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PERIODIC DERIVATIVE OF SOLUTIONS TO NONLINEAR
DIFFERENTIAL EQUATIONS

JAN ANDRES, Olomouc

1. The problem from the title was worth mentioning for the first time in H.
Poincaré’s celestial mechanics investigation [1, p. 80].

Over the years, an increasing attention has been paid to the study of this type of
solutions, called here D-periodic (derivo-periodic) solutions (cf. [2]), to many
(mostly pendulum-type) equations modelling various processes in astronomy [3],
engineering [4] or laser physics [5]. For the precise derivation of the related pen-
dulum-type equation and the meaning of the technical parameters as well as its
D-periodic solution see e.g. the last cited number. In all of these contributions only
autonomous equations have been treated. However, much more actual situation
appears, when some perturbation forces are included. That is why M. Farkas has
developed a technique [6], [7] allowing him to consider nonautonomous equations
involving a small parameter as well. More concretely, assuming the existence of
D-periodic solutions to the autonomous equations, he established the sufficient
conditions for the existence of those to the perturbed (nonautonomous) equations.
A natural question arises (cf. [8]), whether the existence of such solutions can be
ensured for the (D-)periodically forced equations, not necessarily involving a small
parameter.

The purpose of this paper consists of an attemption to reply this question for the
general equation of the n-th order (n > 1) via a D-periodic boundary value problem
and to discuss the troublesome difficulties connected. Since the topological degree
theory represents one of the most effective tools for attacking the similar problems
for pure periodic oscillations, we are using the degree arguments close to [9] applied
to the Levinson operator, of course under an appropriate modification.

2. Hence, consider the following boundary value problem (n > 1)
(1) X = f(t,x, X', X" (=f(t+ 0, x + o, X, ..., x"7D)),
() x(0) — x(0) — w = x0) — xP0) =0 (i=1,2,...,n—1),

where feC(R"* ') satisfies locally the Lipschitz condition with respect to (x, x’,...,x"™")
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and 0, @ are the positive reals. It is well-known that the continuous dependence
on initial values and the uniqueness of solutions x(¢) of the Cauchy problem (1)—(3).
where

(3) x90) =xy (j=0,1,....,n—1),
is guaranteed in this way, as far as they exist.
As we have already mentioned, we apply the following modified Levinson operator
(x(u0; Xo) — xo — o, x'(u0; X,) —
T,(X,) := < = Xpy orer XTI (ub; Xo) — x§D) 0 for pe(0,1),
(x5 X5s - £(0, X9, X4, ..., x§™) for pu=0,

in order to prove the solvability of (1)—(2,), where

(2,) x(uh) — x(0) — pPw = xV(ud) — x(0) =0 (i=1,2,....,n—1)
(obviously, (2,) reduces to (2) for u = 1, otherwise p e 0, 1)), where x(t; X,) :=
:= x(t; 0, Xo, Xg, ..., xg'~") is a solution of (1)—(3). Since the only further pre-
sumption is the existence of all solutions of (1)—(3) on the whole interval <0, ).
it is well-known that the mapping T,‘(XO) is a homeomorphism and thus we are
interested in the existence of some invariant set I < R", symmetrical with respect
to the origin O such that ker Tj(clI) exists. Let us note that the required existence
of solutions on <0, 8) will be satisfied automaticaily by the final restrictions due to
the a priori estimates technique employed (a linear boundedness of the right-hand
side of (1)) and therefore it can be practically omitted.

3. Proposition. If there exists an open set I = R", symmetrical with respect to
the origin O, such that

) T(X,) * O
and
(5) f(0,x,0,...,0) % (1 — v) (0, —x,0,...,0)

hold for all X, € dI (a frontier of I), independently to u,v e (0, 1), then problem
(1)—(2) admits a solution. '

Proof. It is clear that (1)—(2) is solvable iff T;(X) = O for some X ecll. To
show this, an essential degree argument (see e.g [10, p. 20]) reads Ty(X,) * O
jointly with d[ T, I, O] # 0, where ,,d” denotes the Brouwer degree (in the opposite
case there is no point to prove).

Assuming (4), T,(X,) represents a homotopical bridge between T;(X,) and To(X,)
and thus d[T, I, O] # 0 is enough to assume instead of d[Ty,I, O] % 0 for the
same goal with respect to the invariance [10] under homotopy.

Applying the Borsuk antipodal theorem [10, p. 24], saying that d[Ty(X,) —
— To(—Xo), 1, O] * 0, we can still replace the last requirement by the condition

(6) To (Xo) 1= To(Xo) — (1 — v) To(—X,) £ O for ve(0,1)

by the same reason (i.e. T, (X,) is a homotopical bridge between the operators
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To.o(Xo) 1= To(Xo) — To(—X,) and Ty (X,) := To(X,)). However, (6) is implied
by (5) for X, € 0I immediately. This completes the proof.

Remark 1. The assertion of the above statement remains obviously valid if (4)
is reduced to an assumption of the uniform a priori boundedness of solutions x(f)
€ (1)—(2,), independently to pe(0, 1), jointly with their decivatives up to the (n—1)-th
order including and (5) is replaced by

£(0,%,0,...,0) _ (0, ~x.0,...,0)
|7(0, x,0,...,0)|  |f(0, —x,0,...,0)|

for £(0, x.0,...,0) & 0 where |x| > R ... a sufficiently large constant or

(5 lim inf £(0, x, 0, ..., 0) sgn x > 0 v lim sup f(0, x, 0, ..., 0) sgn x < 0.
|x]= o0 [x] =
Assuming furthermore the existence of a positive constant @ such that
(7) flt,x + o, x, . x" D) = ft,x,x', ., xD) + Qi x,x, ..., x"7),
where

|Q(t + 0,x,x', .. .x"" V) = |Qt, x,x,...x"" V)| =
=|Qtx + o, x, ... x" V)| =Q
(=f(t+06,x.x,...x""V)=
=f(t,x, x', ... x"7Y) = Qt, x, x', .., x"TD))
we can give
Lemma. If there exists a constant D,_, estimating (_n — 1)-th order derivatives
of all solutions to (1)—(2,), independently to pe (0, 1), then (4) holds.
Proof. In view of Remark 1, it is enough to prove the uniform a priori boundedness

of solutions x(t) € (1)—(2,), re€(0,1), together with their derivatives up to the
(n — 2)-th including. Let x(r) be a solution of (1)—(2,). Letting

(8) x(f) 1= xo(t) + x; + u %) t,
L[ L2
9) X, 1= ;(SJ‘O x(r)dt — o,
(10) [xo(1)]] 1= max |xo(1)]
1€¢0,10

and using the Wirtinger-type inequalities (cf. [11]. [12, p. 184])

s (o5 ] - w3
and
[P rs s [ Lo ™o
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uo . ue 2 no . 2

Xy de < () | X 0n)de + (1 - sga (i - 1) 10 2

0 27 0 0
(i=1,2,...,n_1)’

we arrive for n > 1 at the relations

2m(\/3) m-— 1

(0<m=n)
and

NO (RO)*™D" [ (a2 v
I A e e 1 L

+(1—sgn(i - 1)),%’ O<ks<n—ii=12...,n-1),
respectively.

So we obtain
Q n—1 x(n—l)(t)“ Q n—1 Dn—-l .
(13) HXO f)“ = ( 2) (\/3) nn—z é <2> (\/3) nn—-2 T DO ’
n—i—1 (n—1)

(14) x| = ( 2) (szg) 0L 4~ g i DI

) n—i—1 Dn—l _ L 9‘= )
< (5) ot (s =)=
(i=1,...,n-2).

A

Taking x(0) (= x¢(0) + x,) = rw + s with a great enough integer r and a real s
with |s| £  (cf. (8)), one can get not only (cf. (7)—(10))

S(t, xo(1) = x4(0) + u;—o t+s,

x(t), ..., xX"7O) + rQt, x(1), X'(1), ..., x" (1)),
but also (cf. (13), (14))

(15)

ué
[ F(txo0) = 50(0) + 15 £ 5, X (O 2070 di +
0

>

+r J”e Qt, x(t), x'(1), ..., x" V(1)) dt

>

ero Qt, x(1), x'(1), ..., x" V(1)) di| —
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2

J‘Mf(r, xo(t) — x0(0) + ug t+ s, x'(t). ..., x"" (1)) dt

E

> u@[]rQl - “ f(t, xot) = xo(0) + 12 14 5. ¥ (0 w—nm)

> pf[|rQ| - max £t x, %', x®" )] > 0,
1€{0,0),|x| £2(Do+ ),
%D £Di,i=1,..,n=1

a contradiction to
1o
J 100, x(1), X (1), ., X0 D(B) dt = 0
0

because of the substitution x(t) into (1) and the integration of the obtained identity
from 0 to u6.
Therefore such a constant
R:=2 max [f(t, x, x, ..., x"= D))
Q 1e¢0,0),|x| S2(Do+ ),
|x()|<D;,i=1,...,n—1

certainly exists (cf. the last inequality in (15)) that |x(0)| < R + w, and consequently
(cf. (8))

(16) [x(0)] = 2|xo(r)] + |x(0}] + @ £ 2Dy + R + 20 := D
This completes the proof.

Remark 2. It could be seen from the proof of Lemma that the assumption
|21, x, x", ..., x®" V)| 2 @ > 0 from (7) might be replaced by the weaker one,
namely

16
f Qt, x(1), x'(t), ..., x"" (1)) dt S0, pe(0,1).
]

Moreover, the assumption concerning the boundedness of the (n — 1)-th order
derivatives could be obviously replaced by the one related to those of the n-th order
(although the right-hand side of (1) is not bounded according to (7)).

Remark 3. Assuming (instead of (7))
(7) x4+ o, x, .., x""Y) = ft, x,x, ..., x""V) =
‘ =f(t+6,x,x, ..., x"" V),
one cannot employ a priori estimates technique because of the existence of a family
of solutions differing from x(¢) € (1) by kw with all integers k. In spite of a possibility
to apply Proposition without using this manner, namely to verify condition (4)
by local methods as e.g. in [13] for pure periodic oscillations, we are not able to do

it here. Perhaps, this difficulty is related to the loss of the uniqueness property of
solutions x(f) € (1)—(2) in general, as it has been pointed out in [14].
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4. Now we can give the principal result of our paper.

Theorem. Let ((5') <=) (7) be fulfilled. If there exist nonnegative constants F,
¢;(j=0,1,...,n — 1) such that

n—1

(17) £(tx. X', o X D) < F +_Zocjlx(j)|
=

holds with

: 0" ) 0\ !
18 ——— |1 +2—(co+cpoy | — +
W gl (o e G )]
n—2 J
+2(14¢2 chﬂ +—0—c,,_1<1,
Q/)i=1 \2n 23

then equation (1) admits a D-periodic solution.
Proof. Let x(f) be a solution of (1)—(2,), x € (0, 1>. Using the relations (11)—(14)
and (16), (17), we arrive at the following inequalities

09 0l E 5 4 T + (1 - s - 2) ¢
(20) lxe(l = ~ 5 L [xe @] = b3,
(~/3)

e AW ot |x(n—l)(t)”_ — son (i — [N

o =@ §<2> i F == ) i 0]
(i=1..,n-2),

[0 := D1, :

(22) [x(] = 2[xo(n)] + 9 max /(2 x(1), x'(2), .., x*~(1))] +
S gotglipteiato
+ 20 £ 2D§ + g(F + max 'i’cj"x(j)(t)ﬂ) + 20w <
TR A S I R
= %ﬂ + g [F + 2¢co(D§ + o) +§:c,-D}“] + 20 <
o)) -2 Of e (L)
< | >(,)[| \/3) — [1 +2 Q( o +,-; '(21:) >] +

+ g[F + w<2co + 0 igx ci(l — sgn(i — 1)))] +2w.

Denoting

e
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A;:= —(—G/EZ:L: s
VO

n—1
B, := g{F + w[2co + % Y el —sgn(i — 1))]} + 2w,
i=1

=1, (i=1,...,n-2),

n—1

B;:=(1 —sgn(i—l))—;—) (i=1,...,n—2).

and substituting from (21), (22) into (19), we get

[0 £ 2 [P+ S a0 + B)] + (1 - sen(n - 2) 2.
2.3 j=0 0
Hence, taking the coefficients ¢; (i = 0,1, ..., n — 1) as follows
0 n—1
ET/—3 j;ochj <1,
i.e. (18), we obtain the desired estimate
[x*= ()] =
< [——9—— (F +"ilc-B-) + (1 — sgn(n — 2)) 9]/(1 -0 nilc-A-> = D,.
23 P 2 23 /50 ot

yielding (4) according to Lemma.
Moreover, this implies jointly with (21), (22) also
[x(1)| < AiDy—y + B;:=D; (i=1,...,n—2),
[x(5)]| £ AoDy—y + By := D
and consequently the uniform a priori boundedness of all solutions x(f) € (1) — (2,),
ue (0, 1), as well as their derivatives up to the (n — 1)-th order including is verified

explicitely. In view of Remark 1 and the assertion of Proposition it is enough to
assume (5'), only. This completes the proof.

Remark 4. Obviously, we could consider a periodic boundary problem
x® = f(t, x + ot/0, x" + @ff, x", ..., x""V),
x(0) = x9(0) (j=0,1,....,n—1)
instead of (1) —(2) for the same aim. In this respect our result seems to be comparable
with those obtained by the different topological degree techniques in [15], [16]
for pure periodic oscillations in (1). Sometimes our growth conditions (17), (18)
can be even better than the analogous growth restrictions from [1 5], [16]. However,

considering a suitable structure of the right-hand side of (1), such conditions can be
still much more liberal (cf. [13]).

Remark 5. Although our problem could be solvable for a sufficiently small
period 6 even in the noncoercive case (7'), as it has been pointed out in [14] in general,
it remains open yet for noninfinitesimally small periods @ just under (7').
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