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SURFACES IN GENERAL AFFINE SPACE
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The theory of surface in the equiaffine 3-dimensional space is well (?) developed.
On the other hand, little is known about the theory of submanifols of the space
with the general affine group; compare the contributions of S. Gigena, K. Nomizu,
U. Pinkall and U’ Simon in [1]. In the present paper, I am going to study surfaces
in the 3-dimensional general affine space and show some global characterizations of
quadratic surfaces.

To each point m of an elliptic surface M? in the general affine space A® let us
associate a frame {m; vy, v,, v} such that v,, v, € T,(M?). Then we have the funda-
mental equations
(1) dm = o'v, + ©*v,, dv; = olv; (i,j,...=1,2,3)
with the usual integrability conditions
(2 do' = 0’ A 0, do! = o} A of.

It is easy to see that we may choose the frames in such a way that

3 - 0] =o', 0 =o0;

the differential consequences are
4) (20} — @) A @' + (0] + 03) A 0? =0,
(0 + w3) A @' + (20] — w3) A ©* =0,
and we have
(5) 201 — 03 = a,0' + 4,07, O] + 0] = ;0" + a4;0°,
205 — @) = a;0' + a0®.

Let the auxiliary 1-form q)bbe defined by

(6) ¢ = o] - w3),
ie.,
(7) 0] = (a:0" + a;0%) + ¢, 0} = 440" + a;0?) —¢. *
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The integrability conditions of (5) are

(8)

(day — $a,03 — 3a,¢0 + 30}) A ©' +

+ [da, — 1a,03 + (a; — 2a3) ¢ + 03] A 0* =0,
[da, — ta,03 + (a; — 2a3) ¢ + @3] A ' +

+ [das — 1a;03 + (2a, — az) ¢ + 03] A @* =0,
[das — tas03 + (24, — az) @ + @3] A @' +

+ (day — 3a,03 + 3a;30 + 303) A 0> =0.

Let {m; wy, w,, w3} be another field of frames associated to our surface. Then
we have the equations

©)

— i
]

1 2
dm = t'w; + °w,, dw ;

analogous to (1); let us suppose the conditions of the type (3), i.e.,

(10)

Let the relation between our two fields of frames be given by

(11)

Wy = 0lg30y + 0ga0p, Wy = Oq05 + Up30;,

W3 = 0310; + U330, + 03303 .

From this and from (1) + (9), we get

(12)

—_ 1 2 1 2

dm = o'v; + 0?0, = 1010y + 05,0;) + (o405 + 05;0,),
1 2
dwy = dotyy.0y + dayy.0; + agq(@iv; + @70, + ©'vs) +
2

+ oy,(03vy + 0jv, + w?vsy) =

1 2 1

= 13(00 10y + 0ya02) + T(010y + 0pa0;) + THotzgvy + 03,0, + 03305),

dw, = doy .0y + dotyy. 05 + 0yy(01vy + ©iv, + ©'vs) +

-+

tyo(wiv; + W30, + 0?v3) =

T3(0410; + 04203) + T5(02101 + 2205) + TH(atzy0y + 0350, + %3303)
dogy .0y + dogy.v, + dogz.vy + 05(@iv; + 0iv, + @'vy) +

+ agy(@i0; + 030, + ©703) + agz(@iv; + 030, + Wivs) =

13(0tg 40y + og205) + 302405 + 2502) + T3(03105 + 3,0, + A3303) .

Il

dw;

From (12,),

(13)

@' = ogytt 072, 0% = ay,Tt + oy,Tt.

Comparing the terms at v5 in (12, ;) and using (13), we get

(14)

2 2 2 2 _
a1y + aip = 05y + Uy = 033, Oyg0py + 00, = 0.

Thus o33 > 0, and there are functions «, § such that

(15)

Oy =0cosfl, og, = —osinf, o, =easinf, a,, = gxcosf,

a?; >0, o= +1.

®x33
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Comparing the terms at vy, v, in (12, 5) and at v; in (12,) and using (15), we get
after elementary calculations
(16) do + acos? f.w! — asin Bcos f.(w; + @) + asin® f.w] =
= ar} + (a3, cos B — a3, sin B) ©*,
—adp + asin fcos B.(w] — w3) — asin® B.w) + acos? f.w] =
= garl + (34 Sin B + as, cos f)
oo df + gasin fi cos B.(w] — w3) + ga cos® B.w) — gasin® f.w] =
= at} + (35 cos B — a3, sin f) T2,
o da + gasin? .ol + gusin fcos B.(w) + @F) + gucos® B.w; =
= gat} + (xzy sin B + a3, cos f) 1%,
20 da + o300 + 23,07 + o) = o?13.
Let
(17) 2l — 3 = ajt' + aye?, 1) + 1) = aytt + ajt?,
’ 2t — 13 = altt + aj7?
be equations analogous to (5). Using (16), we obtain
(18) @} = afcos® B.a, — 3sin fcos® B.a, + 3 sin® Bcos B.a; — sin® B.ay) —
— 30" (o34 cos B — asy sin B),
ay, = gofsin B cos? B.ay + cos f(cos®> B — 2sin® B) a, +
+ sin B(sin® B — 2 cos® B) ay + + sin® fcos B.as] —

— o™ Y(0t3g sin B + a3, c0s f) ,

a3 = ofsin® Bcos B.a, + sin f(2 cos® f — sin® f)a, +
+ cos B(cos? B — 2sin® B) a; — sin fcos® B.a,] —
— o Y(azy cos B — a3, sin ),
a, = gu(sin® B.a, + 3sin® Bcos B.a, + 3sin fcos® f.a; + cos® a.ay) —

— 30 (o3 sin B + o35 cos f)
and
(19
aj + a = acos B.(a; + as) — asinf.(a, + ay) — 4a” (o34 cos B — a, sin ),
ah + aj = ousin B.(ay + as) + excos B.(a, + a,) — 400” (o3 sin B + a3, cos f) .

From the last equations we see that we may choose the frames in such a way that

(20) a1+a3:a2+a4=0.
Let {m; v;}, {m; w;} be such two fields of frames; then
(21) 03 = 03, = 0.

In what follows, let us suppose (20). From (5, 3) we obtain

(22) o] = Hw3 — a;0' + azcbZ) , @) =03 + az;0' — a,0%).
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Adding (8, ;), we get

(23) ol A o'+ 03 A0?=0,
ie.,
(24) o) = bio! + b,0?, @} = b0' + by0?,

and the equations (8) reduce to

(25)

(da; — 3a,03 — 3a;9) A ©' + (da; — 3a;03 + 3a,0) A @ =(bs — b)) ' A ©?,
(das — a0} + 3a,0) A ©' = (da, — 1a,03 — 3a;0) A ©* = —2b,0' A ©.
The differentiation of (24) yields
(26) (dby — byw} — 2b,9) A @' + [db, — by} + (by — b3) @] A 0* =
= [da,(by — b3) + azb,] ©' A @?,
[db, — b,03 + (by — b3) @] A @' + (dbs — b3} + 2b,0) A @? =
= [fas(by — b3) — a,b,] @' A @?.

Comparing the terms at vy, v, in (12,) and using (15) + (21), we obtain

(27) aw} = cos f.73 + gsin B.13, «awi = —sinB.75 + g cos f.73.
If we write
(28) 73 = bit! + byt?, 15 = byt + by1?,

elementary calculations yield

29) by = a*(cos® B.by, — 2sin fcos B.b, + sin® B.by),
b} = ga®[sin B cos B.(by; — bs) + (cos® f — sin® B).b,],
by = a®(sin B.by + 2 sin B cos B.b, + cos® B.bs)

and

(30) b, + by = a*(b, + bs).

Thus we are able to choose the frames {m;v;} such that b, + by =0 or +1,
respectively.

From (21) we see that the straight line n = {m + tvs; te R} is an invariant of
our surface; it is the so-called affine normal. Let us look at the foci of the congruence
of affine normals associated to our surface. Let

(31) F =m + xv;
be a focus of the normal congruence. Then
(32) dF = (o' + xw}) v, + (0* + x03) v, + (dx + xw3) v5;

eliminating o', ®? from o' + x0} = ©* + x03 = 0, we get
(33) 1 + (bl + b3)x + (b1b3 - b%) x2 = 0.

Thus by + b3 =0 (at the point m) if and only if the foci Fy, F, do not exist (in the
case by by — b3 = 0 at m) or the point m is the center of the interval F,F,. In what
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follows, let us consider surfaces with by + b; #+ 0 at each point. Points with

b, + b; = 0 may be called maximal; this follows from the fact that each surface

with b; + bs = 0 at each point is maximal in the terminology of E. Calabi.
Cohsequently, let us consider just the fields of frames {m; v;} satisfying

(34) by + by = -2, ¢= 1.

Let {m; w;} be another field of frames satisfying by + b} = —2¢; then
(35) a=1.

From (13) and (15) we see that

(36) ds? 1= (0')? + (w?)?

is an affine invariant of our surface; it is the so-called affine metric. Because of (34),
let the function b, be introduced by

(37) by =bo— &, by = —(bo+2).
Using (20) + (37) and (35), the equations (18) and (29) reduce to
(38) ay = gcos3B.a, — osin3f.a;, ay =sin3B.a, + cos3P.a;,

by = cos 28.b, — sin 283.b, , b, = @sin2f.by + o cos 2B.b, .
Thus the functions
(39) a; + a3, by + b3
are affine invariants of our surface.
Because of (37), the equations (26) reduce to
(40)  (dby — bow} — 2b,9 + ew3) A @' + (db, — by} + 2be0) A W? =
= (aybo + ash,) ©' A @?,
(dby — by + 2byp) A @' — (dby — bow; — 2b,0 — ew3) A ®F =
= (a3by — ayb,) 0" A @7,
and we get the existence of functions ¢y, ¢, such that
(41) 03 = ;o' + c,0’.
Let the 1-form w be defined by
(42) w:= ¢ + }c,0' — ¢;0%);

then it is easy to see that

(43) do'= —0®> Aw, do?*=0'Arow.

Because of (7) and (22), we have

(449) 0 = 4(es — a5) @ + 3es + 05) 02
oF = ¥(e; + az) o' + ez — ay) 07,

2
of = Ha; = ¢;) o' + Has + ¢1) 0 + @,
1
2

o) =Hay + ;) @' + Haz —¢;) 0’ —w.
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The differential consequences are (25) and (40), i.e.,

(45)
(da;, — 3a;0) A @' + (das + 3a,0) A @* = (—=2by — a3¢; + a;6;) ©' A 2,
(das + 3a,0) A @' = (da, — 3a;0) A @* = (=2b, + ay¢; + a3¢;) @' A ?,
(dby — 2b,0) A @' + (db, + 2bew) A @ = (ayby + azb, + &c;) @' A @2,
(dby + 2bow) A @' — (dby — 2b,0) A @? = (azby — ayb, — &c;) ®' A 2

From (41) we get

(46) (dey — c,0) A @' + (dey + ¢y0) A @ =0,
ie.,
(47) de; — e = ¢0' F ¢4,07, dey + ;o = cq0" + ¢y

From (165) + (35) + (13) + (15) we see that the function
(48) et + 3
is an affine invariant of our surface.
The Gauss curvature x of the affine metric (36) is given, because of (43), by
(49) do = —xw' A @?,

this being well known. The differential consequence of (42) yields the following

Lemma. (Theorema egregium.) We have

(50) 2% = cyq + Cap + a3 + ak + 2e.

Theorem 1. Let M? = A3 be an analytic elliptic surface each point of which is
non-maximal; suppose
(51) x=¢=+1 on M?2.
Then M? is part of a quadric (an ellipsoid for x = 1 and a hyperboloid for x = — 1),
or the set
(52) N:={meM? a3 + ai = b} + b} =c} + ¢; =0 at m}
consists of isolated points.

Proof. Let m, be a non-isolated point of N; let D = M? be a bounded coordinate
neighborhood of m,. In D, take local coordinates (x, y) such that
(53) o' =r(x,y)dx, o®=s(x,y)dy; r(x,y)s(x,y)*0.
From (43), we get
(54) ® = —s“a—rdx+r‘1a—sdy.

dy 0x

Because of (50) and (51),
(55) Ci1+ ¢yt as+ai=0
on M?. From (45)—(47) and (55), we get, on D, the following system of partial
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differential equations for a,, as, by, by, ¢y, €2°

0
(56) sz‘l—2+rﬂ= —-(36—s+rsc1)ﬂz~ 3Q+rsc2)a3+2rsbz,
: 0x dy 0x dy
0
r?lai__s_gé=_ 36_r+rscz a, + 36i_}.rsc1 as + 2rsby ,
dy 0x dy Ox
ob
s%+r—~2=— 26_s+rsa3 by — zal—rsaz b, + erscy,
o0x dy 0x dy
0
rQPE b _ _ 2—Z+rsa2 bo + (22 — rsaz) b, — ersc, ,
dy Ox dy 0x
dcy dc, N 08 or
—+r = —rs{a; +a3)—— €1 ——c¢,,
7% ay ( 2 3) 1 P C2
dey .0c, or Js
r— ——=———C +_—C
dy Ox dy X

Obviously, this is an elliptic system; see [2], p. 76. The zero points of its solution
being not isolated, we have (see [2], Theorem 5.4.1 and p. 76)

(57) a,=a3=by=b,=¢ =c¢c;=0 on D
and, by analyticity, on M2, Thus we get
(58) 0 =0, o}=o0", o}=ao’, ol =0} =0}=0,
0] =0, 0= -0, 0;=-—to', o)=—-t’
from (3), (44), (41), (24), (37) and (57). The rest of our assertion may be proved easily.

QED.

Theorem 2. Let M = M? < A® be an elliptic surface each point of which is
non-maximal; let OM be its boundary. Suppose

(59) e=1 and *x<1 on M; ci+c¢2=0 on oM.
Then M is (part of ) an ellipsoid.
Proof. Consider the 1-form
(60) Q:= —c,0' + c,0?
on M; it is easy to show that it is an affine invariant of our surface. The Stokes
theorem reads

(61) fomr @ = [a(c11 + c2z) 0" A @?.
Because of 2 = 0 on M and (50), (61) turns out to be
(62) fu[2(1 = %) + a3 + a}] o' A ©* =0,

From (59) and (62), a, = a3 = 0-on M. The system (45) implies by = b, = 0 and
¢; = c¢; = 0on M, and we get (58) with ¢ = 1. QED.
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