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1. Introduction. Let Z be the additive group of integers and Z, the semigroup of
non-negative integers. Let ¥ be an isometry acting on a separable (complex) Hilbert
space and let (T,),z, be the semigroup of isometries defined by T, = V" (ne Z,).
The well-known Wold decomposition theorem says that the space H can be decom-
posed into the orthogonal sum H, @ H, in such a way that H, reduces every T,
to a unitary operator and the semigroup (7},[ H ,),,Eh is unitarily equivalent to the
semigroup of unilateral shifts.

For a pair of commuting isometries the situation is much more complicated. This
was studied in many papers but satisfactory results were obtained only in the case
when isometries V;, V, on H doubly commute, i.e. ViV, = V,V;, V Vi = V;'V,
(see [7], [8]). Finally, the detailed structure of the semigroup generated by two
doubly commuting isometries was given in [2]

In [9] M. Slocinski suggested to study pairs of commuting isometries satisfying
the following property (which we have called compatibility).

Defipition 1. Let V,, V, be commuting isometries on a separable Hilbert space H.
We say that V; and V, are compatible if V{V;" commutes with V3'V,™ for every
m, ne Z, (i.e., the orthogonal projections onto the ranges of ¥} and V}' commute).

Clearly, double commuting isometries are compatible.

This paper is a continuation of the work begun in [6] where the authors disproved
the original Slocinski’s conjecture about the structure of compatible isometries.
In what follows we construct a canonical functional model for general finitely
generated compatible semigroups of isometries.

Let S be a commutative (additive) semigroup with a unit 0. Let (T}),s be a repre-
sentation of S by isometries in a Hilbert space H, i.e.

T'T,=1, Ty,=TT,, To=1 (s,1€5).

Definition 2. We call the semigroup (Tj),.s compatible if TSTS*(S € S) form a family
of commuting projections (note that T,T;" is the orthogonal projection onto the
range of T}).
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The following proposition shows that for pairs of isometries the two notions of
compatibility coincide.

Proposition 1. Let Vi, V, be commuting isometries on H. Then Vy and V, are
compatible if and only if the semigroup (V{'V3)mmez: is compatible.

Proof. Put T, ,, = Vi'V3, (m, n)e Z;. The ”if” part is clear as
£ 3 £ 3 % *
V{"V1 "= T(m,O) T(m,O) > V;Vz "= T(o,n)T(o,n) .

Assume that V'V{™ and V3V, commute for every (m, n)e Z7. The semigroup

S = Z2 is partially ordered by the relation
(s51,85) S (ty, 1) iff s; <1 for i=1,2.
Let t,s€ Z2. If s < t it clearly follows that
LTTT' = T T,T, T = TT; = TT.T'TT = TTT,T) .
If neither s < t nor ¢ < s then provided r = min (s, t) the differences s — r, t — r
are of the form (m, 0) or (0, n) so that the commutativity of T,T," and T,T;" follows
from the relations

’I:T.I: = n(Ts—rn'*—r) T* b Tth* = n(n—th*—r) Tr*

r
by our assumption.

In the next section we give two examples the latter of which forms a canonical
model for compatible semigroups of isometries. The main theorem (Section 4) states
that any finitely generated compatible semigroup (T)ss of isometries is a direct
sum of semigroups which are unitarily equivalent to the semigroup (W,),s from
Example 2. The appropriate measurable space X and a projection valued measure Q
are constructed in a standard way in Section 3.

We conclude our introduction with an example of commuting isometries which are
not compatible.

Example. Let H be a Hilbert space with an orthonormal basis (e;){%; U (fi)iZ;.
Define isometries V, We B(H) by the relations

Ve, =eiv1s Vfi=firs,
Wei —_ Jz,(ei + €1 +f.' _fi+1)’
Wi = 3fixr + fiva + €n1 — €in2).

It easily follows that VW = WV, |Ve,| = |Wfi| = L, (We,, We;) = (Wf., Wf;) =0
for all i = j, and (We;, ij) = 0 for all i, j. Thus Vand W are commuting isometries
which are not compatible as VV* and WW* do not commute.

2. Two examples. We introduce the following notation. Let S be a commutative
semigroup and G its “division” group, i.e. G = {[s — t]: s, t e S} where [s — t]
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denotes the class of cquivalence ~ containing s — ¢, and (s — ) ~ (u — v) if
s+v=u+t(s,t,u,veS). A non-empty subset X = G will be called a diagram
ifpeX,seSimply ¢ + seX.

Denote by 2 the set of all diagrams. For ¢ € G define E, = {X e Z, ¢ € X}.
Clearly, E, = E, 4 (peG,se S). Let & be the o-algebra generated by the sets E,,
peG.

Example 1. Let p be a positive measure on (%, %), u(Z) = 1. Let K be the set
of all functions f: G — *(u), ¢ = f, € I*(y) such that supp f, < E, (¢ € G) and

Y folizy < -
G

Then K with the inner product
(fy g)K = z fzh% d[/

oG
becomes a Hilbert space.

Define T, € B(K) by (T.f), = fo-s (s€ S, ¢ € G). Clearly, (T,)ss is a commutative
semigroup of isometries. It is easy to check that (Tf), = f,+sxz, and (T,T;f), =
= foXg, ., Where x, denotes the characteristic function of a set A. So the projections
T.T), T,T;" commute for every s, t € S, hence (Ty)ss is compatible.

Example 2. Let (2, &, ) be as above. Let us denote
Ko ={f: G — I*(n), ¢ — f, s.t.suppf, < E, (p € G),
fo * 0 for only a finite number of elements ¢ € G}

and let ¢ (¢ € G) be a family of bounded measurable complex functions on & which
are positive definite in the following sense:

w%lecferfw(x)fw(X — ¢ + ¥) cpy(X) du(X) 2 0

for every function f € K,, and normalized by the condition ¢y = 1. By X — ¢ + ¢
(XeZ, ¢,¥eG) we denote the diagram X — ¢ + Y ={¢ — ¢ + ¥, LeX}.
Then K, is a linear space with a positive semidefinite bilinear form

{90 =2 JafoX) 94(X — @ + ¥) ¢ y(X) dp(X) .
@

Denote K; = {feK,, {f,f> = 0} and let K be the completion of K,/K,. Defining
(W2f)y = fp-s (s€ S, ¢ € G) we obtain isometries on K, which leave the kernel K,
invariant. So they determine in a natural way the semigroup (Ws)ses of commuting
isometries on K which is clearly compatible.

Remarks. 1. Example 2 includes Example 1 for ¢, = dq, (the Kronecker delta).

2. Taking the Dirac measure-u = J; concentrated on G € & we obtain commuting
unitary operators. Conversely, any commutative semigroup of unitary operators
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(which are doubly commuting, hence compatible) with a cyclic vector h e H, |h| = 1,
can be obtained for y = &g, ¢;—, = (U;h, U,h).

3. Let DeZ be any diagram, p = dp, ¢, = 0o, Then Example 2 gives the
(Ts)ses of isometries on the Hilbert space H spanned by an orthonormal semigroup
family of vectors {e,, ¢ € D} defined by Tie, = e, .

4. Let De Z be a diagram with an automorphism o € G (i.e. D + o = D), let
Ge = (ke Z) and ¢, =0 otherwise. For S =23, G= 2% ofi,j)=(i+1,
j— 1)for(i,j)e D = {(r,s), r + s = 0}, we obtain Example 2 of [6].

5. Let V,, V, be doubly commuting isometries with a cyclic vector. Then one can
take S = Z}, G = Z? and a measure concentrated on the four-point set {Z x Z,
ZxZ. ,Z, xZ2Z,Z, x Z+}. These four diagrams correspond to the four parts in
the Wold decomposition of two doubly commuting isometries given in [7], [8].

3. Construction of spectral measure. The aim of this section is to show that for any
finitely generated compatible semigroup of isometries we can construct a projection-
valued measure Q defined on the measurable space (2, &) introduced in the previous
section.

Let S be a commutative semigroup with N generators, N < oo, and G its division
group. Let (Tj).s be its representation by isometries in a Hilbert space H. As any
such semigroup is an epimorphic image of the free commutative semigroup with N
generators, we may assume without loss of generality that S is the free commutative
semigroup. In the sequel we shall assume S = ZY and G = Z" (N < oo) although
it is possible to do all the considerations for a general commutative semigroup
with N generators.

For oG, ¢ =s —t (s,teS) put T, = T,;*T,. Clearly, T, does not depend on
the choice of s and t as T}%, T,,, = T,'T, = T, for each r € S. Define further

Q, = T:Tfp = K*Tth*’I; ((P =s—1s, teS).
Proposition 2. (T),.s is compatible if and only if (Qp)pcc is a family of commuting
projections.
Proof. The if” part is easy to see from the identity
Qo-, = T,T} (teS).
Suppose that (Ts)sés is a compatible semigroup. Let ¢ = s — te G, s, t e S. Clearly,
Q, = TIT,TIT, = 0,
0, = TNT,TY) (LT (TT) T, = T'TTIT, = Q, .
If o, yeG o=s~1t,y=u—v(stuveS)thenalso ¢ = (s + u) — (t + u),
y=@w+s)—(v+ s), hence
Q(PQ'II = ’I?f)-u(Tt-i-u’Tttu) (Ts+uTu*+s) (Tv+sTv*+s) Tu+s =
_ %
- 1;+"(\T”+57:’*+3) (’I'S‘FuTu*-i-s) (Tt+lthﬂ;u) Tu+s = Ql//Q(p .

I
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Corollary. If (Ts)ses is a compatible semigroup of isometries on a Hilbert space H
and pe G, ¢ =5 — t(s,teS), thenT, = T;T, is a partial isometry with the initial
space T*T,H and range T}T,H.

For ¢ € G let us denote E, = {X € &, ¢ € X}, E® = % — E. For finite sequences
@ ={@g, ..., 05}, ¥ = {Yy, ..., ¥} of elements of G we shall write

p q
E!=NE,nNE".
i=1 j=1
We shall call such sets elementary.
Lemma 1. The set &, of all finite disjoint unions of elementary sets forms an
algebra generated by the sets E,, ¢ € G.
Proof. For all finite sequences ¢, {, o, T of elements of G we have E;’ﬁ NE, =

= E'2* If UE,, UE; are two finite disjoint unions of elementary sets then

QuUs*
i j
. (VE) 0 (UE)) = U(E; n E})
i J 1,7
is a disjoint union of elementary sets, hence &, is closed under intersections.
Let EY be an elementary set. Then
% — Ey = U{EGZL000, o < o, ¥ =¥, o'y + 0},
so the complement of an elementary set belongs to &.
If UE,; is a finite disjoint union of elementary sets then
Z —UE; =% — E)eS,.
So &, is closed under taking complements, hence it is an algebra.
Now we return to the given compatible semigroup (T)ses of isometries. Define

o) =1,
0(2) = 110, T1(1 - 01)

ji=

for all fi nite sequences ¢ = {@y, ..., @,}, ¥ = {Y¥y, ..., ¥} of elements of G,
Q( U Ei) = Z Q(Ez)
i=1 i=1
o- 11/ finite disjoint union YE; of elementary sets. The correctness of the definition

2
follows in a standard way. It is easily seen that Q is finitely additive on elementary
sets. If some set E € &, can be written in two ways as a disjoint union of elementary
sets
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then

3 0(E) = (U E) = 0(U (£:n E)) = (U E) = ¥ O(E).

hence the value of Q(E) does not depend on the way of expressing E € &,.

We conclude that @ is an additive projection-valued function on &,. Now we are
going to show that @ extends to a g-additive projection-valued function on the
g-algebra . We shall need the following lemma.

Lemma 2. If A,e Sy(n=1,2,...),4;,24;,>...2 N A, =0, thenlim Q(4,) =
= 0 in the strong operator topology. n=1 ne

Proof. Suppose on the contrary that there exists a unit vector h € H such that
0(A,) h+ 0 (n — ). Let us denote

I, ={ieZ |i| £ K",
Te={Xnl, Xe},
X >, m(X)=Xnl, (k=12,..)
(recall that G = ZP).
Clearly, for any a € Z; we have n; '({a}) € &, and

7= U n; '({a}).

acZ

The union is finite and disjoint so that

Y O(m'(fa)) =1

acZy

and we can find x, € Z, such that
Q(4,) (. '({x})) h+ 0 (n > o).
We can even choose x, e %, inductively in such a way that x, NI _; = x;_;.

Taking now X = U x, € Z we have X n 1, = x, (k = 1,2, ...) whence
k=1

0(4,) o '((X L)) h+0 (n— ).

On the other hand, X ¢ 4,, for some me{1,2,...}. Choosing ke{1,2,...} big
enough such that all ¢, € G involved in the expression of A4,,€ %, as a finite
disjoint union of elementary sets are contained in I, we find that

Am N nl:l({X N Iln}) = 0 >
hence Q(4,,) O(m; '({X n1,})) = 0, a contradiction.
It follows from Lemma 2 that the projection-valued function Q is o-additive on

the algebra &, so it can be uniquely extended (see [4] for ordinary complex measure)
to a spectral measure Q defined on the o-algebra & generated by the sets E,,, ¢ € G.
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Fix now a unit vector h € H and define a positive measure x on (%, #) by
wA) =|0(A)h*, Aes.
Further we introduce a family (p,),c¢ of complex measures defined by
t(A) = (T, Q(A) h,h), ¢eG, AeS.
Clearly, po = t, Ity is absolutely continuous with respect to p, |p,(4)] £ u(4)
because T, is a partial isometry. Hence there exist functions ¢, € L!(u), ¢ € G, such

that
co = dpyldp, e, 1.

Lemma 3. If (Ts)ses is a compatible semigroup of isometries then

(1) . Q\IITq) = T¢Ql[1+(/i 5
(2) T;Tqr = Ty-yQy
for every ¢,y = G.

Proof.

Let o =s—t,y=u—-v(y+o=06+u)—-(C+v), ¢ —¥=
= (s + v) — (¢ + u)). Using the commutativity of projections T,T," (s € S) we obtain

in/Tq» = (T:TUR*T.‘) Tt*Ts = Tu*+t(Tv+tT:<+ t) (Tu+tTt*+u) Ty =
= u*+ t(Tv+ tTv*+t) Ty = T::i t(Ts+un*+u) (Tv+ tTv*+ t) Topw=
= Tt*T's(T:iuTv+tTu*+rTs+u) = T¢Q¢+<p .
Analogously
T, T, = TST,T}T, = T}, TT,T) (LT T, =
=T, T, (TSTT T) = T,_,0, .

From equality (1) in Lemma 3 we derive the following

Proposition 3. If (Ts)ses is a compatible semigroup of isometries then
Q(A) Ttp = TcoQ(A + QD)
forevery Ac S, 9 € Gwhere A + ¢ = {X + ¢, X € A}.
Proof. Let ¢ € G. We prove that the set

oA = {A e, Q(A) T, = TwQ(A + (P)}

forms a o-algebra. As E, € of for any § € G by equality (1) in Lemma 3, the equality
o = & follows.

For any A, Be &/ we have
Q(gg‘ - A) T, = (I. - Q(A)) T, = T(I - (A + (P)) =
T, A% — 4) + 0),

Il
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QANnB)T, = Q(4)Q(B) T, = T,Q(4 + ¢) QB + ¢) =
=T,0(AnB + ¢),

and for A = |J A4, a disjoint union of sets A; € &, we conclude
i=1

Q(ylAi) T, = .ZIQ(Ai) T, :'Z'x T,0(4: + ¢) = TwQ(iLz)lAi +9).
The proof is complete.

4. Unitary equivalence. Let (Ts)ses be a compatible semigroup of isometries on a
Hilbert space H, he H, |h| = 1. Let pand (o) pec be the measures constructed in
the preceding section and let (C¢)¢sa be the corresponding measurable functions,
¢, € L'(1t). We shall show that (Ty)es restricted to the smallest reducing subspace
containing the given h e H are unitarily equivalent to the semigroup (W,),.s constructed
in Example 2.

For disjoint sets A4, ..., 4,€% and arbitrary complex numbers o, a,, ..., o,
define

Uo(é‘,l“ix.»qi) = Z:‘loti 0(4) h.

|.;°"’X"‘Iiz(“) =,_Zl|°‘iiz u(4) Z |esf” [@(4:) |* = | Z o Q(4;) b ,
the operator U, is an isometry defined on a dense subset of I*(n), hence it can be
uniquely extended to an isometry Uy: () — H. As in Example 2, denote
= {f G — Lz(u), (pl—-»f(p, Supfw c E(p, f(p + 0
for only a finite number of elements ¢ € G} .

For our convenience, we write formally f = Z foe, for fe K,. Define the operator
U:Ky, - H by

U = V(S fue) = £ TS, (7eKy).
For f = x4, g = xpey (4, Be ¥, A < E,, B < E, ¢, € G) we then obtain
(Uf, Ug) = (T, Q(4) h, T, Q(B) h) = (TJT Q(4) h, Q(B) h) =
= (Ty-yQ, Q(4) h, Q(B) h) = (Q(B) Ty Q(A) h, h) =
= (To-y QB+ @ —¥)nA)h,h) = py_y(B + ¢ — )~ 4) =
= [Bro-wna Coy A = [ 24X) (X — ¢ + ¥) ¢,y (X) du(X) =
=</, 9k

where (-, * )k, is the bilinear form introduced in Example 2.
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Clearly, the last equality holds also for f = fye,, g = gyey, supp f, < E,,
supp g, < Ey(@, ¥ € G), and f,, g, € I*(u). For f,ge Ko, f =) foly 9 = ), 9yey
we then have #eG ¥eG

(uf, Ug) =2 (Uf¢e¢> Ugyey) = Y Sop» G40K0 =
@, YeCG RS

= Y [2/X) gy(X — @ + V) cpy(X) du(X) =

[AE
= <f5 g>Ko .

This shows that the functions (c,),e¢ are positive definite in the sense of Example 2,
and U: K, — H is an isometry. As K; = {f e K, {f,f)x, = 0} = Ker U, the iso-
metry U can be uniquely extended to an isometry U: K — H, K being the completion
of Ko/K;.

Let seS, f = e, Ac¥, A c E,, ¢ cG. By Lemma 3 we obtain

'T.;Uf = T.'s‘Tq:UOXA = T(p+sQ(p Q(A) h = T¢+s Q(A) h =
= T¢+sLT0XA = UXAezp+s = UVst

This implies T,U = UW, on K, whence the same intertwining relation holds on K.

So U maps K isometrically onto the smallest subspace of H containing h and
reducing all the isometries T, (s € S).

We have proved the following main theorem:

Theorem. Let (T,),.s be a compatible semigroup of isometries on a Hilbert
space H. Then H can be decomposed into an orthogonal sum H = @H, of subspaces

a
reducing all the isometries T, (s € S) such that for every o the semigroup (T, | H,)ses
is unitarily equivalent to the semigroup (W,),s defined in Example 2 for some
measure u™ and a positive definite function (c$),cc-
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