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Let S be a semigroup. A non-empty subset 4 of S is called a generalized (m, n)-
ideal of S if the inclusion
AﬂlSAll g A

holds, where m1, n are arbitrary non-negative integers. Here, as usual, 4°SA4" =
= SA", A"SA® = A"S and A°SA° = S (see [4]). A generalized (m, n)-ideal 4 of S
is said to be an (m, n)-ideal of S if A is a subsemigroup of S. It is easy to see that
one-side (left or right) ideals are particular cases of (m, n)-ideals. S. Lajos, in [3],
[5]. [6] and [7], characterized certain classes of semigroups through the generalized
(1, L)-ideals.

In this paper we shall generalize some results on (m, n)-ideals and generalized
(m, n)-ideals in semigroups. In section 1 we introduce the a-ideals and the generalized
a-ideals in scmigrbups, where « is a finite sequence of zeros and units containing at
least one zero.

In Section 2 we characterize the semigroups for which any generalized o-ideal
is an a-ideal. Moreover, we prove among other things that if every generalized
(3, 3)-ideal is a (3, 3)-ideal then every generalized a-ideal is an a-ideal.

In Section 3 we investigate the semigroup by all generalized o-ideals of a semi-
group S. In particular, we prove that there is an isomorphism between the semigroup
which consists of all [01-ideals of a regular semigroup S and the semigroup which
consists of all 101-ideals of the semigroup S/u, where u is the maximal idempotent
separating congruence on S. Moreover, we answer a question by S. Lajos on the
semigroup which consists of all left ideals of a semigroup S.

The reader is referred to [2] for basic notions and terminology of algebraic semi-
groups theory.

1.

By X* we denote the free monoid over an alphabet X. Let S be a semigroup.
By 2(S) we denote the semigroup of all subsets of S under set product with the unity 0.
Fora e {0, 1}* we shall define f;: 2(S) — 2(S) as follows: f5(4) = 0 if « is the empty
word and ' ;

f3A) = 414, ... A,
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if @ = a0, ..., o;€{0, 1}, where

n»

|

.=/A for o; =
A; NS for o

Il
o

1.1. Lemma. fJ(A)  f3(B), whenever A < B < S.
1.2. Lemma. f3,(4) = f3(A4) f)(A) for A € S.
Let us put A4 = {0, 1}*~\{1}*

1.3. Lemma. If A€ 2(S) and a € A, then Af3(A) < [3(A).

Proof. We can suppose that o = 0,0, ... &, o; € {0, 1}, and o; = 0 for some j
with @; = 1 for i <j. If j = I, then Af5(A) = ASA, ... A, < SA,... 4, = f3(A).
If j > 1, then Af§(A4) = A'SA;,, ... A, S AT SA; ... A, = f3(A).

1.4. Lemma. If A€ 2(S) and ae A, then f3(A) f3(A) € f(A).
Proof. We have f3(4) = A, 4, ... A,and A; = S for some j. Then f7(4) f3(A) =
= A Ay A (A AAL L A) Ay Ay S Ay Ay A SA L Ay =
= f2(A).
1.5. Lemma. If A e 2(S) and a e A, then f3(A U f(A4)) < f(A).
Proof. Let A € #(S). First we note that for every positive integer n we have
(1) (AU fi(A) = $" = f(4),
where o = 0".
Let o € A. We prove our statement by induction on the length n of «. It follows

from (1) that the result is true for n = 1. Assume now that n = 2 and the result
holds for n — 1.

Case 1: a = 1f. Then fe A and fj(A v fj(A)) € f3(A). Using Lemmas 1.1, 1.2,
1.3 and 1.4 we obtain
f2(4 0 f3(4)) = (40 Afj(4)) f(A v Afj(4)) <
S (A v Afj(A) f5(4 © f{A)) € (A v Afj(A4)) f5(4) =
< Afj(A4) U AfS(A) f5(A) = Afj(A) = f3(4).

Case 2: o = B1. This is dual to Case 1.

Case 3: o = 0B0, where f € {0, 1}*. According to (1) we can suppose that § ¢ {0}*.
Thenn =3, f=0,...0,_,and I + 0, where iel if and only if ie {2,...,n — 1}
and o; = 1. Therefore f5(4 U f3(A)) = SA, ... A,_,S, where 4; = AU f3(A) for
ieland A; = Sforiel ={2,...,n — I}\L

By Z we denote the set of all words of {0, 1}* having the length n — 2. Let us put
By, = A, B;; = fXA)ifiel, B,y =S =B ifieland B,=SB,,,...B,_;, S
if p=19,...7,-1€Z. It is easy to show that B, = f5(A4) if y =0""% and B, <
< Sf5(A) S < f3(A) if y + 0""2. Hence we have fS(Au fS(A)) = U B, < 5(A).

veZ

Jj—1
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1.6. Definition. Let a e 4. A non-empty subset M of a semigroup S is called
a generalized o-ideal of S ifff(M) S M. A generalized a-ideal M of S is said to be
an a-ideal of S if M is a subsemigroup of S.

1.7. Theorem. Let A be a non-empty subset of a semigroup S. Then AU f5(A)
is a generalized a-ideal of S for every a e A.
The proof follows from Lemma 1.5.

2.

S. Lajos, in [3], gave an example of a semigroup for which certain generalized
(m, n)-ideal are not (m, n)-ideals. F. Catino, in [1], characterized the semigroups
for which any generalized (1, 1}-ideal is a (1, 1)-ideal.

2.1. Theorem. Let S be a semigroup and o€ A. Then every generalized a-ideal
of S is an o-ideal of S if and only if abe f5({a, b}) for all a,be S.

Proof. Suppose that M?> = M for every generalized a-ideal M of S. Let a, be S
and put A = {a, b} and M = A U f5(A). According to Theorem 1.7, M is a general-
ized a-ideal of S and so abe M?> € M. If ab e A, then ab = a or ab = b. In both
cases we have ab e f5(A).

Assume that ab € f3({a, b}) for all a, be S. Let M be a generalized a-ideal of S.
If xe M?, then x = ab, where a,/beM and so, by Lemma 1.1, we have abe
efi({a, b}) < f3(M) = M. Therefore M> = M and the proof is complete.

Let us put W(a, b) = {a?, b%, ba®, ab?, aba}. Recall that an element a of a semi-
group S is said to be left reqular if a € a®S. Dually, a right regular element of S.

2.2. Theorem. Let S be a semigroup and f € {0, 1}*. Then the following statements
are equivalent:

1. For any a e {0, 1}*, every generalized 0Of-ideal of S is an a0f-ideal of S.

2. Every generalized 130B-ideal of S is a 120B-ideal of S.

3. For all a,beS we have abe W(a, b) Sf}({a, b}) and moreover a* is a left
regular element of S.

Proof. 1 = 2. It is clear.

2=3. Leta,beS. Put A = {q, b}. By Theorem 2.1 and Lemma 1.2 we have
ab e f5:04(A) = A3Sf3(A). This implies ab € W(a, b) Sf;(A4) or ab e babSf3(4). In
the second case we obtain ab e b2abS f3(A) € b*S f3(A) = W(a, b)S f3(A).

Moreover, for a = b we have a? € a*S and so a® € a*S.

3=1. Let a,beS. Then abe W(a, b) S f3(A), where A = {a, b}, and a’e
€ a™S, b* e b™S for all integers m = 2. It is easy to show that ab € A™S f3(A) for
all integers m = 2, whenever abe {a?, b?, ba*, ab®} S f;(A). Suppose that abe
€ abaS fﬁ(A) We shall distinguish two cases.

Case 1: bae{b? a? ab? ba®} Sfj(A). Then bae A™S f;(A) for all integers
m = 2 and so ab e A™S f;(A) for all integers m = 2.
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Case 2: ba e babS f;(A). Then ab e (ab)® Sf}(A4) and so ab e (ab)" S f5(4)
< A™S fg(A) for all integers m = 2.

Therefore we have ab € A™S f3(A) for all integers m = 2 and so ab e f3(4) .
- Sf(A) = f34(A) for all o e {0, 1}*. It follows from Theorem 2.1 that every general-
ized a0p-ideal of S is an :xOB-\deal of S and the proof is complete.

We recall that an element a of a semigroup S is called completely regular if there
exists an element x of S such that a = axa, ax = xa. It is well known that an
element of S is completely regular if it is left regular and right regular.

Using the same method of proof as in Theorem 2.2, we obtain:

2.3. Theorem. Let S be a semigroup. Then the following statements are equi-
valent:

L. For all «, Be {0, 1}*, every generalized a0B-ideal of S is an aOf-ideal of S.

2. Every generalized 1301°-ideal of S is a 13013-ideal of S.

3. For all a,be S we have abe W(a, b) SW(b, a) and moreover a* is a com-
pletely regular element of S.

3.

Let ¢ be a congruence on a semigroup S. Put T = S/¢ and define y: 2(T) - 2(S)

as follows:

(M) =Uz

forany M c T. zeM
3.1. Lemma. Let P, Q € Z(T). Then y(P) < Y(Q) if and only if P
3.2. Lemma. Let P, Q € 2(T). Then (P) $(Q) < Y(PQ).

3.3. Lemma. Let M € #(T)and P;e Z(T) fori = 1,2, ..., n. Then y(P;) Y(P,) ...
. Y(P,) € Y(M) if and only if P,P, ... P, = M.

Proof. Suppose that Y(P,) Y(P,) ... y(P,) € y(M). If y € P,P, ... P,, then there
exists z;e€ P, for i =1,2,...,n such that z;z,...z, € y. For i = 1,2,...,n we
have z; € Y(P;) and so z;z,...2, S (M). Therefore y n (M) =% 0, hence y <
< ¥(M). Then y € M. Consequently PP, ... P, £ M.

Conversely, assume now that P{P, ... P, € M. Using Lemma 3.1 and Lemma 3.2
we obtain y(P,) Y(P,) ... W(P,) € (PP, ... P,) € Y(M).

3.4. Lemma. Let M € 2(T). Then f3 y(M) < W(M) if and only if f](M) < M.

3.5. Lemma. Let M be a non-empty subset of T. Then M is an a-ideal [a general-
ized a-ideal] of T if and only if W(M) is an a-ideal [a generalized a-ideal] of S.

3.6. Lemma. Let P; e 2(T) fori = 1,2, ...,nand Yy(P) Y(P,) ... y(P,) € Y(#(T)).
Then (PP, ... P,) = W(P)) y(P2) .. (P,,)

Proof. Suppose that y(P;) l//(Pz Y(P,) = ¥(M) for some M e 2(T). It follows
from Lemma 3.3 that P,P, ... P, & M According to Theorem 3.2 we have y(M) <

in
©
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S Y(P,P, ... P,). Lemma 3.1 implies M < P, P, ... P, and this completes the proof.
Let 0 + o < 2(T). By [/], [Y(4)], respectively, we denote the subsemigroup
of 2(T) generated by /, the subsemigroup of #(S) generated by /(7).

-3.7. Lemma. Let O + o < P(T) such that [y(o2)] < W(P(T)). Then y|[</] is
an isomorphism of [ ] onto [Y()].

Proof. Assume that Me[o/], then M = P,P,...P, where P,e.of
(i=1,2,...,n). Hence we have $(P,)y(P,)... y(P,) e [W(#)] = Y(A(T)). Ac-
cording to Lemma 3.6, we obtain (M) e [y(#}]. Thus y([/]) = [¥()].

Let Ae[y(#)]. Then A = Y(P,)y(P,) ... y(P,) e Y(#(T)), where P;e o
(i=1,2,...,n). It follows from Lemma 3.6 that A = (PP, ... P,)e y([«]).
Therefore Y([#]) = [¥(«)]. By Lemma 3.6 and Lemma 3.1 we obtain that /[ .o/]
is an isomorphism of [ /] onto [Y(#)]. The proof is complete.

Let we A. By F5[~ ;] we denote the subsemigroup of #(S) generated by all
a-ideals [ generated a-ideals] of S. An equivalence relation o(F3) [o("F3)] on S is
defined by the rule that

a,b)eoa(F3) iff VHeFS: aeH<beH
( ) ( ‘l) a
[(a,b)ea("F3) iff VHe F5: aeH<beH].

-3
v

3.8. Theorem. Let S be a semigroup and o€ A. If ¢ is a congruence on S such
that ¢ < o(Z3) [0 < o(" F3)] then the semigroups F3 and F5°[~ F; and ~ F3?]
are isomorphic.

Proof. It is easy to show that according to Lemma 3.5, ¢ = o(#;) implies
F5 = Y(2(T}), where T = S|o. By o/ we denote the set of all a-ideals of T. Lemma
3.5 implies that (/) is the set of all a- ideals of S and so #; = [Y(«)] and 7 =
= [#/]. Analogously for generalized a-ideals. The rest of the proof follows from
Lemma 3.7. _

If S is a regular semigroup and « = 101, by Proposition 4.1 of [ 11], 6(F3,,) = H#.

3.9. Corollary. Let S be a regular semigroup and let o be a congruence relation
on S such that ¢ < #. Then the semigroups F5o, and F52, are isomorphic.

Theorem 2 in [9] is a consequence of the last corollary.

This Corollary gives more information on the semigroup #3,,: For instance if S
is a o-regular bisimple semigroup it follows from Corollaty 4 [10] that & FSou is
a rectangular band. Now, since # is a congruence relation and since S/.fi” is iso-
morphic to the bicyclic semigroup %(p, q) (this latter has already been studied in
[8]). Moreover from the description of F{{? given in [8] one easily derives
a description of #35,,.

The analogue of Corollary 3.9 does not hold if 5 is replaced by Green’s relations
& and Z. Indeed, if S is a left zero semigroup and ‘Si > 1, then £ =8 x S,
| #5565 = 1 and |F,,| # 1, hence F3,, and {47 are not isomorphic.

The following, however, is true, solving problem by S. Lajos.

526



3.10. Corollary. Let S be a semigroup. If ¢ is a congruence contained in &,
then #§, and F§¢ are isomorphic.
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