Czechoslovak Mathematical Journal

Martin Markl
The real K-ring of some CW-complexes of small dimension

Czechoslovak Mathematical Journal, Vol. 38 (1988), No. 3, 450-455

Persistent URL: http://dml.cz/dmlcz/102240

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102240
http://dml.cz

Czechoslovak Mathematical Journal, 38 (113) 1988, Praha

THE REAL K-RING OF SOME CW-COMPLEXES
OF SMALL DIMENSION

MARTIN MARKL, Praha

(Received April 30, 1986)

In 1981, L. M. Woodward in [8] classified the stable classes of orientable vector
bundles over CW-complexes of small dimension. Using his results and some algebraic
arguments, we describe the real K-ring of some CW-complexes of a dimension <7
in terms of cohomology and characteristic classes. We also show that our description
can be really used for explicit calculation of K-rings.

1. PRELIMINARY NOTES

In this section we introduce the special symbols needed in the sequel. Let
Om: Z = Z,, denote the reduction mod m, g4,: Z, — Z, the reduction mod 2 and
i:Z, » Z, the injection. The same symbols will abbreviate the induced homo-
morphisms in cohomology. The symbols  and 4 are used to denote the Bockstein
coboundary homomorphisms of the sequences 0 > Z —>Z —»Z, >0 and 0 —
= Z, > Zg — Z, — 0, respectively.

The Pontrjagin square P: H(X; Z,) - H*(X; Z,) (see [5; Chapt. 2, exercises]
or [7; 10]) is the cohomology operation satisfying

(1.1) 042(P(a)) = i(a?), aeHYX;Z,),
P(a + b) = P(a) + P(b) + i(ab), a,beH*X;Z,),
P(xy) = A(x) A(y), x,yeH'(X;Z,).
Here the first two equations are precisely [7; 10.2, 10.3] while the third follows
from [7; 10.5] and from the fact that i(x?) = i(Sq'x) = 0 for x € H'(X; Z,).
We will also use the following relations between the Stiefel-Whitney and the
Pontrjagin classes of a fibration & ([4], [7]):

(1'2) QZ(P1(CV)) = (Wz(f))z s
Q4(P1(6)) = P(Wz(f)) - i(w4(§) + Wl(é) . Sq‘(wz(éf))) >
wy(&) = wy(¢) wy(8) + Sq'(wy(2)) -
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Note that the first equation can be obtained by applying 04, to the second. The
characteristic classes obviously define the maps w;: BO — K(Z,; i) and p;: BO -
— K(Z; 4j) of the classifying spaces.

2. RESULTS

We shall deal with the representable K-theory, i.e., with the set KO“(X) =
= [X; BO]. This set is endowed with the natural structure of a ring (see [6; 13]).
Of course, if X is a finite-dimensional CW-complex, the elements of K 0~(X) can
be viewed as stable equivalence classes of vector fibrations over X. In this case,
addition is defined by the Whitney sum while multiplication is given by the tensor
product as in [3;2].

From now on, we shall write for brevity H*(X) instead of H*(X; Z) and H*(X)
instead of H*(X; Z,). Let us define

FIX) = {(a b, ) € F'(X) © F(X) @ H(X); x(e) = b7}
and define operations { and * on the set F(X) by
(a,b,c)E (x,y.2z) =(a+x, b+ ax + y, ¢ + dadx + z),
(a, b, ¢)*(x, y, z) = (0, ax, dadx) .

Finally, denote by U = (wy, w,, py): KO™(X) - F(X) the map induced by wy, w,
and p;. In the next section we prove (compare [8; Theorem 1]):

2.1. Theorem. The system (F(X),,*) forms a commutative ring with the
zero element (0,0, 0). The map U: KO~(X) - F(X) is a homomorphism of rings
for each CW-complex X.

If X is a CW-complex of a dimension <7, the map U is an epimorphism. If,
in addition, H*(X) has no 2-torsion, the map U is an isomorphism.

Remark. Improving slightly [8; Theorem 1], it is possible to prove that the kernel
of U is isomorphic with Tor(H*(X); Z,) for each CW-complex of a dimension <7.

In the following example, C;(a) and C(a) abbreviate the cyclic group of the order k
and the infinite cyclic group generated by a, respectively.

Example. The orthogonal K-ring of the Grassmann manifold G(2,2) of all
two-dimensional linear subspaces in R* is isomorphic with the direct sum C,(f) ®
® C(g) for some f, g € KO~(G(2, 2)) satisfying /> = 2f and g* = fg= 0.

Indeed, G(2, 2) is known to be a four-dimensional oriented compact manifold,
hence H*(G(2, 2)) = C(s) for some s € H*(G(2, 2)). It can be easily deduced from the
description of the ring H*(G(2, 2)), given in [4; exercise 7.B] or [2], that there are
unique w; e H(G(2,2)), i = 1,2, with HY(G(2,2)) = Cy(w;). It is not hard to
compute that wj = g,(s) and w} = 0. Now, it is clear that F(G(2,2)) =
= Cy((w1,0,0)) ® C((0,0,5)) as Abelian groups. By definition, (wj,0, 0) =
* (w1, 0,0) = (0,wF,0) = 2(w;,0,0) and (0,0,s)* = (wy,0,0)%(0,0,5) = 0.
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Since H*(G(2, 2)) has no 2-torsion, our statement follows from Theorem 2.1 (with
f=U""((w,0,0))and g = U"'((0, 0, s))).

The next theorem, as well as the previous one, compares K O~(X) with some ring
created from the cohomology of the space X, but the very restrictive assumption
on the non-existence of a 2-torsion is replaced by a weaker one. We introduce the
following notation:

G(X) = {(a, b, c,d)e H'(X) ® H¥(X) ® H{(X) ® H*X) ;
04(d) = P(b) + i(c + a.Sq'(b))} .
The operations [ and * are defined by
(a.b,e,d)B (x,y,z,w) =(a + x, b +ax +y, ¢+ (Sq'b + ab)x + by +
+ a(Sq'y + xy) + z, d + dadx + w),
(a, b, c,d) x(x, p,z, wj = (0, ax, a*(x* + y) + a(x* + xy) +
+ (a® + ab) x + (a® + b) x?, dadx).
Finally, denote by V the map (wy, w,, w,, p;): KO™(X) - G(X). We prove the
following theorem (compare [8; p. 178]):

2.2. Theorem. The system (G(X), H,*) forms a commutative ring with
(0,0,0,0) as the zero element. The map V: KO™(X) - G(X) is a homomorphism
of rings for each CW-complex X.

If X is a CW-complex of a dimension <7, the map V is an epimorphism. If, in
addition, H*(X) has no 4-torsion, the map V is an isomorphism.

Remark. Using an improved form of the results of [8] we can establish the

existence of the natural exact sequence
0 = Tor (H¥(X); Z,) — Tor (H*(X); Z,) -» KO™(X) »* G(X) - 0.

In the next example we compute anew the real K-ring of the real projective spaces
P¥ = PYR) for k < 7 (see [1] or [3; 4.6]).

Example. The ring KO~(P¥) is, for k < 7, isomorphic with C;4(4), where
(1) =2, j(2) =j(3) =4 and j(4) =...=j(7) =8. The element ieKO~(P")
corresponds to the canonical linear bundle over P* and the multiplication is charac-
terized by A2 = —2A.

To prove the above statement, recall the existence of w, € H'(P*) with H*(P*)
= Z,[w,]/(Wi** = 0). Clearly, there exists s € H*(P¥), k = 4, such that H*(P*)
~ Cy(s) and o,(s) = wi. As g4, HY(P* Z,) » H*(P*) is an isomorphism, the
equation in the definition of G(P*) is equivalent simply with g,(d) = b? (see the
remark following 1.2).

Now, using the above comments, we can easily verify that G(P") o Cj(k)((wl, 0,
0,0)) and that (w,0,0,0)> = —2(w;,0,0,0). Because H*(P*) = Z,, the.ring
G(P) is, by Theorem 2.2, isomorphic with KO~ (X).
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3. PROOFS

This section contains the proof of Theorems 2.1 and 2.2. In the following lemma
we verify the algebraic properties of the maps U and V.

3.1. Lemma. The sets F(X) and G(X) with the operations and * form
commutative rings. If X is a CW-complex, the maps U: KO~(X) — F(X) and
V: KO~ (X) - G(X) are homomorphisms of rings.

Proof. It can be verfied directly by using 1.1 and carrying out a long but elementary
computation that the sets F(X) and G(X) really satisfy the axioms of commutative
rings.

In order to prove the additivity and the multiplicativity of U and V; it is sufficient
to do this for finite-dimensional CW-complexes only. Indeed, the additivity (multi-
plicativity) of the map U means that the natural transformation A: KO™(X) x
x KO~(X) » F(X) defined by A(x,y)=U(x)B U(y) — Ux + y) (A(x, y) =
= U(x) * U(y) — U(xy)) is zero. For each CW-complex we have the following
commutative diagram (vertical maps are induced by the inclusions):

KO~(X) x KO~(X)—2- F(X)

!
KO~(X*) x KO™(X®) -2~ F(X®)

where X° — X is the 5-skeleton, i.e., a finite-dimensional CW-complex. By the
diagram, the map A is zero if the induced map on the skeleton is. The argument
for Vis similar.

So, we can suppose that dim (X) < oo, hence the elements of KO~ (X) can be
viewed as the stable equivalence classes of vector fibrations over X. Such an equi-
valence class will be denoted by square brackets. The addition and multiplication

are defined by
]+l =[t®n],
. =["®nr] -["®nr] - [¢"®],
where & denotes the k-dimensional trivial vector bundle over X. To verify the

algebraic properties of U and V¥, we need only to express the characteristic classes
of ¢ ® nand [£] . [#] in terms of those of ¢ and 1. By [4; § 4] we have

Wl(f @n) = Wl(é) + W1('7) > Wz(f @ '7) = wy(&) + Wl(f) wi(n) + Wz(’l) s
W4(f (&) 71) = W4(f) + Ws(f) W1(’1) + Wz(f) Wz(”) + Wl(c) W3('7) + W4('7) >

where w3 = w;w, + Sq'w, by 1.2.
Similarly, using the formula for the Chern classes of the Whitney sum [4; § 14]
and the definition of the Pontrjagin class, we obtain

Pl @ 1) = —ca(8c ® nc) = pa(&) — ex(8c) ealne) + pan)
where c¢,(&c) e5(nc) = ow,(€) dwy(n) [4; exercise 15D]. These formulas make the
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additivity obvious. Writing formally

wé) = 1 (1 +x), W(n)=1g§n(1+yf)

15ism

and using [4; exercise 7C] we can write

w([¢] - [n]) = H (1 + x; +y,){ 1+xf) H (1+yg)"‘} L=

R
III\

IT (0 +x +p) (1 +x)"" (L+y)™Y).

1zigm

12j2n
The last polynomial can be expressed in terms of the elementary symmetric
polynomials in the variables x,, ..., x, and y, ..., V,, from which we shall deduce

that
wi([]- [n]) =0, wy([&]-[n]) = wi(&) wi(n) ,
wa([€] - [n]) = wi(&) win) + wi(€) waln) + wa(8) wiln) +
+ wi(&) wiln) + wi(n) wa(n)) + (Wi(E) + wil&) wa(&)) wi(n) -

Again we omit this long but elementary computation. Using a similar formula
for the Chern classes we can verify that p,([¢].[n]) = 6wy(&) dw,(n) and the
lemma follows.

Let us consider the rings F(X) = {(a, b, ¢)e F(X); a =0} and G(X) =
= {(a, b, ¢, d) € G(X); a = 0}. Clearly, the maps U and V restrict to U:[X; BSO] —»
— F(X) and V:[X; BSO] - G(X). The results [8; Theorem 1 and the note at the
top of p. 178] can be reformulated as follows:

3.2. Proposition. The maps U and V are homomorphisms of Abelian groups.
If X is a CW-complex with dim (X) < 7, our maps are epimorphisms. If, in ad-
dition, the group H*(X) has no 2-torsion, the map U is an isomorphism. If H*X)
has no 4-torsion, the map V is an isomorphism.

Now, we are able to complete our proofs. We can form the commutative diagram
of Abelian groups:

FX) Q FX)—> FX)/F(X)
o1 2 31
[X; BSO] G KO~ (X) 2> KO~ (X)/[X; BSO]

where (Q are the natural inclusions, p, g are projections and the map B is defined
by B(([£])) = a(U([ED)

Notice that there are identifications KO~(X)/[X; BSO] = [X; BO(1)] and
F(X)|F(X) =~ H'(X) such that B(p([¢])) = wy(¢). Because BO(1) = K(1; Z,), the
map B is an isomorphism. It is not hard to deduce from the above diagram that U
is an epimorphism if U is, and that U is an isomorphism if U is. This concludes the
proof of Theorem 2.1.

In order to prove Theorem 2.2 we can form the diagram analogous to the above
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for the rings G(X) and G(X). Then Theorem 2.2 follows by the same argument
as Theorem 2.1.

I thank Dr. Vojtéch Bartik for drawing my attention to Woodward’s paper and
for many suggestions during my work.
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