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1. Introduction. We shall be concerned with the asymptotic stability of a class of
abstract semi-linear Volterra equations which involve infinite delay and are of the
form '

(1.1a) X(¢) (1) + Ax(¢) (1) = [~ . g(t — s, x(¢) (5)) ds
(1.1b) 9 (0) = $0), 0c(-0,0], heC,.

Here — Ais the infinitesimal generator of a strongly continuous semigroup on a Banach
space X and g( , ) is in general an unbounded nonlinear mapping of R x X to X.
We let X , denote the Banach space obtained by imposing the graph norm on D(A)
and specify C, to be the space of bounded uniformly continuous functions from the
interval (— o0, 0] to X ,.

In this setting we can consider partial integrodifferential equations. Such equations
can arise in a variety of applications including problems treating heat flow with
memory, [1], [10], [11], [12]. Equation (1.1a—b) and equations related to it have
attracted considerable attention in recent years and the interested reader is referred
to [2], [3], [4]. [5], [9]. [15]. [16]. [17], [18].

One of the distinguishing features of this study is that we are able to obtain
asymptotic stability results when the initial history space is the space of bounded
uniformly continuous functions.

2. The results. In what follows X is a general Banach space and A4 is a one to one
closed linear operator such that —A is the infinitesimal generator of a strongly
continuous semigroup of linear transformations, {T(f) | t = 0}. We further require
that there exist positive constant w such that

(2.1) [T()| < e @ for t>0.

We make the domain of A4, D(A), into a Banach space by imposing the graph norm
[ i .
(2.2) [x|l4 = [|A4x|| for xe D(A).
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We place the following assumptions or g(, )

(2.3)  g(,):R* x X, — X is continuous, continuously differentiable with respect
to the first place and there exist positive constants K, K,, o, f such that

Hg(s, x1) = 4g(s, xz)“ = e_asKlnxl - XZ“A )
”91(5’ x1) - g,(S, xz)H = e“”SKZHx, - xlnA s 91 = Og/(?t.
In [2] we establish the following global existence theorem.

Theorem 1. Let — A be the infinitesimal generator of a strongly continuous
semigroup of linear operators {T(t)|t = 0} and assume that g(.,): R* x X, - X
satisfies (2.3). If T> 0 and ¢ € C,, then there exists a unique function x(¢):
(=00, T] = X such that

() (1) + Ax(¢) (1) = [~ gt = 5, x(¢) (s))ds, >0,
x(¢) (0) = ¢(0), Oe(—0,0].

We shall utilize two lemmas. The first lemma appears in [10, p. 485] and was
extensively used in [16] in the context of abstract Volterra integrodifferential
equations.

Lemma 2.4. Let K(): [0, T] - X be such that K() is continuously differentiable
if g():[0, T] » X is defined via

q(t) = 6 T(t — s) K(s) ds
then q(t) € D(A), q is continuously differentiable and
q'(t) = Aq(t) + K(t) = [5 T(t — s) K'(s)ds + T(t) K(0) .
We introduce a scalar integral operator as follows
(2.5)  Let hy(), hy( ) and hs( ) be nonnegative scalar functions such that
f6hi(s)ds < 00, [, hy(s)ds < oo and [ hs(s)ds < o

for all ¢; let p(') be a continuous scalar function on [0, o). If y( ) is a con-

tinuous nonnegative on (—oo, T| function then the integral operator S

is given by,

(Sy) (t) = p(t) + [o hi(t — 5) y(s) ds +
+ §6 hy(t = 8) 2o has — r) y(r)drds + [ hs(t — s) y(s)ds .
Our next lemma provides a comparison principle and it is adapted from a result
of R. Redlinger [14].
Lemma 2.6. Let S be defined via (2.5) and act on continuous nonnegative functions

y()and z() for te(—o, T) (0 < T < o). If

y(t) = (Sy) (1) < z(t) — (Sz)(t) for 0Lt <T
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and

(1) < z(t) for —oo <t <0
then

(1) < z(t) for —oo <t <T.

Proof. If we set t, = inf {t: y(t) = z(t)}, we may observe that z(t,) = y (t,) <
< ¥(to) + (Sz) (to) — (Sy) (to) < z(t,) and reach a contradiction.
We are now in a position to prove our main result.

Theorem 2. Let A and g( , ) satisfy the conditions of Theorem 1 and assume that
Ko + Ky[pw + K Jw < 1. If ¢,y € C then there exists 6 < min {w, «, f}: and
Dz ||¢ — ¥|c, such that

[x(¢) (£) — x(¥) (1) 4 < De%*.

Proof. The theory of abstract semilinear equations implies that solutions to (1.1)
have variation of parameters representation, .

x(¢) (1) = T(1) $(0) + [o T(t — s) [~ g(s — 7, x(¢) () dr ds .
.Thus we may apply Lemma 2.4 to observe that
Ax($) () = AT(t) (0) + T(1) ({2 9(—s. x(¢) (5)) ds +
+ o T(t = 5) {9(0, x() (5)) + [ 94(s — 7, x(¢) () dr} ds —
— (L g(t — s, x(¢) (s))ds .
Consequently, we may estimate,
(27) Ix(9) (1) = x(¥) (D]|4 = [4 T(1) 6(0) — 4 T()) $(0)] +
+ [T ([20 9(=s5. x(8) (5)) ds = g(=s, x(¥) (s)) ds| +
+ Jo [ T(t = ) {9(0, x($) (5)) — 9(0, x(¥) (5)) +
+ 12w (94(s = 7, %(8) (r) = g4(s — 7, x(¥) () dr}| ds +
+ L gt = s, x(8) (5) — gt = . x(¥) (s))] ds =
< [60) = v(O)]ae™ + Kyfuld — ¥fc,e™ +
+ Jo e TIK, [ x(¢) (s) — () (s)]4 ds +
+ foe7 @I [ Kape TP x(e) (r) — x(¥) (r)| 4 drds +
+ [Lo 7K [%(8) (5) = x(¥) (5)].a ds -
We let & > 0 and set z(t) = De™*". We now observe that
(2.8) (1 +Kyfa) ¢ — ¢lcoe™ + [o e 9K, z(s)ds +
+ Joe T KT 2(r)drds + [L e K, 2(s)ds <
S +K o) = ¥lcie™ + {Kyf(w ~ 6) +
+ Kyf(w — 8) (B — 8) + Ky(x — 8)} De= .
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Thus if 8 > 0 and D > 0 are chosen so that
(2.9) Dz(1+K0)|¢ =], +
+ {Kl/(a) - 8) + Kz/(w —-8)(p—96)+ K1/(a - 6} De(@=9t
We see the right hand side of (2.8) can be bounded by z(t) = De™*. Combining
(2.7) and (2.9) we have,
[x(®) (1) = x(¥) ()4 — J6e™“ 72K, |x(8) (5) — x() (5)] 4 ds —
— [oe7o079 L, Kpe P77 x(¢) (r) — x(¥) ()] 4 dr ds —
= [Lw Kie™ ™ x(9) (s) — x(#) (s)] 4 ds =
S(L+Kyfo) ¢ = vlc,e™ = 2(t) = [oe K, z(s)ds —
— Jfemetm s eTPOIK, o(r) drds — [, e 9K, 2(s) ds.
We now apply Lemma 2.6 to deduce
() = [x(¢) (1) = x(¥) ()]« < 2(r) = De™*
and reach our conclusion.

3. An example. We consider the following parabolic integrodifferential equation:

(3.1a) Wix, 1) — Wi, 1) = [L o F(t — s, Wei(x, 5)) ds
(3.1b) W(x,0) = ¢(x,0) xe(0,m), 6e(—c0,0]
(3.1¢) 0=w(0,1)= W1 t>0.

The function F: R* x R - R is continuous and is continuously differentiable in
the first variable. We further stipulate that F( , ) and F, (, ) be Lipschitz continuous
in the second place and decay exponentially, i.e., there exist positive constants

K., K,, a, B, such that
F(s.) = Fs.3)| < e-KiJx — 3],
[Fi(s, x) = Fi(s 9)] = ePKylx — o]
We work in the Banach space X = I*(0, ) and define A: X — X pointwise as

(Aw) (x) = w'(x)

D(A) = H)(0, m) n H*(0, 7).
It is well known [8], that — A is the infinitesimal generator of an analytic semigroup
{T(t) |t > 0} which satisfies (2.1) with any @ < 1. The initial function ¢(x, -) is
required to belong to C,. If the nonlinear function g(, ): R* x X, — R is defined by
g(s, u) = F(s, — Au)

is not difficult to verify that (2.3) is satisfied.
In the abstract setting (3.1a—c) assumes the form:

(3.2a) () (1) + Ax(d)(t) = [L 0 g(t — 5, x(¢) (s)) ds,

when domain
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(3.2b) x(¢) (0) = ¢(0) 0e(—0,0].

Because — A is the infinitesimal generator of an analytic semigroup the regularity
theory of inhomogeneous linear equations [13] guarantees that (3.2a~b) provides
classical solutions to (3.1a—c). Theorem 2 provides criteria which guarantees the
exponential convergence of |x(¢)(r) — x(¥) ()| 4. The interpolation theory for
generators of analytic semigroups can be used to show the exponential convergence

of sup [3(4) () () = x(¥) (0w} e [13]
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