R);,,*:o x H*(Q(f)§ R)s,*=o .

For general ¢, however, the cohomology algebras associated to g; and g} . may

differ from the corresponding cohomology algebras associated to g® and g{”.

1.14. Theorem. Let us suppose that the group G is connected, the Lie subalgebra g
of gl(m, R) is reductive in gl(m, R) and the structure £ is locally flat. Then there
exist graded algebra isomorphisms

(1.10) %2 Hiy(Le &) @r H(8V; R)g om0 ® Hi(Les &) (1 <r < 0)
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such that %,(u @ 1) = v} 4(u) for allu e H,(Ly; &) and the diagram

(111) H(])(g‘g; y) ®R H*(g(l')$ R)S(r)"‘=0 =% H(")(yé; ‘9,)
4@ (@5 *)gx=0 | vee
H(Ze &) @r H¥(8Y; R)gery=0 = Hiy(Les &)

where (@5 )¢ is the restriction of @}"*, commutes for any pair r < s.

)=

Combining Theorems 1.4 and 1.14 and using Remark 1.13 we obtain

1.15. Theorem. Let us suppose that the group G is connected, the Lie subalgebra g
of the Lie algebra gI(m, R) is reductive in gI(m, R), the structure & is locally
Alat and either dimg Hpr(M; R) < oo or the graded vector space H*(3™; R) is of
finite type. Then the isomorphisms (1.10) of Theorem 1.14 induce agraded algebra
isomorphism

%ot Hu(L5 ) @r H¥((”; Ry -0 ¥ Hio)(Les &)
such that x,(u ® 1) = vl «(u) for all ue H,(Zs ) and the diagram (1.11)
commutes also for s = oo.
1.16. Remark. It follows from [10, p. 439, Proposition V] and its proof that
H*(g; R) @ H*(a; R);,+=0 ~ H*(g; R) '
for each Lie subalgebra g = gl(m, R) reductive in gl(m, R). Consequently, the as-
sumption of Theorem 1.15 that the graded vector space H*(3'™’; R) is of finite type
is equivalent to the assumption that H*(g{™; R),.__, is of finite type.
We shall conclude this section with a simple example, which shows that the algebra

H>%(g{”; R)s,+=o can be nontrivial and consequently, in view of Theorem 1.14,
the algebras H (L &) and H,(Z;; &) need not be isomorphic.

1.17. Example. Let g = sl(2, R) = gl(2, R). Then g is semisimple and, consequently,
reductive in gl(2, R), and we shall show that

H*(8{"; R)s =0 ~ R[x]/(x%),
where deg x = 2. To this end it is, however, obviously sufficient to prove that
C*(9{); R)s,=0 ~ R[x]/(x*)
because the Lie algebra g{*) = g, is commutative and the differential in C*(g{*’; R)
is therefore trivial.

Let
01 00 1 0
x=(oo) x=(00) =)
be the canonical basis in g, and let us consider the bilinear map
e:R* x R* - R?
defined in the canonical coordinates on R? by the formula e(u,, u,, vy, v;) =

= (u,0,,0). An easy calculation shows that e is a primitive element of weight 3
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of the g-module g{* (with respect to the basis X ., X_, H), and |5, Chap. 8, § I,
Propositions 1 and 2] therefore imply that the elements

(1) o="xe 0snszy
n.

form a basis of g{*) and the g-module structure of g{*’ is given by the formulas
He, = (3 —2n)e,, X_e,= —(n+1)e,.,
X+en = (3 —n+ 1) €i-1>

where ¢, = Oforn > 3 and n < 0.

Now let fo, f1, f2,f3 be the basis of C'(g{>; R) dual to the basis (1.12) of gf*.
It is easy to verify that the g-module structure of C'(g{*’; 1) is described by the
formulas

Hf,=@2n—=3)f,, X_f,=(=1""nf,_,
Xifu=(=1""03 = n)fuss,

where again f, = 0 for n > 3 and n < 0. Using these formulas we find that the sub-
space of g-invariant elements in C*(g{*’; R) is trivial for k = 1, 3 and 1-dimensional
for k = 2, 4, the corresponding generators being elements x = f, A f3 + 3f> A f;
and x A x, respectively. Consequently, C*(g{”; R)s,-o ~ R[x]/(x*), which was

to be proved.

2. PRELIMINARIES ON HIGHER ORDER STRUCTURES
AND PROLONGATIONS

This section is a brief informal review of the notions and results concerning prin-
cipal structures of higher order which we shall need in Section 4 or which occurred
in Section 1. A detailed exposition can be found in [1] and some facts also in [12]
and [15].

We start with some well-known facts concerning the higher order analogues
GL(m, R) of the general linear group GL(m, R) of all linear isomorphisms of R™
and the prolongations g of a Lie subalgebra g of the Lie algebra gl(m, R).

2.1. Groups GL(m, R) (r Z 1). By definition, the underlying set of the Lie group
GL(m, R) consists of all r-jets jo(f) at 0, where f:(R™ 0)— (R™ 0) is a local
diffeomorphism. The group operation is just the usual composition of jets, and the
topology and the manifold structure are derived from the description of jets by means
of partial derivatives. '

For each pair of positive integers s = r there is a canonical surjective Lie group
homomorphism

(2.1) IT; .. GLE(m, R) - GL(m, R) ,
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which to each jet jf)( f) assigns its restriction j{,( f), and for each positive integer r
there is a canonical injective Lie group homomorphism

(2.2) X, m: GL(m, R) » GL(m, R),

which to each linear isomorphism of R™ onto itself assigns its r-jet at 0. The kernel
GL;(m, R) of the homomorphism (2.1) is a closed nilpotent Lie subgroup of GL{(m, R)
diffeomorphic to a Euclidean space, X, , is an isomorphism of GL(m R) onto
GL'(m, R) and, obviously, IT; ,, 0 X ,, = Z, ,, for s > r.

The Lie algebra gl'(m, R) of the Lie group GL'(m R) is isomorphic to the Lie
algebra gl®)(m, R) defined in the next subsection. If u',...,u™ are the canonical
coordinates on R™, a canonical Lie algebra isomorphism

(2:3) Qe 817(m, R) ~ gl'(m, R)

is defined by the formula g, () = [d/dt j&o(f%)]¢=0, Where x € gly(m, R) (1 < k < r)
and f7, l I < g, is a local one-parameter group associated w1th the homogeneous
polynomial vector field X* defined by putting X*(v) = Y7 ; u' o (v, ..., v) 8/ou’ for
veR".

2.2. Lie algebras gl (m, R) (r 2 1). For any positive integer k, let us denote by
gli(m, R) the vector space of all symmetric k-linear maps a: R” x ... X R™ — R",
and define bilinear maps

[ Jc.o: gl(m, R) x gl(m, R) - glyy—(m, R) (k,1=1,2,...)
by the formula

[Ot, ﬁ]k.l(vl’ s vk+l—l) ( 1)' T Z (iB( Vigs ves ll) Vigprr oo vik+l-—1)

Zﬂ( ( 11""’ lk) fe+12 °* " vik+l—1)’

k'(l 1)!
where the sums are taken over all permutations iy, ..., iy4+;—; of the integers

sk +1-1.
The Lie algebra gl (m, R) is now defined as follows: as vector space,

gl”(m, R) = @ gli(m, R),
k=1

and the bracket [«, B] of the elements o € gl,(m, R) and B e gl(m,R) (L < k, 1 <)
is given by the formula [«, 8] = [, B]i,; if k + 1 — 1 < r and by the formula
[, B] = 0 in the opposite case.

2.3. Prolongations of a subalgebra of gl(m, R). The construction of the algebras
gl®”(m, R) (r 2 1) described in 2.2 is a special case of the following well-known more
general construction. Given a Lie subalgebra g of gl(m, R), let us denote by g
(k=1,2,...)the subspace of gl,(m, R)consisting of all elements & such that the matrix
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(with respect to the canonical coordinates on R™) of the linear map v > (v, vz, ..., )
belongs to g for arbitrary v,, ..., v, € R", and put

= G »
k=1

An easy calculation shows that g™ is a Lie sublagebra of gl®)(m, R), which in the
case of r = 1 canonically identifies with g and in the case of r > 1 contains g as
a Lie subalgebra. We shall call this Lie algebra the (r — 1)-prolongation of the sub-
algebra g of gl(m, R), remarking that in the literature this term is usually used for g,.

The rest of the section is devoted to higher order structures and prolongations.

2.4. Frames of higher order. Let M be an m-dimensional manifold. We recall
that an r-frame at a point x € M, where r is a positive integer, is the r-jet at 0 of
a local diffeomorphism from (R™, 0) into (M, 0). The set Bj, of all r-frames on M
can be provided in a natural way with a manifold structure, and there are a canonical
projection pis: By — M, assigning to each r-frame its target, and an obvious right
action of the group GL{(m, R) on Bj. As it is well-known, in this way we obtain
a principal GL(m, R)-bundle over M, which will be denoted by B3 = (Bjs, pirs M,
GL(m, R)).

Obviously, i, can be identified in a canonical way with the usual frame bundle B,
and for any couple r < s of positive integers there is a canonical projection p;
from Bj, to B}, hich commutes with the projections onto M and is compatible
with the projection (2.1) of the structure groups.

For a vector field X defined on an open subset U = M, we shall denote by X®
its natural lift [1, p. 264] to (p},) " (U). We recall that X is defined by means of the
associated local one-parameter group of local transformations in the same way as
in the classical case of r = 1 [13, p. 230] and that this natural lift operation has the
following properties:

(a) X® is invariant with respect to the action of GL(m, R) on Bj;

(b) the map X > X® is R-linear;

(c) [X, Y](r) - [X(’), Y")];

() dp(X®) = X.

One can also easily verify, see [1, p. 266], that the value of X™ at a point
z € (p}y) ™! (U) depends only on the r-jet of X at the point x = pj(2). This immediate-
ly yields that the formula x,(ji(X)) = X®)(z), where x = pi(z) and X € Z'p(x),
defines a vector space isomorphism

(2.4) 1ot " Tn(x) ~ T,BY
which generalizes the isomorphism (5.1) of [2, Section 5].

2.5. Principal structures of higher orders. Now let & = (P, p, M, G) be a principal
structure of order r (or, equivalently, a G-structure of order r) on an m-manifold M,
and let &, be the Lie algebra sheaf of all its infinitesimal automorphisms. We recall
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that by the definition in [1, p. 301] it means that G is a Lie subgroup of GL(m, R)
and ¢ is a reduction of the principal GL(m, R)-bundle B, to the subgroup G.

According to [1, p. 361], the structure ¢ is called infinitesimally homogeneous
if J°%4(x) = T,M for each point xe M. and infinitesimally transitive if
x:(J" Z«(x)) = T.P for each point ze P and x = p(z). Infinitesimal transitivity
obvicusly implies infinitesimal homogeneity and if M is connected then by [1,
p. 361, Proposition VIL.3] infinitesimal homogeneity implies homogeneity:

In view of the canonical identification B} = B, a principal structure of order
one (or a G-structure of order one) is usually called a principal structure (or a G-
structure). We remark that in this case the notion of infinitesimal transitivity coincides
with the notion of 1-transitivity as introduced in [2, p. 81].

2.6. Prolongations of infinitesimally homogeneous principal structures. Let ¢ =
= (P, p, M, G) be a G-structure (i.e. a G-structure of order one) on an m-manifold M
and let us suppose that M is connected and ¢ is infinitesimally homogeneous. In this
case by [1, pp. 367—9] for any positive integer r there is a principal structure & =
= (P", p", M, G") of order r with the following properties:

(a) I17 (G") = G;

(b) P is connected and p M(P’) c P;

(¢) & is infinitesimally transitive;

(d) Lo = L.

These properties characterize the structure &" up to a conjugation. Any such
structure ¢! is called an infinitesimally transitive reduction of ¢ and any such
structure &(r > 1) is called an {r — 1)- infinitesimally transitive prolongation of &.
The total spaces of any two infinitesimally transitive reductions or (r — 1)-prolonga-
tions of & are either disjoint or coincide. This immediately implies that it is always
possible to choose ¢™s in such a way that p} (P°) = P"and I3 ,,(G*) = G"for s > r.

It follows from (d) and from the definition of infinitesimal transitivity that the
Lie algebra g" of G" is isomorphic to the Lie algebra g; introduced in the subsection
1.1. If z € P" is any point over Xx,, an isomorphism

(2.5) 08~ g
can be defined by putting 0,(j5,(X)) = —[(d/dt) (z7" o j5(fT) 0 z)i=0, Where fF,

I |< ¢, is a local one-parameter group of local transformations associated with X
in a neighbourhood of x,.

2.7. Prolongations of locally flat principal structures. The main disadvantage of
the reduction and prolongations considered in 2.6 is the rather implicit character
of their definition. Namely, the spaces P"’s are defined as maximal integral manifolds
of the distributions generated by the natural lifts of infinitesimal automorphisms of ¢.
As a consequence, there is no 1nformat10n about global topological properties of the
structure groups G"’s.

If, however, the structure & is locally flat (and therefore infinitesimally transitive)

634



and G is connected, it follows from the results of [1, Chap. VI and VII] that the
spaces P"’s and the groups G"s can be obtained in the much more explicit and even
canonical way described in [9, Chap. 1, § 8]. If all P* (r 2 1) are defined in this
canonical way, the following assertions hold:

(a) IT; ,(G°) = G" for s > r, %, ,(G) = G" and G' = G;

(b) p;.m(P*) = P" for s > r and P! = P;

(c) the kernel G of the restriction ITj: G" — G' of the projection I}, is a nil-
potent Lie group diffeomorphic to a Euclidean space and, consequently, the
group G" is connected;

(d) the isomorphism (2.3) restricts to the isomorphism

09" & 4,
where g™ denotes the (r — 1)-prolongation, in the sense of the subsection

2.3, of the Lie algebra g of the group G and g" denotes the Lie algebra of the
group G".

3. TWO PROPOSITIONS ON THE INVARIANT DE RHAM COHOMOLOGY
OF PRINCIPAL BUNDLES

The main results of this section are Proposition 3.4 and Proposition 3.6. The former
may be considered as a generalization of [10, p. 439, Proposition V] and the latter,
which is its easy consequence, forms a part of the proof of Theorem 1.14.

Throughout the section, M is a fixed manifold, G® a fixed Lie group with the Lie
algebra ¢’, and & = (P, p’, M, G) a fixed principal bundle over M.

3.1. Let us denote by 2 the following category: The objects of 2 are arbitrary
quadruples

(3.1) of = (&, p}, I}, X))

where & = (P%, p*, M, G*) is a principal bundle over M, ITj: G* > G* and I,
G’ - G* are Lie grcup homomorphisms satisfying the condition ITf o X, = id, and
pi; P P’ is a ITj-equivariant map commuting with the projections p* and p’; the
morphisms of 2 are arbitrary diagrams

(3.2) (p, IT): QF > Q¢

where IT: G* — G%is a Lie group homomorphism satisfying the conditions IT o IT =
= IT{and IT - X, = X, and p: P* » P%is a IT-equivariant map commuting with the
projections p*and p¢; finally, the composition of morphisms is defined in an obvious
way. .

For each object (3.1) of the category 2 let us denote by G} the kernel of the homo-
morphism IT}, by g* the Lie algebra of the group G*, by nf and o, the Lie algebra
homomorphisms induced by IT; and Z,, respectivly, by g} the kernel of the homo-
morphism 7, by 0F the representation of the Lie algebra g’ in the cohomology algebra
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H*(g’,f; R) which is associated to the exact sequence of Lie algebras
(3.3) 0~>gf—>cg“—>"fg”—>0,
and by H*(g}; R)p,+, the invariant subspace of the representation 0.

Similarly, for each morphism (3.2) let 7: g* — g be the Lie algebra homomorphism
induced by IT and (7*)geo: H*(a5; R)g,e=0 — H*(8}; R)g,+—o the homomorphism
induced in an obvious way by 7.

Finally, let us denote by 2, the full subcategory of 2 generated by all objects
(3.1) where the manifold Gj is diffeomorphic to a Eucliedan space and the Lie sub-
algebra ,(g") of the Lie algebra g* is reductive in g*.

3.2. Definition. Let (3.1) be arbitrary object of the category 2. We shall say that
a map s: P’ —» P* is a Q*section if it is Zy-equivariant and pfos = id. We shall say
that a homotopy s,: P* — P# 0 <t < 1,is a Q*-section homotopy if each map s,
is a Q*section.

3.3. Lemma. For each object (3.1) of the category 2 there exists a one-to-one
correspondence between Q*-sections s and G*-equivariant maps q: P* — G}, where G*
denotes the manifold G} considered as a right G*-space with the action *: Gj x G* —
— G} defined by the formula h* g = (2, IT;(g™")) hg. A Q*-section s and a G*-
equivariant map q correspond to each other if and only if z = (s o pi(2)).q(z) for all
z e P¥. An analogical correspondence exists between Q%-section homotopies and
G*-equivariant homotopies from P* to Gi.

Proof. Trivial.

3.4. Proposition. Let (3.1) be any object of the category 2. If the group G’ is con-
nected and the Lie subalgebra a#(gb) of the Lie algebra g¢* is reductive in g*
then any Q#*section s induces in a canonical way an isomorphism

(34) [s]«: Hipr(P"; R) ® H*(a5; R)g,e=0 ~ Hipr(P*; R)
such that [s]y (u ® 1) = py*(u) for all elements u € Hipg(P’; R).
The isomorphism (3.4) depends only on the Q*section homotopy class of the
section s and is natural in the sense that the diagram '
Hipp(P’; R) @ g H¥(g$; R)gpeeo =" Hipr(PS; R)
id@(ﬂ‘)e*:ol l p*
Hippr(P’s R) ®g H*(g}; R)o,e—o -0 Hypp(P; R)

commutes for every morphism (3.2) whenever the homomorphisms [s(]« and [s,]«
are defined and the Q*-sections p o s, and s¢ belong to the same Q%section homotopy
class.

Proof. Let q: P* — G} be the G*-equivariant map corresponding to s by Lemma
3.3. Since the DG-R-algebra A,(P*; R) is commutative, the DG-R-algebra homo-

morphisms
pi*: AP’ R) > AP R),  q*: A((G}; R) — A,(P*; R)
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induced by the G*-equivariant maps p; and g, respectively, induce a DG-R-algebra
homomorphism

(3-5) ¥ A q*: Af(P"; R) Qg A(G}; R) > A(P*; R)

which in turn induces a homomorphism (denoted by the same symbol)
(3.6) yr A gt HIDR(P"; R) ®Or HIDR(G.:; R) - HIDR(P“; R)
of graded algebras.

The group G acts on G} from the right by means of the Lie group automorphisms I ¢
defined by putting I,(h) = Z,(¢9~") h Z,(g) for all elements h € G} and g € G". Let O,
denote the representation of the group G” in the DG-R-algebra A4,(G}; R) which is
induced by this action, and let 4,(G}; R)g,=:a be the associated DG-R-subalgebra
of invariant elements. Since the group G*is generated by the subgroups G’; and E,,(G"),v
it is easy to see that

(3.7) A/(G}; Roy=1a = AG3; R).

Let C*(g}; R) be the usual DG-R-algebra of alternating forms on gj. As it is well
known, the formula X(e) = — Y(e), where X is a left invariant vector field on Gj, Y is
a right invariant vector field on G¥ and e is the unit element of the group Gi, defines
an isomorphism of the Lie algebra of left invariant vector fields on G} onto the Lie.
algebra of right invariant vector fields on Gf. Using this elementary fact, it follows.
immediately from [8, p. 99, Theorem 10.1] that there is a unique isomorphism of
DG-R-algebras
(3-8) ©: C*(g}; R) ~ A4,(G}; R)
such that 7(x), = (—1)* « for each alternating k-form o on g = T,G}.

Composing o, and the adjoint representation of the Lie algebra g* in the ideal
g} = g* we obtain a representation of the Lie algebra g’ in g}, which in turn induces
a representation 0, of g’ in the DG-R-algebra C*(g’,f; R). Let us denote by
C*(af; R)y,—o the associated DG-R-subalgebra of invariant elements and return
to the right C’-manifold G} considered above. An easy calculation shows that the
associated fundamental vector fields are of the form (X,,u) — Y,,#(a))lcg, where
X o4 18 aleft invariant and Y, is a right invariant vector field on G* determined
by the image a,,(a) in g* of an element a € g. Since the Lie bracket of a left invariant
and a right invariant field on a Lie group is always zero field, it follows from [9, p.
126, Proposition VI] that an element B € A}(G}; R) is O,-invariant if and only if

k
.;/3(1/1, oo [Yopw|oz: Yils oo i) = 0

for arbitrary right invariant vector fields Y;, ..., Y; on G} and for arbitrary element
aeg’. Consequently, an element o€ C*(g}; R) is O,invariant if and only if its
image () in 4,(G}; R) is @,-invariant, and (3.8) restricts in view of (3.7) to an iso-
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morphism
t: C*(g}; R)y,—o = A(G}; R)
of the associated subalgebras of invariant elements. Let
Tyl H*(C*(gﬁ; R)y,-o) ~ H pr(GF; R)
be the induced isomorphism of the associated cohomology algebras.

Finally, since the Lie subalgebra o,(g’) of the Lie algebra g* is reductive in g*,
it follows from [3, p. 33, Corollaire 1] and [4, p. 83, Corollaires 1 and 3] that the
representation 0 of ¢” in C*(gf; R) is semisimple, and therefore by [10, p. 170,
Theorem IV], the inclusion map v: C*(gf; R)y,—o = C*(a}; R) induces an iso-
morphism

Vit H(C*(83; R)oy=0 ~ H*(85; R)gys-0

of the associated cohomology algebras. We now show that the composition

[S]* = (p:'* AN q*) o (ld ® ‘t*) o (ld ® (V*)—l)
is bijective. Since the naturality of [s]* in the sense described in the proposition is
obvious, this will complete the proof.

By the construction of [s], and the Kiinneth formula, it is obviously sufficient
to prove that (3.5) induces an isomorphism of the associated cohomology algebras.
To this end, let us define sheaves &Z,(¢ = # or ») and o/ by putting

#(U) = A((p°)"*(U); R) for U <= M, U open,

o = o, @r A(G}; R)
and extend in an obvious way the homomorphism (3.5) to a DG-R-algebra sheaf
homomorphism

d): o — Jg# .
Obviously, the sheaves o/ and ./, are fine as modules over the fine sheaf &, and the
homomorphism ¢y: (M) — /(M) is nothing but the homomorphism (3.5).
Consequently, by [6, Chap. IV, Theorem 2.2] it is sufficient to prove that the induced
homomorphism

Gz H(A) — H(ly)
of the associated cohomology sheaves is a sheaf isomorphism.

For arbitrary points x € M and z € (p") ™" (x), let us define maps

it.G > P, i G > P
by putting

it (9) =s(z)g for geG*, i},(g9)=z9 for geG’.
Each map i} (e = #,v) is obviously G*equivariant and it follows easily from the
connectedness of G’ that the induced homomorphism

(3.9) i*: #(oA,), — Hipr(G R)
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does not depend on the choice of z in (p°)~! (x). Moreover, [2, Lemma 4.5] implies
that (3.9) is an isomorphism.
Now let us consider the diagram
-%(db)x ®r HIDR(G:§ R) -7 ‘%(d#)x
i*®id | | &*o(d0x

HIDR(GI’; R) ®r HIDR(G";; R) — I3 ATE Hu)R(G”; R)
where x is an arbitrary point of M, the cross product X is an isomorphism by the
Kiinneth theorem and I'y: G* — G} is the G#-equivariant map associated by Lemma
3.3 to the homomorphism X,, and the diagram

H*(9"; R) @ g H*(g}; R)gezo —75" 278 H*(g% R)
T, @F0(vy) ™1 l l TH,% 5

HIDR(G‘,; R) Qg HIDR(G:; R) — I3 ATE HIDR(G#; R)
where 7, , and 7y 4 are defined in the same way as 7 and y;: g* — gf is defined by the
formula 9,(u) = u — 0,0 mj(u) € g}. Both these diagrams are easily checked to be
commutative, and since x is an arbitrary point of M, we see that ¢, is a sheaf isomor-
phism if and only if 7f"* A yF is an isomorphism. This, however, immediately
follows from [10, p. 439, Proposition V] and its proof.

3.5. Lemma. If for an object (3.1) of the category 2 the kernel G} of the homo-
morphism IT} is diffeomorphic to a Euclidean space, then Q*-sections exist and any
two are related by a Q*-section homotopy.

Proof. Let G,. It is easy to see that Q%sections are in one-to-one correspor.dence
with reductions &, = (P,, p,, M, G,) of & such that P, = P% Consequently, both
the assertions of the lemma follow immediately from the well known properties
of reductions of principal bundles, see e.g. [13, pp. 57 and 58].

Combining Proposition 3.4 and the preceeding lemma, we obtain the main result
of this section (at least from the point of view of our proof of Theorem 1.14).

3.6. Proposition. Let us suppose that the group G’ is connected. Then for each
object (3.1) of the category 2, there exists a canonical graded algebra isomorphism

A HIDR(PI,; R) ®r H*(g”; R)93.=0 =~ H,DR(P“; R)
satisfying the condition
Mu ® 1) = p;™(u) for all elements u e Hipg(P’; R)

and natural with respect to the morphism of the category 2,.

4. PROOFS OF THE MAIN RESULTS
Everywhere in this section, M denotes a connected m-manifold, G a Lie subgroup

of GL(m, R), g = gl(m, R) the Lie algebra of G and & = (P, p, M, G) an infinitesi-
mally homogeneous G-structure on M.
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4.1. By the subsection 2.6 there is a sequence of principal fibrations
(4.1) &=(P,pMG) (r=12,..)
with the following properties:
(a) &' is an infinitesimally transitive reduction of &;
(b) & (r < 1)is an (r — 1)-infinitesimally transitive prolongation of &;
(¢) p}m(P?) = Prand IT; ,(G*) = G" for s > r, and P' < P, G' = G.
Let us suppose that such a sequence has been chosen once for all, write g" for the Lie
algebra of the group G" and, for any pair s > r, denote by
piPP—-P, II:G° -G, n:6°—>¢
the restriction of the projection pj s, the restriction of the projection II; ,, and the
Lie algebra homomorphism induced by the projection I}, respectively.
For any positive integer r let us define DG-R-algebra sheaves ¢, and €,, over M
by putting
(V) = 4((¢)" (UL R), Go(U) = Co(Ze| U: #| V)
for each open subset U of M, and for any positive integers s > r let us denote by
¢:: 'Mr - "Q{s ’ V;Z (6(') - (g(s)
the DG-R-algebra sheaf homomorphism induced by the projection p; and the
canonical inclusion, respectively. Finally, for any positive integer r let
¢';02Mr_’doo’ v’;o:%(r)_)(g(w)
be the cnonical homomorphisms into the inductive limits
'Moo = l_imdr’ (g(oo) = l_im..(g(r)

of the resulting inductive systems.

4.2. Lemma. The formula
(”r)U (a> (Vl’ LS VL) = “X(X;I(Vl)a RS Xz_ I(Vk)) ]

where r > 0 and k = 0 are integers, U is an open subset of M, o e‘g(‘,)(U), xeU,
ze(p)™ ' (x), Vi, ..., Vi€ T.P" and y, is the isomorphism (2.4), defines isomorphisms

(4.2) we={()}: €= AL, (r=12,..)
of DG-R-algebra sheaves such that the diagram
(4.3) Cy =" A,
vir ] (K%
Cs —" A

commutes for any pair s > r of positive integers. Consequently, the isomorphisms
(4.2) induce a DG-R-algebra sheaf isomorphism

Pt Gy ® A o

and the diagram (4.3) commutes also for s = oo.
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Proof. The lemma generalizes [2, Lemma 5.2] and is proved in the same way.

4.3. Lemma. There are graded algebra isomorphisms
(V)s: #(A,). ~ H¥(g; R) (xeM, r=1,2,..., )
with the following properties:

(2) The diagram

%(Mr)x 5 Wr)x H*(gg; R)

H(PsMx | Lors*

W(Ms)x 5 Ws)x H*(gé; R)
commutes for any pair s > r.

(b) If the group G is connected, the isomorphisms (,), (x € M) define a graded
algebra sheaf isomorphism
(4.4) Y. H(,) = M x H¥(g}; R)
where M x H*(g}; R) denotes the constant sheaf over M with the stalk H*(g}; R).

(c) If the group G is connected for all sufficiently large integers r, the isomor-
phisms (4.4) with r sufficiently large induce an isomorphism

Voi H(A ) ® M x H¥(g?; R)
of graded algebra sheaves.

Proof. Obviously it is sufficient to prove the existence of isomorphisms (¥,),
(xeM, r =1,2,...) with properties (a) and (b). To this end, for each point x € M
and for each positive integer r let us choose a point z € (p") ™! (x) in such a way that
pi(z3) = z% for s > r, and define G"-cquivariant diffeomorphisms
(4.5) iG> P (xeM, r=1,2..)
by putting i%(g9) = zkg for g € G". The diffeomorphisms (4.5) obviously induce
a graded algebra homomorphisms
(4.6) % (), > Hipe(G's R) (xeM, r=1,2,..),

and it follows easily from [2, Lemma 4.5] that these homomorphisms are in fact
isomorphisms. Let us put

(o)e = o te o 177
forallxe Mand r = 1,2, ..., where 7; ! is the inverse of the canonical isomorphism
(4.7) T4t H*(g"; R) ~ Hpr(G"; R)
(described in the case of the group Gj in the proof of Proposition 3.4) and Q;xo
- is the isomorphism induced by the Lie algebra isomorphism (2.5) with z = z}.
With this definition, the property (a) is obvious and the property (b) is easily seen
to follow from the homotopy axiom for the invariant de Rham cohomology and from

the independence of the isomorphisms (4.6) and . (r = 1,2,...) on the choices
of the points z} (xe M, r =1,2,...) and z (r = 1,2,...), respectively. This in-
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dependence is, however, an easy consequence of the connectedness of the group G',
of the homotopy axiom for the invariant de Rham cohomology and of the canonical
isomorphism (4.7) because a different choice of the points z} (xe M, r = 1,2, ...)
leads to diffeomorphisms which can be obtained from the diffeomorphisms (4.5)
by composing these with certain left translations of the group G", and a different
choice of the points z§, (r = 1,2,...) leads to isomorphisms which differ from the
isomorphisms g, by certain inner automorphisms of the Lie algebra g" (induced
by certain inner automorphisms of the group G).

4.4. Proof of Theorem 1.2. Obviously, the DG-R-algebra C(,,(Z,; &) canonically
identifies with the DG-R-algebra €, (M) and the sheaf &, is fine as a module
over the fine sheaf &, forr = 1,2, ..., 0. By virtue of [6, Chap. IV, Theorem 2.2]
it is therefore sufficient to show that the homomorphism

H(vy): H(€ ) > H(C )

of the associated cohomology sheaves induced by v} is an isomorphism. This, however,
immediately follows from Lemma 4.2 and Lemma 4.3.

4.5. Proof of Theorem 1.4. If the manifold M is compact, the conclusion of the
theorem is trivial because obviously

C\Zs ) = 91 Co(Zs &) =1lim Cy (L5 &)

We shall therefore assume in the remaining part of the proof that M, G and & satisfy
one of the conditions (a) and (b) of Theorem 1.4.

We shall make use of the first spectral sequence of a differential sheaf constructed
in [6, Chap. IV, Section 1] and, with obvious modifications, of the notation and
terminology introduced in [2, Subsection 3.3]. It follows from the functoriality of
this spectral sequence and from [6, Chap. IV, Theorem 2.1] that there is an inductive
system over the naturally ordered set {1, 2, ..., o0}, the objects of which are diagrams

tr,0
{Er,k’ dr,ka Lr,k}k;Z = Hr rel. FHr s

where
E}§ = H(M; #%(% )
H, =H,(%59)
forre {1, 2,0 oo} and all integers p and ¢, and the morphisms of which are com-

mutative diagrams

{Er,k’ d, ks ‘r,k}kgz ='~=H, rel. FH,

] o ’
{Es,k’ 2 ‘s,k}kgz ='s2 H  rel. FH,

where 1 £ r £ s £ oo, the homomorphism &, is induced by the sheaf homo-
morphism #(v;) and v} , is the homomorphism (1.5) of Theorem 1.2. This inductive
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system clearly induces a commutative diagram
{Et, di» te}iz2 == H rtel. FH

£ ] Lve,s
{Eoo,k’ do s ‘m,k}k;z ='=«H_ rel. FH,,

where the first row is the inductive limit of the restricted inductive system with the
index set {1,2, ...} and the homomorphisms &, and v,, , are induced by the homo-
morphisms &}, and v/, , (1 < r < o), respectively. Consequently, the theorem will
be proved if we show that

(48) e it lim H¥(M; (%)) = H M #%(€ )

is an isomorphism.

It follows from the homotopy exact sequence of a fibration in the case (a) and from
the subsection 2.7 in the case (b) that all the groups G', G2, ... are connected.
Further, it is well known, see e.g. [6, Chap. III, Section 3, Exercise (8)], that the
sheaf cohomology H*(M; M x A) and the singular cohomology H(M; A4) are
naturally equivalent as functors on the category of abelian groups. Consequently,
Lemmas 4.2 and 4.3 imply that (4.8) is an isomorphism if and only if the same is
true for the homomorphism

P 11m H(M; H*(g%; R)) » Hx(M; H*(g7; R))

induced by the homomorphisms oP: g7 - g5 (r = 1,2,...) defined in the subsection
1.2. This, however, follows from the commutative diagram

lim H(M; R) @ g H*(g%; R) »* H(M; R) ®g lim H*(g}; R)

r B l lﬂz r
11m H(M; H*(g%; R)) - H%(M; H*(g7; R))

where o denotes the well-known canonical isomorphism, because the universal-
coefficient theorems for cohomology [16, Chap. 5, Sec. 5, Theorems 3 and 10] and
the finiteness condition on Hpp(M; R) ~ Hx(M; R) and H*(g?; R) ~ lim H*(g}; R)
imply that not only the canonical homomorphism f; but also the canonlcal homo-
morphism f, is an isomorphism.

4.6. Lemma. Let r be a positive integer and let f: (M, x,) - (R™, 0) be a local
diffeomorphism such that Lie algebra homomorphism (1.7) associated to f satisfies
the conditions o, [(9;) = 6% and z" = jo(f ') e P".

If the Lie subalgebra g of gl(m, R) is reductive in gl(m, R) and the structure & is
infinitesimally transitive then the Lie subalgebra o, f(g,;) of the Lie algebra g;
is reductive in gf.

Proof. It is easy to see that there is a commutative diagram of Lie algebras

(4.9) g: 27" g' =< gl(m, R)
or fl lar ~ l@r m
9% "g" —° gl'(m, R)
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where z' = p}(z"), ¢' = g, 0,: and ¢, are the isomorphisms defined in the subsection
2.6, 0, is the isomorphism (2.3) of the subsection 2.1 and o, is a restriction of the
Lie algetra monomorphism
6, m: 8l{m, R) > gl'(m, R)

induced by the Lie group monomorphism (2.2). It follows from this diagram that the
adjoint representation of o, f(gg) in g; is equivalent to the adjoint representation of g
in ¢, (g"). Consequently, it suffices to prove that the Lie subalgebra g of ¢, .(g")
is reductive in g, 4(g").

By [3, p. 33, Corollaire 1], all submodules and quotient modules of a semisimple
module are semisimple modules, and by [4, p. 83, Corollaires 1 and 3], any finite
tensor product of semisimple finite-dimensional representations and the dual of
a finite-dimensional semisimple representation of a Lie algebra are semisimple
representations. Since, obviously, the canonical representation of the Lie algebra
gl(m, R) in the vector space R™ (let us denote it for the moment by ) is simple and
the adjoint representation of gl(m, R) in gl*”(m, R) is a subrepresentation of the
direct sum of the tensor products of the representation ¢ with the k-th tensor powers
(k =1,2,...,r) of the dual (contragradient) representation ¢*, it follows from the
results just referred to that the adjoint representation of 'gl(m, R) in gl”(m, R) is
semisimple. By [3, p. 84, Corollaire 1], the same holds for the adjoint representation
of g in gl®’(m, R) and therefore, by [3, p. 33, Corollaire 1], also for the adjoint
representation of g in g, »(g"), which proves that g is reductive in ¢, ,(¢") and com-
pletes the proof of the lemma.

4.7. Proof of Theorem 1.10. We shall restrict ourselves to the case of r = oo leaving
the simpler case of finite r to the reader. By Theorem 1.2 it is sufficient to prove that
the homomorphism
(4.10) o?*: H*(gf; R) - H*(g%; R)
is an isomorphism.

Let f: (M, x,) — (R™, 0) be a local diffeomorphism having the property required
by Definition 1.7. As it easily follows from the subsection 2.6, we may suppose that
the sequence (4.1) has been chosen in such a way that z° = j§(f ™) for all positive
integers s, in which case Lemma 4.6 implies that, for the same values of s, the Lie
subalgebra as,f(gé) of the Lie algebra g; is reductive in g; and, moreover, g, , =
= w}o 0, if s < t. Consequently, we may apply [10, p. 439, Proposition V] and
its proof, from which it follows that the Lie algebra monomorphisms o, (1 < s < )
determine graded algebra isomorphisms

(o014 H¥(35; R) @ H¥(81,55 R)yr0 ~ H¥(g5 R) (1 <'s < o0)
such that [o, (]« (4 ® 1) = w}*(u) for any element u € H*(g;; R) and the diagram

H*(ggl; R) ®r H*(Qsl,§§ R),.s=0 ENCAGHN H*(QE; R)
id@(a)sh*)"t=0l lw,r,‘ >
H*(gé; R) ®r H"‘(g‘l & R),“.=0 Sloesl H*(gé; R)
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where (@!*),+=0 is a restriction of w}™*, commutes whenever 1 < s < t. In other
words, we have an inductive system in the category of Lie algebra homomorphisms.
Since its inductive limit is an isomorphism

[00,,]+: H*(g;; R) ® g H¥(87 s R),_«—0 ~ H*(3?; R),

the condition (c) of Theorem 1.10 implies that (4.10) is an isomorphism, which
completes the proof.

4.8. Lemma. If a Lie subalgebra g of the Lie algebra gl(m, R) contains the-unit
matrix, any g-submodule V of gl"}(m, R) is homogeneous, i.e. V= @& V A gl,(m, R).
k=1

Proof. Letse{1,2,..., r} and let o, € gl,(m, R) (1 < k < s) be arbitrary elements
such that o; + ... + a;€ V. We need to prove that all the elements oy, ..., &, belong
to V. This, however, follows by induction on s because an easy calculation shows
that the unit matrix ¢ satisfies the equation

[e,a] + (s — 1)« =:Z;:(s—— k)a;.

4.9. Proof of Corollary 1.11. Since by Theorem 1.10 it is sufficient to prove that
H”%g} ¢ R),.«=0 = 0, we may restrict ourselves to the case of finite r.

Let C*(g} ¢ R) denote the usual DG-R-algebra of alternating forms on gj .,
and let f: (M, x,) — (R™, 0) be a local difffomorphism satisfying the conditions of
Lemma 4.6. Composing o, , and the adjoint representation of the Lie algebra g
in the ideal g . we obtain a representation of the Lie algebra gé in g} . or, equivalently,
a gé-module structure on g} .. This representation further induces a representation 7,
of gé in the DG-R-algebra C*(g’l & R), which in turn induces the representation 11:"
of g} in the graded algebra H*(g} ;; R) considered above.

Since by Lemma 4.6 the Lie subalgebra o, f(gé) of the Lie algebra g is reductive
in g, it follows from [3, p. 33, Corollaire 1] and [4, p. 83, Corollaires 1 and 3] that
the representation #, is semisimple, and therefore by [10, p. 170, Theorem IV]

H(C*(g},6 R)y,=0) ® H¥(91 &5 R)y =0 »

which shows that it suffices to prove that C”%(g} s R),.-o = 0.

Let e be the inverse image under the isomorphism g,: of the unit matrix. It follows
from Lemma 4.8 and the commutativity of the diagram (4.9) that the g;-module gj ;
splits into the direct sum of submodules V,, ..., V, such that

ea = [0, [(e),a] = —(s — 1)a for aeV,, and s=2,..,r.

It follows that
k
nde) (@) (ay, ..., ay) =.Zl(s,- — 1) ofety, ... @)
for any homogeneous element a € C*(g] ¢; R) of degree k > 0 and for any elements
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1 € Ve s ai € V,,. This formula, however, immediately implies that #,(e) (o) # 0

for o % 0. Wthh completes the proof.

4.10. Proof of Theorem 1.14. We may obviously suppose that the sequence (4.1)
has been chosen in accordance with the subsection 2.7. Let r < 1 be integer. By
Proposition 3.6 there exists canonical isomorphism

Ayt HIDR(Pl; R) ®gr H*(a; R)a,*:o ~ Hpp(P"; R)

such that A,(u ® 1) = p7*(u) for all elements u € Hypp(P'; R), and by Lemma 4.2
there is a canonical isomorphism

(H)ms: Hof(Zes &) = Hipr(P'; R) .

Further, the isomorphism g, of the subsection 2.7 induces an isomorphism g, ;:
9\ ~ g} and the induced isomorphism of cohomology algebras

of1 H¥(g1; R) =~ H*(g{"; R)
obviously restricts to an isomorphism
5ot H¥(91: R)or=0 & H¥(8P; R)ye—g

of the invariant subspaces of the representations 6F and 87, respectively. It is easy
to verify that the compositions

# = (s o 2o (id ® (0)0)7") (1 <r < )

have all the required properties.
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