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A number of problems with various physical background can be attacked from
the standpoint of the calculus of variations. In his paper [5], M. Otani investigated
nonzero solutions to the problem

div (|Vul?™? Vu) + [u* >u =0 on Q
u=0 on 0Q.

Taking advantage of the special form of the nonlinearities appearing in the equation
(homogeneity in Vu, u), he succeeded in proving the existence of at least one non-
trivial solution via the nonlinear eigenvalue theory.

In this paper we show how some simple ideas of nonlinear analysis combined
with the monotone operator theory can be used to obtain somewhat better results
for a wider class of elliptic equations. More precisely, we are going to establish the
existence of an unbounded sequence of solutions to the problem

n

(E) Z;—fi(x,Vu)+g(x,u)=0, xeQ
Xi

i=

(B) u(x) =0, xedQ

where 2 < R" is a bounded domain with a smooth boundary.

Our aim is to formulate the problem in terms of the approximate variational
method of Rayleigh-Ritz. To this end, we have to require f; = 0F|dy; for a certain
potential F. In order to obtain infinitely many solutions, the nonlinearities we deal
with are supposed to be odd in Vu and u.

Note that there exists a considerable number of papers related to the semilinear
case, i.e. to the case when f; are linear in Vu. Relevant references are e.g. [1], [6].
If the corresponding eigenvalue problems are involved, we refer to [3] or [1].

To agree upon notation, let us denote by R" the usual Euclidean space with the
norm | ],,. In what follows, the symbols ¢; stand for positive numbers supposed
to be constant in the given context.
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1. MAIN RESULTS
Concerning the functions f;, i = 1, ..., n, we assume

(F1) fi(x,y)=a—F—S—c—’—X) for i=1,...,n

13

where Fe CY(@ x R"), F(x,0) =0, F(x, ) is convex for each x, F(x, —y) =
= F(x, y) for all x, y;

(F2) there is a fixed number p > 1 such that
lfi(x,Y)i = C1lJ’l£-1 + ¢,
(F3) ilfi(x, Y)yi Z cs|yf — ¢y forall x,y.
As to the function g, we require
(G1) geC(Q x R,
g(x, —y) = —g(x,y) forall x,y;
(G2) there is a fixed number g > 1 such that

‘Q(X,)’)l = Cslyl“—1 + ¢cg forall x,y.

In view of (F2), (F3) the most convenient space in which the solution of (E), (B)
is to be looked for is the Sobolev space X = W, ?(Q) defined as the completion of
all smooth functions satisfying (B) with respect to the norm

lollx = (fa lel,‘,’ dx)'?.
It is known that X is a separable, reflexive Banach space with a Schauder basis
(see [3]).
Another space related to the function g is the Lebesgue space Lq(Q) determined
in the standard way. In the sequel, we will assume

(cy) q<q where §= © for p=n,

g =np/(n—p) for p<n.
In other words, the embedding X QQ L,(Q) is compact ([4]).

Finally, the missing a priori estimates are replaced by the following growth con-
ditions:

Il

(C2) there are constants v, 1, 0 < u < v such that
F(x,y) Zv) flx,y)yi >0,
i=1

ug(x, )y = G(x, y) =2 {3 g(x,’s)ds > 0
for all x, y, ly

n ; C7'
Following Rabinowitz [6], we can deduce from (C2)
(1.1) G(x, y) = cg|y|'* = ¢
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and

(1~2) F(x, .V) =< CmIYI,I./v + ¢11
for all x, y. As a consequence, we obtain
(1.3) l<p=slfv<lfusqg<q.

To relate the critical point theory to our problem, we introduce the energy
functional I,

I(v) = —[o F(+,Vv)dx + [ G(+,v)dx = —F(v) + 9(v).
Now (E) is an Euler-Lagrange equation obtained by setting an arbitrary variation
of I on X equal to zero, i.e.

(1.4) I'(v),wy = —j},ifi(ng)gﬁ +g(,v)wdx =0 forall weX.
i=1 X;

We are able to formulate our main result.

Theorem 1. Let Q be a bounded domain with a smooth boundary. Let the con-
ditions (F1)—(F3), (G1), (G2), (C1), (C2) be satisfied.

Then for an arbitrary number d there exists a weak solution u € X of (E), (B)
(i.e., u satisfies (1.4)) such that

(1.5) Jufl ooy 2 4.
The remaining part of the paper is devoted to the proof of Theorem 1. In Section 2,
the Rayleigh-Ritz method is used to get the sequence of approximate solutions.

The limit process represents a standard application of the monotone operator
theory and is carried out in Section 3.

2. THE RAYLEIGH-RITZ METHOD

@

To begin with, consider the Schauder basis {e;}{%; of X. Every function v € X has
a unique representation of the form

v=> afv)e,, a;eX*.
i=1
Now the sequence of subspaces X, < X
X, =%"span {e;| i < n}

represents a suitable platform for using an approximate variational method.

We intend to find approximate solutions of the problem (E), (B) as critical points
of the energy functional I restricted to X,. For this purpose, the following result is
needed.

Lemma 1. Let H be a Banach space, dim (H) < oo. Suppose there are subspaces
HI’HZ’ ‘
H=H +H,, {0}+H nH,+H,.
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Denote S(r) = {v| |v|x = r}. Let J be a functional on H, J € C'(H), J being even
(J(—=v) = J(v)) and satisfying

(2.1) : lim J(v) = +o0.
vl a— e
Suppose we have
(2.2) J<b on S(r)nH,,
(2.3) J>a on Hy.

Then there exists at least one critical point u of J such that
(24) J'(u)=0,
(2:5) J(u)e[a,b].
We postpone the proof to Section 4.
To apply this assertion to our situation, some auxiliary results are of interest.

Lemma 2. Denote R,p = Y. av) e;.

Then we have the estimate
(2.6) R0 L,0) < &(n) |Ruv|x forall veX where lime(n)=0.

n=+oo

Proof. Assume the contrary. Then there is a sequence

(1) Wy, =
- ” R"ku"k ” X

©) W

By virtue of reflexivity, we can suppose

satisfying

gy >8>0, [w,[x=1.

w, —w weaklyin X .
According to (1), we get

a(w,,) =0 whenever n, > i.

n.

Consequently, a;,(w) = 0 for all i, thus w = 0. On the other hand, w,, — w strongly
in L,(Q) due to (C1), which contradicts (2). QED.

As an easy consequence of the above result, we obtain

Lemma 3. Let be R' be a fixed number. Then there exist r(b) > 0 and m(b)
such that

(2.7) I(v) < b whenever veS(r)nspan{e;|i = m}.
Proof. Choose v e S(r) N span {e; | i = m}. Then (F3), (G2), and (C2) yield

I(v) £ —ciz|o§ + csfo] @ + cre-
By virtue of (2.6), we obtain

I(v) £ —cy, |0 + coze(m) [o]% + cra = —c12r” + ¢z e(m) 1% + ¢y -
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In view of Lemma 2, r(b), m(b) can be chosen in such a way that (2.7) holds for an

arbitrary fixed number b. Q.E.D.
Lemma 4. For a fixed number n, we have

(2.8) lim I(v) = +o0 for veX,.

: llollx,~

Proof. By virtue of (F2), (1.1) we have
I(v) Z —cysolk + crolollLuar — €17 -
Observing that 1/u > p and that all norms are equivalent on X,, we obtain (2.8).
Q.E.D.

Now we are about to use Lemma 1. Set H = X,, J = I. Let us choose b < 0
arbitrarily. In view of Lemma 3, we find m(b), r(b) such that (2.7) holds. We can
set H, = span {e,-l nzizm}, H =X, ¢ X, provided that n is sufficiently
large. By virtue of Lemmas 3 and 4, the conditions (2.1), (2.2) are fulfilled. Moreover,
it follows from (2.8) that I = a(m) on H, = X,, for some a € R* (in fact a = a(b)).
Applying Lemma 1 for each n = m, we get a sequence {u,},>, of approximate
solutions satisfying

(2.9) —f,,Zfi(-,Vu,,)(—?]— +g(,u,)vdx =0 forall veX,,
i=1 X;
(2.10) —fo F(+,Vu,)dx + o G(+,u,) dxe[a, b].

3. PASSING TO THE LIMIT

In this section, our aim is to demonstrate that the sequence {u,},5n constructed
in Section 2 possesses a weak limit u € X — the solution of (E), (B). To this end
choose { such that p < { < v. Setting v = u, in (2.9), multiplying by —{ and adding
to (2.10), we get

JaF(-,Vu,) = ¢ fi(-, Vu,,)g&‘ dx +
=1 ;
+fag(c u)u, — G(+,u,)dx £ —a, (—a>0).
From (C2), (F3) we conclude that

(3.1) lux < cys forall nz=m.
Using (1.1), (2.10), we deduce the estimate
(3.2) jn';fi(., Vu,) gzi'dx = —-b—cpo.

It is well known, due to convexity of F, that &' is a monotone, demicontiquous
operator mapping bounded sets of X into bounded sets in X* (see [4]). Keeping

0

(3.1) in mind, we can pass to the subsequence (denoted {u,};%; for simplicity) such
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that

(3.3) u, ~u weaklyin X,

(3.4) F'(u,)~h weaklyin X*,

(3.5) u, > u stronglyin L(Q),

(3.6) g(-,u,) > g(+,u) stronglyin LJQ), 1/q + 1/q' =1

where the last assertion is due to the Krasnoselskij theorem.
Keeping v € X, fixed, we are able to pass to the limit in (2.9), that is

(3.7) — (b, vy + fog(v,u)vdx =0

0

for all v e |J X,,, and therefore for all v e X.

n=1

We wish the function u to bé a solution of (E), (B), i.e. we are to show that
Chyv) = (oY fi(+, Vu) :_v dx forall veX.
i=1 X;

By virtue of the well known results of the monotone operator theory (see [4]),
it suffices to prove

(%) lim [ 37+, Vi) gl‘_ dx = Ch, .
n-o i=1 X;

Substituting v = u, in (2.9), we obtain

n— o0 =

lim [ Y fi(+, Vu,) Z&'dx = lim (o g(*, u,) u,dx .
i=1 X n-oo

But in view of (3.5), (3.6) the limit on the right-hand side equals [, g(, u) u dx.
Combining this with (3.7), we obtain (3.8). Consequently, u is a solution of (E), (B)
in the weak sense.

On the point of conclusion, we show (1.5). Passing to the limit in (3.2), we get

jﬂ g('7 u)udx = Igvzlfi(',vu)%dx g —b — Ci9 -

By (G2) we have
lufe = —b = cio.

Thus the choice of b sufficiently small (b < 0) leads to (.5).
We have proved Theorem 1.

4. PROOF OF LEMMA 1
To begin with, we claim that Lemma 1 is a special case of Theorem (0.1) in [2].
Nevertheless, we are going to present a simple proof based on the well known Borsuk-

Ulam theorem.
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Assume there are no critical points of J with critical values in [a, b]. Since (2.1)
holds and dim (H) < oo, it is a matter of routine to construct a homotopy h such
that

(1) heC(H x [0,1],H), h(v,0) =,
(2) h(—v,t) = —h(v, 1),
(3) h({v| J() < b}, 1) < {v| J(v) < a}
(see [2] for details).

The space H can be decomposed as a direct sum

H=H ®H,nH,®H, where H < H,, H,cH,.

Consider the corresponding projection P on the space H,.
We define a mapping
s:S(r)nH, » S(r)n H,,

s(v) = _Ph(v, 1) r.
|Ph(v, 1)]u
We claim that s is well defined. Indeed, if Ph(v, 1) = O then we would have h(v, 1) €
€ H,, which is impossible due to (2.2), (2.3), (3).

On the other hand, s is an odd mapping of a finite dimensional sphere into its
proper subsphere. We have obtained a contradiction with the Borsuk-Ulam theorem

[3].
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