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INTRODUCTION

For the basic notions and results from radical theory we refer to V. A. Andrunakie-
vi¢, J. M. Rjabuchin [3], N. Divinsky [7], F. A. Szasz [16], R. Wiegandt [18].
Recall that A. Sulinski, T. Anderson, N. Divinsky [14] showed that for every
radical « and for every ideal I of a ring A, (I is an ideal of A. Thus we get a mapping
o from the lattice L(4) of ideals of 4 to L(A). It is natural to investigate the relations
between a and the lattice operations on L(A4).

In this paper we discuss the following problems:

1) To characterize additive radicals o, i.e. oI + J) = a(I) + a(J) for arbitrary
ideals I, J of an arbitrary ring A (F. A. Szdsz [16], Problem 12).

2) To characterize radicals o such that «(I N J) = «(I) n «(J) for arbitrary ideals
I, J of an arbitrary ring A (F. A. Széasz [16], Problem 13).

S. A. Amitsur [1] showed that a(In J) = o(I) na(J) is valid for hereditary
radicals. F. A. Szész [15] proved that o is additive if the semisimple class & () of a
is homomorphically closed. Note that radicals with homomorphically closed
semisimple classes were described by Wiegandt ([18], Theorem 33.11): such radicals
are upper radicals determined by finite classes of finite fields, which are closed
under subfields.

The main results of this paper are the following statements:

Theorem 2.1. The following conditions are equivalent:

1) o is an additive radical,

2) either there exists n > 1 such that the semisimple class ¥(a) of o satisfies the
polynomial identity x" — x = 0, or « is a subidempotent radical and for arbitrary
ideals I, J of an arbitrary ring A the equalities I + J = A, a(A) = A imply that
oI) + «(J) = A.

Theorem 2.2. Let o be a hereditary radical. Then the following conditions are
equivalent:

1) a is an additive radical,
2) o induces an endomorphism of the lattice L(A) of ideals of A;
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3) either there exists n > 1 such that the semisimple class &(«) of « satisfies
the polynomial identity x" — x = 0, or « is a subidempotent radical.

However, we shall give an example of a subidempotent non hereditary radical
such that o gives an endomorphism of the lattice L(4). We recall that a ring A4 is
called idempotent if A> = A. A radical « is subidempotent if 4> = A for every
a-radical ring A. In what follows we assume that all classes contain the one element
ring. A class 9 is hereditary if M is closed under ideals.

We denote by

S| the cardinality of a set S;
&(o) the semisimple class of a radical «;

B the Baer lower nil radical;
A* the ring which is constructed starting from A4 by the adjunction of the unity
element;

A° the zero-ring with an additive group A4, i.e. ab = 0forallae A4, be 4;

A*  the additive group of 4;

VA the ring of integers;

Zz, the cyclic group of order p;

Z(p~) the quasicyclic group;

P(X) the free (without unity element) @ algebra (over a commutative ring @ with
a unity element).

Let A[x, y] be the ring of all polynomials in two variables x, y with coefficients
from the ring 4, i.e.

Alx, y] ={f(x,y) = Y ayx'y" for a;;€4,0=i,j<m}.
0

i,j=
Let deg f = max{i + j| a;; # 0}. Note that x, y € A[x, y] if and only if 4 has a unity
element.

1. SEMISIMPLE CLASSES AND PI-ALGEBRAS

For the basic notion and results on Pl-algebras we refer to [10] and [13].
Let @ be a commutative ring with a unity element, X an infinite set and M an
abstract class of P-algebras. Let T(X ; M) be the intersection of all kernels of P-algebra
homomorphisms from #{(X’) to algebras of M. The elements of T(X; M) are called
polynomial identities for algebras of the class M. A polynomial identity is called
proper if the unity element of ¢ appears among its coefficients. The process of
linearization (when for every polynomial identity (x4, x,, ..., X,) we get a semilinear
identity f(x,, x5, ..., X,)) is described, for example, in [13]. Note that if one of the
coefficients of f is equal to a € & then at least one of the coefficients of f is also
equal to a. '

Lemma 1.1. Let © be an infinite cardinal, X a set with lX‘ = 1, M an abstract
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class of @ algebras. Let |®| < © and |4| < ¢ for all Ae M. Then T(X; M) =
= N{I|I < &(X) and &<{X)[I e M}.

Proof. Consider the ideal M = N {I|I < &(X) and ®<X)[I'cM}. Clearly
T(X; M) = M. Assume that T(X; M) + M. Letf = f(x4, X5, ..., X,) € M\ T(X; M).
Thus f is not a polynomial identity for the class 9, therefore there exist a ring
A € Mand elements a;, dy, ..., a, € A such that f(ay, a,, ..., a,) * 0. Since |4| < |X|
and |X| is an infinite cardinal we may choose elements xg,, Xs,, ..., Xs, € {Xs}.
Consider a surjection ¢: <{X) — A sending xg, — a;, defining ¢ arbitrarily on the
other variables. Since @<{X )/Ker ¢ =~ Ae M, we have Ker ¢ 2 M, which contra-
dicts fe M. Thus M = T(X; M).

Corollary 1.1. Let o be a radical in a universal class of ® algebras, T an infinite
cardinal such that |®| £ 1, & (a) = {4| «(4) =0 and |A| £}, X a set and
|X| = 7. Then a(p<(X)) = T(X; L))

Proof. Clearly |¢p<X)| = r. Lemma 1.1 implies that T(X; () = ) {I|I1<
< &(X) and BXD[I € (o)} = N {I |1 < &{(XD and &(X)[1 € F(2)} = a(BXD).

Theorem 1.1. Let @ be a principal ideal ring. Let M be an abstract hereditary
class of @ algebras closed under subdirect sums. Then either there exists a proper
polynomial identity which holds in all algebras of M or there exists a proper
ideal I of @ and an infinite set X such that (®[I) {X) e M.

Proof. Suppose that the statement of the theorem is not valid for a ring &.
Consider H = {I | I < & and the theorem is not valid for @[I}. Clearly 0 € H and H
is non empty. Since @ is a principal ideal ring, there is a maximal ideal M in H.
Without loss of generality we may assume that the theorem is not valid for the ring @
but is valid for all proper homomorphic images of &.

Let Y be a countable set and F a set of all polynomials in #{Y’) such that among
their coefficients we have the unity element of the ring @. Since the theorem is not
valid for the ring @, for every f € F there exists 4, € M such that f does not vanish on
A;. Choose an infinite cardinal t such that |®| < t and |4,| <« for all fe F. Let
X be a set of cardinality v, M, = {Ae M| |4| £ ¢} Lemma 1.1 implies that
DX Y| T(X; M,) € M. By our assumptions T(X; M) + 0. Let L be the set of all
coefficients of the polynomials g(x)e T(X; 9M,). Using the idea of the proof of
Hilbert’s Nullstellensatz we will prove that Lis an ideal of A. Since the theorem is
not valid for the ring @ we have @ # L. Clearly L = a® for some 0 # a € &. By the
definition of the ideal L we have a polynomial h e T(X, M,) such that one of its
coefficients in equal to a and the others are divisible by a. Clearly there exists a poly-
nomial g such that h = ag and one of its coefficients is equal to 1. Let M(L) =
= {AeM| LA = 0}. Clearly M(L) is an abstract hereditary class of ®[L algebras
closed under subdirect sums. By the assumption the theorem is valid for the ring &/L.
Furthermore, ML) = M and the theorem is not valid for the ring @. Therefore there
exists a proper identity g(x;, X5, ..., X,,) which holds for all Be M(L). Let g =
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=g(y1, Y2 -+ o> Ya) f = A(9(x11> X125 o> X10)s G(X215 X225 «ees X2n)s - o G (Xyats Xmo « -+
eeo» X)) Where X;5, 1 < i < m, 1 £j < n are pairwise distinct variables. Clearly
one of the coefficients of f is equal to 1. By the definition of 4, it follows that f
does not vanish in 4;. Therefore

(*) q(g(blly b12> ey bln)a ey g(bmh bm29 ey bmn)) '_'i: 0

for some b;;e Ay, 1 £i<m, 1 £j < n. Since |4, < 7 we have A; e M, and 4,
satisfies the polynomial identity h(yy, ys,..., y,) = 0. Let B = {be A/ Lb = 0}.
Clearly B is an ideal in A;. Therefore Be Mand Be M(L). Now we have 0 =
= h(biy, bz, -+ bin) = ag(bis, bizs s bi). Thus g(byy, by, ..., biy) € B. We know
that B e EIR(L) Consequently, B satisfies the polynomial identity g. Therefore
a(g(by1. byas-oos byn)s ooy G(Bmis Dmzs --o> bn)) = 0. This contradicts () and the
proof is complete.

Recall that a polynomial p(x;, X3, .., Xpms Y15 V2, -+, V) I8 said to be alternating
(inthe x’s)if p(X1, X, «+«» Xps V15 Y25 - --» V) is @ homogeneous polynomial multilinear
only in xy, X5, .., X,, which vanishes if two of the x;’s are made equal ([2], p. 129).
A polynomial f(xy, x,, ..., x,) is said to be central for A if f(a, a,, ..., a,) € C, the

center of A, for all ay, a,,...,a, in 4, and there exist by, b,, ..., b,, dy,d,, ..., d,
in A4 such that f(by, b,, ..., b,) = f(dy, ds, ..., d,).
Let A be a prime ring which satisfies a proper polynomial identity g(x;, X5, ..., X,,)

of degree d. Then by the Posner Theorem ([10], Chapter 2, Theorem 5.7) A is a right
Goldie ring and its classical ring of quotients Q(A) is a simple Artinian ring, which
satisfies a polynomial identity g(x,, X5, ..., X,,). By the Kaplansky Theorem ([10],
Chapter 2, Theorem 1.1) Q(A) is a central simple algebra of dimension n? over its
center, where n < 3d. Following Amitsur ([2], p. 128) we denote pid (4) = n
(polynomial identity degree). Therefore pid (4) < 1d. If A is a semiprime ring with
a proper polynomial identity of degree d we set pid (4) = max pid (A/P) where P
ranges over all prime ideals P of A. Clearly, pid (4) < 1d. Obviously pid (4) = 1
if and only if 4 is a commutative ring.

Remark 1.1 ([2], Theorem 3). Let A be a semiprime ring with pid (4) = n.
Then A has an alternating central identity 6(x;, X, .-, Xy23 V15 -+ s Vm)-

2. ADDITIVE RADICALS

Lemma 2.1. Let « be an additive radical. Then either o is subidempotent or a 2 f.

Proof. Suppose that o is not subidempotent. Then there exists an a-radical ring 4
such that 4% # A. Let B = A/A%. Note that to prove « 2 f it is sufficient to show
that Z° is a radical ring.

Suppose now that pB # B for some prime number p. Then the nonzero a-radical
ring B = B[pB is a vector space over the p-element field F, and B?> = 0. Thus Zg
is a homomorphic image of B. Therefore ZJ is an a-radical ring. Let 2 = Z° + Z°,

662



I={n0)|nez}, J={0,n)|neZ}, M={(pn,pn) |neZ}. Clearly M is an
ideal of 9, InM =0, JnM =0. Denote & ~ g/M, I =+ M)M, J =
=(J +M)Mand x = (1,1) + MeZ. Obviously g = + J, =1 +J. There-
fore ®(Z) = o(I) + o(J). Since the a-radical ring ZJ and the ideal B of 9 generated
by x are isomorphic we have «(Z) # 0. Therefore either «(I) # 0 or «J) +0.
Let oT) + 0. Clearly I = I = Z°. Thus «(Z°) + 0. Since every nonzero ideal of Z°
is isomorphic to Z° we have (Z°) = Z°, i.e. Z° is an o-radical ring. Thus « 2 .

Let us suppose now that pB = B for all prime numbers p. Then B is a divisible
abelian group. Since B> = 0 there exists a prime number p such that L = Z(p®)° is
a homomorphic image of the a-radical ring B. Clearly «(L) = L. Let U; = V; = Z°
fori=1,2,...,n,...and u;€ @, U;, u(j) = 0 for j # i and u,(i) = 1. Similarly
we define v; for i =1,2,...,n,.... Consider 9 = (@2, %) ® (@2, V), I =
={u,0)|ue®2,U), J={(0,0), ve®2y Vi}, xi = (u;, v;) for i=1,2,...
.. N, ... Let M be the subgroup of 9 generated by the elements px,, x; — PX;+4
for i=1,2,..,n,.... Cleatly MnJ=MnI=0. Let I = 9M, I=
=(I + M)M,J =(J + M)[M. It is clear that the subgroup G of Z* generated
by Xy, X5, ..., X, ... is isomorphic to Z(p®). Since Z* = 0 we see that G is an ideal
of 9% and G = Z(p®)°. Therefore (%) =2 G # 0. Moreover, I =1 + J and
0 + «(2) = «{I) + a(J). Thus either «(I) & 0 or a(J) # 0. Let «(I) # 0. Since
I = I we have «(I) + 0. However, o(I)* is a subgroup of the free abelian group I.
Therefore (I)* is also a free abelian group. Since I> = 0 we have «(I)* = 0. Con-
sequently, Z° is a homomorphic image of o(I), i.e. Z° is an o-radical ring. Thus
a2 p.

Lemma 2.2. Let a be an additive nonsubidempotent radical, R a commutative
ring with unity element, X an infinite set and R{X) a free R-algebra. Then
a(R(X)) * 0.

Proof. Let {x, y} be a two-element set, x ¢ X, y ¢ X, Y = X U {x, y}, 4 = R(Y),
B=RXuU{x})cA492=RXu{y}> < A Let I be the ideal of B generated
by x, J the ideal of & generated by y, M the ideal of 4 generated by {(x + y) xa,
(x + y) ax, ax(x + y), xa(x + y), (x + y) ya, (x + y) ay, ay(x + ¥),
ya(x + ) [ a eA‘}. We show that M nI = 0. Consider the mapping ¢ from A4
to A such that ¢(x) = x, @(y) = —x, ¢(z) = z for z e X. Clearly ¢(b) = b for all
beB and ¢(M) = 0. Therefore InM = ¢(In M) = 0. Similarly Jn M = 0.
Clearly x + y¢ M. Let A= AM, I =1+ MM, J=J +MM,a=a+ M
for ae A. By the definition of the ideal M we have jXa = — %3, yax = — Xax,
axy = —ax?, Xay = —%ax, Xya = —y*a, Xay = —yajy, ayx = —ay?, jax =
= —jay for ae A*. Therefore JIcJ, IJcI,IJ=Jand JIcJ. ThusI + J is
a subring of 4 and I, J are ideals of I + J. By the definition of M, X + 7 + 0 and
(+ 7 (I +17J)=0. Since eI, yeJ we have % + ye (I + J). By Lemma 2.1,
oI + J) # 0. Therefore either o(I) # 0 or a(J) # 0. We may assume that (I) + 0.
Since | " M = 0 we have I = I. Consequently, a(I) = 0. By the Andersen-Divinsky-
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Sulinski Lemma ([14] or [3], Chapter 2, § 4, Proposition 1) it follows that
R(X U {x}>) # 0. Since |X| = 00 we have R(X) = R{(XU {x}). Therefore
ARCXD) + 0.

Corollary 2.1. Let o be an additive nonsubidempotent radical. Then the semisimple
class (o) = {A|a(4) = O} satisfies a proper polynomial identity with integer
coefficients.

Proof. By Theorem 1.1 the semisimple class &(a) either satisfies a proper poly-
nomial identity or there exists a proper ideal I of Z and an infinite set X such that
(Z]1) (X) € #(«). However, the second case contradicts Lemma 2.2.

We recall that a ring A is called reduced if it is without non zero nilpotent elements.

Lemma 2.3. Let o be an additive nonsubidempotent radical. Then every ring in
the semisimple class («) = {4 | «(4) = 0} is reduced.

Proof. Suppose that there exists 4 € &(a) such that a> = 0 for some 0 % a € 4.
Consider

B =

s

-
A;, L=2Ai,
i=1

i=1

where 4; = Aféralli = 1,2,...,92 = B[x, y]. We may assume that 4; are subrings
of B. Clearly, A;<a« B for i =1,2,.... Let b be an element of B such that its all
co-ordinates are equal to a, let M be an ideal of & generated by L(x — 1) u L(y — 1).
Since b ¢ L, we have b(x — y) ¢ M. Consider I = 9|M, 4; = (4, + M)[M, L=
=(L+ M)/M, z =z + M for all ze 9. Let I be the subring of & generated by
Lu {bx}, J the subring of & generated by Lu {by}. Since b* = 0 and uX = u
for all ue L we can represent every element zel as a sum z = nbX + I, where
neZ, 1 e L. Similarly, every element z € J can be represented as a sum z = nby + I,
where ne Z, le L. Clearly I1J < Land JI < L. Therefore I + J is a subring of 9,
I<l+ Jand J<I + J. Consider the homomorphism from 2 to B such that

‘P(z bix'y’) = 2 by
i,j=0 i,j=0

for all

E

bix'y'ed.

i,j=0

Obviously ¢(M) = 0. Consequently, there is a homomorphism y: Z — B such that
Y(d + M) = ¢(d). Clearly, Kery n1 =0 and y(I) 2 L. It is well known that
every subring of B which contains L is a subdirect sum of rings 4;, i = 1,2,....
Therefore I is the subdirect sum of the o-semisimple rings A;. Hence ofI) = 0.
Similarly a(J) = 0. By our assumption a{I + J) = o{I) + o(J) = 0. Since bx — by ¢
¢ M we have bX — by + 0. Then it follows from b* = 0 and zX = zj = z for all
ze Lthat (I + J)(bX — by) = 0. Therefore p(I + J) % 0. By Lemma 1.1, « 2 .
This contradicts the equality o + J) = 0.
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Lemma 2.4. Let o be an additive nonsubidempotent radical, A a nonzero a-semi-
simple ring, A[x] the ring of all polynomials with coefficients from A. Then
«(A[x]) * 0.

Proof. Suppose o(A4[x]) = 0. Let B = A[x,y], I = A[x]x< A[x] € B, J =
= A[y] y< A[y] € B, M = Bx(x + y) + By(x + y).

By the Anderson-Divinsky-Sulinski Lemma ([14], Theorem 1.7) we have «(I) =
= 0 = a(J). Clearly, M < B and a(x + y)¢ M for all 0 + ae A. Consider B =
=BM,I=(I+ M)M,J = (J + M)[M,Z=2z+ M for all ze B. Since bxy =
= —Dbx? for all be B we have IJ = I and JI < I. Similarly, IJ = J and JI < J.
Therefore J + I'is a subringof B,I<a«I + JandJ < I + J.

Now we show that I n M = 0. Consider the homomorphism ¢ from B to B given
by o(f(x,y)) = f(x, —x) for all f(x,y)eB. Clearly ¢(z) = z for all zel and
(M) = 0. Therefore In M = ¢(In M) = 0. Thus I = I and o(I) = 0. Similarly
«(J) = 0. By our assumption oI + J) = a(I) + «(J) = 0. Since a(x + y) ¢ M for
all 0 & a e A, we have ax + ay = 0 for all 0 + a € A. By the definition of M we
obtain (I + J)(ax + ay) = 0. Hence (I + J) + 0. Lemma 1.1 implies that « 2 §,
which contradicts the equality a(I + J) = 0.

Lemma 2.5. Let o be an additive non subidempotent radical. Then every ring
in the semisimple class is commutative.

Proof. By Corollary 2.1 it follows that &(«) satisfies a proper polynomial identity.
It is sufficient to prove that pid (4) = 1 for all A€ ¥(x). Assume that pid (4) =

=n > 1 for some 4 € &(a). By Remark 1.1 A has an alternating (in X, X5, ..., X,2)
central polynomial 8(x;, X5, ..., Xu2, Y1, Y25 - --» Ym)- Let B be an ideal of A generated
by the set T = {8(ay, az, ..., a2, by, by, .oy by) | g, 82,000y G2, by, by, oo, b€

€ 4}. Clearly B =+ 0. By the Anderson-Divinsky-Sulinski Lemma it follows that

B e &(«). Let B[x] be the ring of all polynomials with coefficients from B, let ¢, be

the homomorphism from B[x] to B such that ¢,(f(x)) = f(¢) for all f(b)e B[x]

where te T. Clearly ¢ is surjective. Lemma 2.4 implies that a(B[x]) # 0. Since

«(B[x]) = N Ker ¢, there exists 0 = f(x) = dox? + d;x*"! + ... + d, e B[x] such
teT

that f(r) = 0 for all te T. Since 4 is reduced and B is the ideal generated by T we
have dyt # 0 for some te T (see Lemma 2.3). Consider S = {dot, (d,)*

., (dot)", ...}. Then there exists a prime ideal Q of A such that Q n S = @. Moreover,
there exists a minimal prime ideal P of A such that PN S =0. It is well known that
A = A[P contains no nonzero divisors ([3], Chapter 4, § 2, Theorem 1). Since 4
satisfies a polynomial identity we conclude that A has a nontrivial center C ([2],
Theorem 3).

Assume now that |C| < co. Thus C is a finite commutative ring without nonzero
divisors. Therefore C is a field. By ([13], Corollary 1.6.28) 4 is a semisimple ring and
by Kapalansky’s Theorem ([13], Theorem 1.5.16) it follows that A is finite dimen-
sional over its center C and A is isomorphic to the matrix ring over the division ring.
Since 4 is a domain we have that 4 is a division ring. The inequality |C| < oo
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implies that IZI < o0. Apply Wedderburn’s Theorem on finite division rings to
obtain A = C. Consider @ = a + P for all a € A. By the definition of P it follows

that 7 + 0, where t = &(ay, ay, ..., a,, by, by, ..., b,) for some ay,a,,...,a.,
by, by, ...,b,e A. Since A= C and 6(xy, X35 ..., X2, Y1, V2, ---» Ym) IS @ central
alternating in X, X, ..., X,2 polynomial we have i = &(dy, @,, ..., @, by, by, b,) =

= 4,a,0(1, 1, @s, ..., Gy, by, b, ..., b,,). This contradicts the inequality 7 =+ 0.
Now we may assume that |C| = co. Consider T = {b|be T}. We have ci =
= 8(ciy, yy ..., By2, by, by, ... by)force Cand t = 8(ay, ay, ..., Gy, by, by, ..y by).

Therefore cie T and |T| = oo. Let t;,1,,...,1,€ T be pairwise distinct elements
of B. The definition of f(x) = dox? + dyx?™ ' + ... + d, yields
@ ot +d ™ +...+d, =0,

dotd +dt3  + ... +d, =0,

dotd + dyti™ ' + ... +d,=0.

The detérminant of the system (1) is Vandermond’s determinant. Since 4 has a clas-
sical ring of quotients & which is a division ring ([13], Theorem 1.7.9), the center C
of 4 is contained in the center of 2 and T & C, we have that the system(1) has no
nontrivial solution in the division ring 2. Therefore d, = 0. Thus d, € P. Moreover,
dot € P. This contradicts the relation P~ S = 0. Therefore pid (4) = 1 and 4 is
a commutative ring.

Lemma 2.6. Let A be a commutative ring without divisors of zero, f(xq, X, ..., Xp)
a polynomial of degree m with relatively prime integer coefficients and constant
term 0. Suppose that f(ay,a,,...,a,) =0 for all a,,a,,...,a,€ A. Then A is
a finite field and |4| < m.

Proof. Let K be the quotient field of 4. Without loss of generality we may assume
that f(xy, X5, ..., X,) is an arbitrary nonzero polynomial of K[xy, x5, ..., x,] (i.e.
S(%y, X3, ..., x,) may have a nonzero constant term). We prove our statement by
induction on n. If n = 1 our statement follows from the fact that a polynomial of
degree m cannot have more than m roots in the field. Suppose now that the statement

t
holds for polynomials in n — 1 variables. Then f(xy, X3, ..., X,) = Y. fi(xy, X2, -+
i=0

coo»Xy_1) X, Where t < m, f, 0 and degf, < m. If f(ay,as,...,a,-,) =0 for

alla,, a,, ..., a,-; € A then our statement holds by the induction hypothesis. Assume
now that f(ay, as,...,a,-,) 0 for some ay,a,,...,a,-4€A. Then g(x,) =
= f(ay, a3, ..., a4y, x,) €K[x,] is a nonzero polynomial and degg(x,) < m.

Since g(a) = 0 for all a € 4 we have |4| < m. Hence Lemma 2.6 is proved.

Remark 2.1. Let A be a ring satisfying the polynomial identity x* — x =0
and let m = t(n — 1) + 1 for some natural number t.

Then

a) a"~! is an idempotent element of A for all a € A;
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b)a™ —a =0 forall ae A4;

c) A is a regular ring.

Proof. Since " — a = 0 for all a € A we have a(a"~?) a = a. Thus 4 is a regular
ring and a""' = @""%a is an idempotent element of A. Furthermore, a™ =
=(a""")Ya=a""a=a"=a. Thus a" — a =0 for all a € 4.

Remark 2.2. Let {F;, i eI} be a family of fields such that |F;| < n for all iel.
Then every field F,, i eI satisfies a polynomial identity x™ — x = 0 where m =
=n!+ 1.

Proof. Consider z = |F,|. Clearly x* — x = 0 for all xe F;. Since z < n, z — 1
divides n!. By Remark 2.1 we have x™ — x = Oforall xe F;, iel.

Lemma 2.7. Let A be an essential ideal of B, E(A) the set of all idempotents
of A. Suppose that the ring A satisfies the polynomial identity x" — x = 0, where
n > 1. Then

a) every idempotent of A is a central idempotent of B;

b) is a subdirect sum of rings eB, e € E(A);

c) B satisfies the polynomial identity x" — x = 0.

Proof. By Theorem 1 ([9], Chapter X, § 1) it follows that A is a commutative
ring. Choose b € B, e € E(A). Since be, eb € A we have eb = e?b = e(eb) = (eb) e =
= e¢(be) = (be) e = be. Thus e is a central idempotent of B. Clearly B can be mapped
homomorphically onto eB for every e € E(4). Now it is sufficient to show that for
every nonzero b € B there exists an idempotent e € E(A4) such that eb = 0. By Remark
2.1 A is regular. Hence f(4) = 0. Since f(4) = B(B) n A and 4 is an essential ideal
of B, we have B(B) = 0. Consider @ = {be B| b4 = 0}. Then (2 n 4)* = 9(4) =
=0. Thus 2n 4 =0and 2 =0. Choose 0 & be B. Then we have ba + 0 for
some ae A. By Remark 2.1 e = a"~' is an idempotent of A. Finally, (be)a =
= ba" = ba % 0. Thus be * 0.

Corollary 2.2. If the semisimple class &(a) satisfies the polynomial identity
x" — x = 0 where h > 1 then a is a supernilpotent radical.

Proof. By Remark 2.1 it follows that every ring in the class &(a) is regular.
Therefore #(a) is a class of semisimple rings and « = B. Suppose now that 4 is
an essential ideal of Band 4 € #(«). Since eB <1 A for all e € E(A), we have eB € ¥(a)
(see [14]). By Lemma 2.7 B € #(«). Hence the class &(«) is essentially closed. Thus o
is a hereditary radical (see [4], [11] or [3], Chapter 3, § 1, Theorem 1). Clearly a is
a supernilpotent radical.

Lemma 2.8. Let o be an additive nonsubidempotent radical. Then the semisimple
class &(«) satisfies the polynomial identity x" — x = 0, where n > 1.

Proof. By Lemma 2.3 and Lemma 2.5 every ring in the class #(a) is semiprime
and commutative. Let us suppose that the statement of the lemma is not valid.
Then for every natural number m there exists a ring 4,, € &(«) such that x* — x = 0
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is not an identity of 4,,, where v = m! + 1. Let X be an infinite set such that |X| =
= A, forallm =1,2,... and 4 a ring of polynomials in X with integer coefficients
and the constant term 0. Choose x ¢ X. Clearly A[x] = A. Thus Lemma 2.4 implies
that o(4) =+ 0. For every 0 % g(xq, X5, ..., X,) € o(A4) we have g(xy, X, ..., x,) =
= If(x4, X3, ..., X,) where all coefficients of f(x,, x, ..., x,) are relatively prime
and [ is the greatest common divisor of all coefficients of g(x,, X5, ..., X,). Consider
@y, 4y, ..., a4, € A, Clearly there is a homomorphism ¢: A — 4,, such that ¢(x;) = a;
for all i = 1,2,...,n. Since g € a(4) and A4, € ¥(a) we have If(ay, as, ..., a,) =
= ¢(g) = 0. Let B,, be an ideal of 4,, generated by {f(ay, a,, ..., a,) | ay, az, ..., a, €
€A,} and 9,, = {a€ A4,,| aB,, = 0}. Then IB,, = 0 and (2,,n B,)* = 9,,B,, = 0.
Since 4,, is a semiprime ring we have 9, N #,, = 0. Consider by, b,, ..., b, € Z,,.
Obviously f(by, b,, ..., b,) € B,, " D,,= 0. Thus f(by, b,, ..., b,) = 0forall by, by, ...
. b,€9,. Let P be a prime ideal of 9, Clearly f(by, by, ..., b,) = 0 for all
by, b,,...,b,€ D,/P. By Lemma 2.6 |9,,/P| £ deg f. Since 9, is a semiprime ring,
9, is a subdirect product % of finite fields 2,,/P for all prime ideals P of 2,,. Let
t =degfandr =t! + 1. By Remark 2.2 u" — u = Oforallu e #. Thusx" — x = 0
is an identity of 2,,. Let m > r and v = m! + 1. By Remark 2.2 x* — x = O is an
identity of 2,,.

Let us suppose that x” — x = 0is an identity of B,,. Since B,,n 2,, = 0, B,, + 9,,
is a direct sum of ideals B,, and @,,. Therefore x° — x = 0 is an identity of B,, + D,,.
We claim that B,, + 2,,is an essential ideal of 4,,. Let L<x A,,and LN (B, + 2,,) =
= 0.Then LB, < Ln(B,, + 9,,) = 0and LS 9,,. Therefore L= LN (B,, + 9,)=
= 0. Thus B,, + 92,, is an essential ideal of A4,,. Lemma 2.7 implies that x"'—x = 0
is an identity of A4,. This contradicts the assumption that x* — x = 0 is not an
identity of A4,,. Thus x* — x = 0 is not an identity of B,,.

Let py, s, ..., b be all pairwise distinct prime divisors of | and B,(p;) =
= {beB, | p;ib = 0}. Since B, is semiprime and IB,, = 0 we have B,, = @’_; B,(p,).
Letv(m) = m! + 1. By the preceding there exists a prime divisor p of l and a sequence
of natural numbers r < my < m, < ... < m, < ... such that B,(p) does not satisfy
the identity x°™? — x = 0. Let B be the ring of all polynomials in X with coef-
ficients from the field F, = Z|(p) and zero constant term. The proof of «(B) # 0 is
similar to the proof of a{4) = 0. Clearly for every polynomial O = h(x,, x,, ..., X,) €
e oB) and for every clements by, b,, ..., b, € B,(p) we have h(by, b,,...,b,) = 0.
Let 0 % g{xy, X, ..., x,) € «(B). Following the proof of Lemma 2.6, |B,(p)/Q|
‘< deg q for all prime ideals Q of B,(p). Therefore B,(p) satisfies the polynomial
identity x* — x = 0 where u = (deg q)! + 1. If m; > u then B,(p) satisfies the
polyromial identity x"™? — x = 0 (see Remark 2.1). This contradicts the fact
that B,(p) does not satisfy the identity x*"” — x = 0. Lemma 2.8 is proved.

Proof of Theorem 2.1.

1) = 2). If the radical is not a subidempotent additive radical then the semisimple
class &(a) satisfies the polynomial identity x” — x = 0 for some n > 1 (sec Lemma
2.8). Suppose now that « is a subidempotent additive radical. Let I, J be ideals of
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the o-radical ring A such that I + J = A. Then 4 = «(4) = oI + J) = ofI) +
+ oJ). Thus 1) = 2) is proved.

2) = 1). Suppose now that the semisimple class &(«) satisfies the polynomial
identity x" — x = 0 for some n > 1. Corrolary 2.2 implies that « is a supernilpotent
radical. Let I, J be ideals of 4. Then o(I) = «(A4) N I and «(J) = a(A4) n J. Consider
Q=ol)+aJ), A= A4/Q, I =1/(QnI),J = J[(Qn J). Then Q nI = o(I) and
0nJ=oJ). Clearly I< 4, J< 4 and ofI) = o(J) = 0. Since I,J e L(a), I, T
are regular rings. Therefore B =1 + J is regular ([8], Proposition 1.5). Thus
B(B) = 0. Since o is a supernilpotent radical and I, J € #(a) we have 0 = o(I) =
=a(B)nI and 0= ofJ) = a(B)nJ. Therefore «B)I =0 = «(B)J. Clearly
«B)(I +J)=a«(B)B=0 and ofB)< p(B)=0. Thus o(B)=0. Since B =
=(I + J)/Q we have (I + J) = Q = oI} + ofJ). Clearly ofl) + «(J) < (I + J).
Therefore a(I) + a(J) = oI + J). '

Let us suppose that o is a subidempotent radical. Then ofI + J) = (I + J))*> <
col + NI+ J)=ol + J)I + ol +J)J. Since ol + J)I <ol + J) and
ol +J)J oI+ J) we have ol +J)=ofl + J)I + ol + J)J. Consider
B=ol+J),L=ol+ J)IandM = (I + J) J.Then«(B) = Band B = L+ M.
By assumption B = a(L) + a(M). Clearly L<t I and M < J. Therefore oL) < o(I)
and (M) < o(J). Thus (I + J) = B = a(L) + o(M) < «(I) + a(J). Obviously
oI) + «(J) = (I + J). Therefore o(I + J) = a(I) + a(J). Theorem 2.1 is proved.

Proof of Theorem 2.2 immediately follows from Theorem 2.2 and [1].

Lemma 2.9. For an arbitrary radical o and for an arbitrary ring A the following
conditions are equivalent:

1) oI nJ) = oI) " ofJ) for arbitrary ideals I, J of A;

2) if I and J are o-radical ideals of A such thatl + J = Aand I J = 0 then
oInJ)=*0.

Proof. Clearly it is sufficient to show 2) = 1).

2)=1). Let M,N < B. Since M n N <« B we have o{M n N) < B ([14] or [3],
Chapter 2, § 4, Proposition 1). Therefore a(M n N) € a(M), oM n N} = o(N) and
#(M A N) < a(M) n «(N). Suppose now that «(M) n a{N) = 0. Consider I = (M),
J =«N) and 4 =1 + J. Obviously a(M n N) = oI n J). Consider the homo-
morphism 7: A » Afo(I 0 J) such that n(a) = a + a(In J). Since o(InJ) <1
and «(InJ)< J we have n(I) + n(J) = n(4), o(n(l)) = n(I), o(n(J)) = n(J),
on(I) " a(J)) = o(n(I 0 J)) = (I~ JJa(I A J)) = 0. By assumption (I} N n(J) =
= 0. Therefore n(I n J) = 0. Thus I n J = «(I n J). Consequently (M) N &(N) =
=InJ=oalInJ)=aMnN).

Lemma 2.9 is proved.

Lemma 2.10. Let MM be a homomorphically closed class of rings with a unity
element and let o = &M be the lower radical generated by the class M. Then for
every a-radical ring A we have

1) A has a nonzero cegtral idempotent e such that eM € M;
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2) if a homomorphic image A of A is directly irreducible then A € M.

Proof. 1) By ([14], Lemma 1) there exists an ascending chain of subrings 0 =+
+ A<t A< A, <a...<a 4, <2 A such that 4, € M. Let e be a unit of 4,. Then e
is a central idempotent and 4, = eA ([6], Lemma 4). Thus e4 € M.

2) By the preceding there exists a nonzero central idempotent u € A such that
uAdeM. Since A = ud + (1 — u) A and 4 is directly irreducible we have 4 = uA.
Thus A e M.

Proposition 2.1. Let M be a homomorphically closed class of rings with a unity
element and let a = LM be the lower radical generated by the class M. Then

1) a(I n J) = «(I) n o J) for arbitrary ideals 1, J of an arbitrary ring A;

2) if the radical o is hereditary then every directly irreducible ring-in M is
simple.

Proof. 2) Let A be a directly irreducible ring, 0 I <« Aand «(I) = I. Lemma 2.10
implies that there exists a central idempotent e € I such that 0 = el € M. For every
aeA we have ea, aeel and ea = e’a = e(ea) = (ea) e = e(ae) = (ae) e = ae.
Thus e is a central idempotent of A. Cleatly I 2 eA, eA 2 el 2 ¢A and ed =
= el € M. Hence every a-radical ideal I of A contains a nonzero central idempotent e
such that e4 = el e M. Since A is directly irreducible we have e = 1 and I = A.
Thus no directly irreducible ring contains proper a-radical ideals. By assumption «
is hereditary. Therefore we have proved that any directly irreducible ring in I
is simple.

Dletl,J< A, 1+J=A o«l)=1aJ)=J,I1nJ=*0.By Lemma 2.9 it is
sufficient to prove that a(I n J) # 0. By Zorn’s lemma there exists an ideal M maxi-
mal with respect to M = I, M n J = 0. Consider the homomorphism n: A - A/M
such that n(a) = a + M. Then o(n(1)) = n(I), a(n(J)) = n(J), n(I) + n(J) = n(a).
Since M <1 we have I+ M)n(J+M)=In(J+M)=InJ+ M and
o) nn(J) = n(InJ). We claim that n(I) nn(J) = n(I n J) + 0. Suppose that
InJ)=0.ThenInJsMandInJ=InJnM=MnJ =0.Thus n(I) n
nn(J) # 0. Lemma 2.10 implies that there exists a central idempotent e e n(I)
such that 0 % e 7(I) € M. By the above e is a central idempotent of n(4) and e n(I) =
= en(A)e M. Since e is a central idempotent we have a homomorphism from the
a-radical ring 7(J) to e n(A) such that ¢(a) = ea. Clearly cither e n(J) = 0 or there
exists a central idempotent v € n(A4) such that 0 % ve n(J) e M. Suppose now that
en(J)=0. Then 0 =n(J) =en(d)nn(J) and M = n~'(en(4)n n(J)) =
= w7 e n(d) 0 7' (n(d)) = 7 e n(A) A (I + M) = 77 Hen(A) n J) + M.
Therefore n~*(e n(4)) " J = M n J = 0. This contradicts the relation
7~ '(en(A4)) 2 M. So there exists a central idempotent v such that 0 = ve n(J) € M.
Clearly ve n(J) <1 n(A4) and ve n(J) < n(I) N n(J). Therefore 0% a(n(l) N n(J)) =
= a(n(I n J)). Since M nJ = 0 we conclude that the rings I nJ and n(I N J)
are isomorphic. Thus (I N J) # 0. Proposition 2.1 is proygd.
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Lemma 2.11. For a subidempotent radical o the following conditions are equi-
valent:

1) a is an additive radical;

2) if I, J are ideals of an arbitrary a-radical ring A such thatl + J = A and
«I) = 0 then J = A.

Proof. It is sufficient to prove 2) = 1). Let M, N < B,B = M + N and «(B) = B.
We shall show that B = a(M) + «(N). Consider the homomorphism =n:B —
— B[a(N) such that n(b) = b + «(N). Then «(n(N)) = o(N/a(N)) = 0, o(n(B)) =
= n(B) and n(N) + n(M) = n(B). By assumption n(M) = n(B). Therefore «(N) +
+ M = B. Consider the homomorphism ¢: B — B[e(M) such that n(b) = b +
+ a(M). Then «(@(M)) =0, o(p(B)) = @(B) and (M) + ¢(x(N)) = ¢(B). By
assumption ¢(a(N)) = B. Therefore «(N) + «(M) = B. Theorem 2.1 implies that o
is additive.

Lemma 2.12. Let M be a homomorphically closed class of rings with a unity
element, let « = LM be the lower radical generated by the class M. Suppose
that no subdirectly irreducible ring in M contains nontrivial idempotents. Then
for every a-radical ring A we have

1) every idempotent in A is central,

2) for every a € A there exists an idempotent e € A such that ea = a.

Proof. 1) Let 0 & e = e* € A and ea — ae =+ 0 for some a € A. By Zorn’s lemma
there exists an ideal M maximal with respect to ea — ae ¢ M. Consider A = A/M
and the homomorphism 7n: A — A4 such that n(a) = a + M. Clearly 4 is subdirectly
irreducible and n(e) n(a) — n(a) n(e) + 0. Lemma 2.10 implies that Ae M. By
assumption n(e) = 1. Thus n(e) n(a) — n(a) n(e) = 0. This contradicts the inequality
n(e) n(a) — n(a) n(e) =* 0.

2) By ([8], Lemma 6.9) it is sufficient to show that every homomorphic image
A = ¢(A) of A contains an idempotent e such that e ¢(a) = ¢(a). Lemma 2.10
implies that 4 € M. Therefore A 3 1. Clearly 1 ¢(a) = ¢(a). Thus the ring A4 contains
an idempotent e such that ea = a ([8], Lemma 6.9).

Theorem 2.3. Let M be a homomorphically closed class of rings with a unity
element and let « = &M be the lower radical generated by the class M. Suppose
that every directly irreducible ring B in M fulfils the following conditions:

a) either B is simple or the set of proper ideals of B contains a greatest ideal;

b) B does not contain nontrivial idempotents.

Then

1) for an arbitrary ring A, o induces an endomorphism of the lattice L(A) of
ideals of A,

2) if the radical « is hereditary then every ring in M is simple.

Proof. By Proposition 2.1 and Lemma 2.11 it is sufficient to prove that for arbi-
trary ideals I, J of the ring A4 the equalities I + J = A, ofI) = 0, a(A4) = A imply
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that J = A. Suppose that J & A. Then there exists a € A such that a ¢ J. Consider
E={ecA|e® =efand T= {ue E|uaeJ}. By Lemma 2.12 E is a set of central
. idempotents of A and ea = a for some e€ E. Clearly Oe T, e ¢ T. For arbitrary
ueT, weT, veE we have u + w — uwe T and uve T. Consider the set P =
= {e — ue|ue T}.Clearly P < E, e e Pand xy € P for arbitrary x, y € P. Moreover,
P T=0. Indeed, suppose that e — ue e T for some u e T; then (e — ue)ae J.
Therefore ea — uea = a — ua e J. Since u € T then ua € J. This contradicts a ¢ J.
By Zorn’s lemma there exists a subset S < E maximal with respect to P < S,
SN T=¢ and xye S for arbitrary x, ye S. Consider M = {bec 4 | xb =0 for
some x € S}. Clearly M <« AandT = M. Let A = A/M and let 7 be a homomorphism
from A to A such that b = n(b) = b + M. Obviously (1 — e) A = M. Therefore &
is a unity element of A. Consider I = n(I), J = n(J). We shall show that a ¢ J.
Suppose that @ € J. Then v(a — b) = 0 for some ve S and b e J. Therefore va =
=vbeJandve T Since SN T = @ we have @ ¢ J. Thus 4 =+ J.

Suppose now that A = I. Then eI and v(e — b) = 0 for some ve S and bel.
Therefore ve = vb € 1. Since ve € S we have ve £ 0. Moreover, ve is a central idem-
potent of the a-radical ring A. Therefore ve A is an a-radical ring. Since ved <a I
we have a contradiction with (1) = 0. Thus I + 4.

Now we show that 4 e 9. Since «(4) = 4 we have wA € M for some nonzero
central idempotent w of A4 (see Lemma 2.10). Let w = n(b) where be A. Then
b* — be M and v(b*> — b) = 0for some v € S. Thus (vb)? = vb. Clearly (1 —v) 4 <
S M. Therefore n(v) is a unity clement of A and n(vb) = n(b) = w % 0. Thus
vb ¢ M and x(vb) = O for all xe S. Since T < M we have vb ¢ T. The maximality
of S yields vb € S. Therefore n(vb) = n(v). Thus w = n(vb) is a unity element of 4
and A e M. In the same way it is possible to show that 4 is directly irreducible.
The assumptions together with I # 4 and J # A4 yield I + J # A. This contradicts
I + J = A. Thus J = A and Theorem 2.3 is proved.

Corollary 2.3. Let I be a homomorphically closed class of rings generated by
the ring of integers and let « = £IM be the lower radical generated by the class M.
Then

1) « is a subidempotent radical;

2) « is not additive;

3) (I nJ) = oI) " aJ) for arbitrary ideals I, J of an arbitrary ring A.

Proof. By Propbsition 2.1 it is sufficient to prove that the radical « is not additive.
Clearly «(Z) = Z. Lemma 2.10 implies that Z does not contain proper a-radical
ideals. Let p, g be two distinct prime numbers. Then o(pZ) = a(qZ) = 0 and Z =
= ofZ) = «pZ + qZ) + o(pZ) + «(qZ) = 0. Thus « is not additive.

Corollary 2.4. Let p be a prime number, A = Z|p*Z, M a homomorphically
closed class of rings generated by A and o = LM the lower radical generated
by M. Then :
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1) o is a subidempotent radical,

2) o is not a hereditary radical;

3) for an arbitrary ring B, a induces an endomorphism of the lattice L(B) of
ideals of B.
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