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UNEQUIVOCAL LINEARLY ORDERED GROUPS 

JÁN JAKUBÍK, KoŠice 

(Received February 19, 1986) 

1. INTRODUCTION 

Radical classes of linearly ordered groups were defined and studied by C. G. 
Chehata and R. Wiegandt [ l ] . Further results in this direction were obtained in the 
author's paper [5]. 

Radical classes of abelian linearly ordered groups were investigated by B. J. 
Gardner [3], Pringerová [7] and the author [6]. All linearly ordered groups dealt 
with in the present paper are assumed to be abelian. 

The notion of unequivocal ring was introduced by B. J. Gardner [4]; such rings 
were studied by N. Divinsky [2]. 

The analogous notion for linearly ordered groups can be defined in the same way 
as in the case ofrings, namely: a linearly ordered group G will be said to be unequi­
vocal iffor each radical class R either G belongs to R or G is jR-semisimple. 

Ifeach convex subgroup of G is unequivocal, then G will be said to be hereditarily 
unequivocal. 

It is a natural question to ask whether there exists an internal characterization of 
unequivocality (which does not involve the class of all radical properties, or, in 
other words, the collection of all radical classes). 

Such a question was solved positively for the case of rings (cf. Divinsky [2], 
Theorem 1.) A positive answer for the case oflinearly ordered groups is given by the 
following theorems (they will be deduced from results of the author's paper [6]; 
cf. Section 2 below): 

1.1. Theorem. A linearly ordered group G is unequivocal if and only iffor each 
nonzero subgroup H of G there exist a system # Q , # ! , # 2 , . . . ,Я а , ... (а < ß) of 
convex subgroups of H and a system G 0 ,G 1 ,G 2 , . . . ,G c t , . . . ( a < ß ) of convex 
subgroups of G such that 

(i) {0} = G0 s Gx £ ... £ Gaçz ... (а < ß), V«<ß Ga = G, 
(ii) for each а < ß, the linearly ordered group Ga/Uy<a Gy is isomorphic to H|H^ 

1.2. Theorem. Let G be a linearly ordered group. The following conditions are 
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equivalent: 
(i) G is unequivocal. 

(ii) IfH is a convex subgroup of G such that {0} ф H Ф G, then there is a non­
zero homomorphic image of H which is isomorphic to a convex subgroup of the 
linearly ordered group G|H. 

For a linearly ordered group G we denote by c(G) the system of all convex sub­
groups of G; this system is partially ordered by inclusion. In fact, c(G) is a linearly 
ordered set. 

In Section 2 theproofs ofTheorem 1.1 and 1.2 are given. 
In the sections 3 and 4 there are investigated unequivocal linearly ordered groups G 

having the property that the linearly ordered set c(G) has an atom or a dual atom, 
respectively. Section 5 deals with hereditarily unequivocal linearly ordered groups. 

The author is indebted to L. A. Skornjakov for his suggestion to investigate the 
notion of unequivocality for linearly ordered groups. 

2. UNEQUIVOCALITY 

We recall the definition of radical class (as we already remarked above, all linearly 
ordered groups under consideration are assumed to be abelian). 

We denote by &a the class of all abelian linearly ordered groups. A nonempty 
subclass X of Уа is said to be a radical class if it satisfies the following conditions 

(rf- [I])-' 
(R1) If i e I , then every nontrivial homomorphic image of A has a nontrivial 

convex subgroup belonging to X. 
(R2) If A є ^a and if every nontrivial homomorphic image of A has a nontrivial 

convex subgroup belonging to X, then A є X. 
Let ß be an ordinal and for each ordinal a < ß let Ga be an element of c(G) such 

that 
{0} = G0 c G , ç=G2 я... <=G..S . . . , U.<,G* = G. 

Then G is said to be a transfinite extension ofthe linearly ordered groups 

^ = GjUy<,G, ( a < j 8 ) . 

Let X be a nonempty subclass of &a. We denote by Hom X the class of all homo­
morphic images of elements of X. Next we denote by Ext X the class of all linearly 
ordered groups G having the property that there exist linearly ordered groups # a 

(a < ß) such that each # a is isomorphic to some element of X and that G is a trans-
finite extension of linearly ordered groups Ha (a < ß). 

We denote by 3ta the collection of all radical classes in Уа. The collection Ma is 
partially ordered by inclusion. 

2.1. Theorem. (Cf. [6], Propos. 2.1 and Corollary 2.3.) Ma is a complete lattice. 
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Let Ai (i eI) be radical classes. Then 

Aiei Ai = Cliei Ai > Viei At = Ext (Uiei Ai). 

For 0 ф X c <§a we denote by Ta(X) the intersection of all radical classes Y with 
X Ç 7. Then Ta(Z) is said to be the radical class generated by X. For X = {G} 
we write Ta(X) = Ta(G); such a radical class is called principal. 

2.2. Theorem. (Cf. [6], Propos. 2.2.) Let 0 Ф X c #e . rfcen Te(X) = Ext Hom X. 
For G є Уа and 7 є ^ a we denote by Y(G) the join of all elements of c(G) belonging 

to Y. Then Y(G)e Y(cf. [ l ] , Propos. 3, or [6], Propos. 1.2). By applying the above 
terms, the notion of unequivocality can be defined as follows: 

Let G є &a. Then G is called unequivocal if for each Ye 0la we have either Y(G) = 
= {0} or Y{G) = G. 

Proof of Theorem 1.1. 
Let G be unequivocal. Let Я be a nonzero convex subgroup of G. Put Y = Ta(H). 

Then we have У(Я) = Я Ф {0}, hence Y(G) = G. Thus G є Гв(Я). In view of 2.2 
we obtain G є Ext Hom {Я}. Therefore the conditions (i) and (ii) from 1.1 are valid. 

Conversely, assume that G is a linearly ordered group such that for each nonzero 
convex subgroup Я of G the conditions (i) and (ii) from 1.1 are satisfied. Let Ye @la 

and suppose that 7(G) ф {0}. Denote Y(G) = H and Ta(H) = Yv In view of the 
conditions (i) and (ii), and by applying 2.2 we obtain G є 7 l 5 hence G є 7and there­
fore Y(G) = G. Thus G is unequivocal. 

2.3. Corollary. Let Ge^a. Then thefollowing conditions are equivalent: 
(i) G is unequivocal. 

(ii) For each nonzero convex subgroup H of G we have X(G) = G, where X = 
= ЧН). 

ProofofTheorem 1.2. 
The implication (i) =>(ii) is a consequence of 1.1. Suppose that (ii) is valid. By 

way of contradiction, assume that G fails to be unequivocal. Thus in view of 2.3 
there exists a nonzero convex subgroup Я х of G such that G$Ta(Hx). Put 7 = 
= T^H,). Hence we have H1 s 7(G) Ф G. 

Denote Y{G) = Я . According to (ii) there exists a nonzero homomorphic image Hr 

of Я which is isomorphic to a convex subgroup Я" of the linearly ordered group 
G|H. Let Я* be the set of all g e G such that g + Я belongs to Я". Then Я* is 
a convex subgroup of G, Я с Я* and Я" is isomorphic to H*|H. 

We have H' є Ta(H), since Та(Я) is closed with respect to homomorphism. Also, 
Ta(H) s Тв(Яі), since Я є r e (# ! ) . Thus Я ' є 7 ^ ) . Hence H" є Га(Яі). Now 
from the relations 

HeTa(Ht), H*lHeTa{Ht) 

and from the fact Та(Ях) is closed with respect to extensions we infer that Я* belongs 
to Ta(Hx). Hence Я* £ 7(G) = Я , which is a contradiction. 
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The following proposition and its corollaries show a method of constructing new 
unequivocal linearly ordered groups from a given one. 

2.4. Proposition. Let G e &a. Let G0, Gl5 G2, ..., Gn e c(G) swcft that {0} = G0 c: 
<= Gx c ... c= Gn = G. Assume that all linearly ordered groups GijGi-i (i = 
= l , 2 , . . . , n ) are unequivocal and that Ta^Gx) = Ta(QjGi^t) is valid for i = 
= 1, 2, ..., n. 77ierc G is unequivocal as well. 

Proof. Let Я be a nonzero convex subgroup of G, Я + G. Put X = Ta(H). 
In view of 2.3 we have to verify that the relation X(G) = G is valid. 

There exists m є {0, 1, 2, ..., n - 1} such that Gm с Я s Gm+1. Hence there is 
Я і e Hom Я , Hx ф {0} such that the linearly ordered group Я і is isomorphic to 
some convex subgroup ЯІ of Gm+1]Gm. Thus we have Hx e X a n d H\ eX. Because 
Gm+1JGm is unequivocal and H[ ф {0} we infer that Gm+1jGm belongs to X. Since 
Ta{Gm+1jGm) = r , (G^ and Tfl(Gm+1/Gw) s X ,we obtain G± e I Thus G,|G^,eX 
for f = 1, 2, ..., n. Hence G є Ext X = X. 

2.5. Corollary. Lei G є 0Л. Let G0, G1? G2, ..., Gn e c(G) such that {0} = G0 cz 
cz Gx cz G2 cz ... c G„ = G. Assume that Gx is unequivocal and that GiJGi^í 

is isomorphic to G± for i = 2, 3 , . . . , n. Then G is unequivocal. 

2.6. Corollary. Let Gt be a nonzero unequivocal linearly ordered group, I = 
= {1, 2, ..., n]. For each i eI let At be a linearly ordered group isomorphic to Gx. 
Then the lexicographic product G = Ax o A2 o ... o An is unequivocal. 

2.7. Proposition. Let Gef f l . Let G^,GUG2,... be elements of c(G) such that 
{0} = G0 cz Gx c G2 c: ... and Un = 1,2,... Gn — G- Assume that all linearly ordered 
groups GnjGn-1 are unequivocal and that Ta(Gx) = Tjfi^G^^for each positive 
integer n. Then G is unequivocal. 

The proof is the same as in 2.4. 

2.8. Corollary. Let Gx be a nonzero unequivocal linearly ordered group. Let I 
be the set of all positive integers andfor each ieI let At be a linearly ordered 
group isomorphic to Gv Then the lexicographic product G = ГІЄІАі is unequi­
vocal as well. 

The following proposition shows that neither 2.7 nor 2.8 holds, in general, for the 
case of ordinals larger than a>. 

Let a be an infinite cardinal and let a>(oc) be the first ordinal having the property 
that the power of the set of all ordinals less than co(a) is equal to a. 

2.9. Proposition. Let Gx be a nonzero unequivocal linearly ordered group. 
Let a be a cardinal, a > card Gx. Let I be the set of all ordinals ß with ß g co(oc). 
For each ieI let At be a linearly ordered group isomorphic to Gx. Then the 
lexicographic product G = FieI At is not unequivocal. 

Proof. Let Я be the set of all elements fe G such that /(co(a)) = 0. Then Я is 
а convex subgroup of G. Tf {0} Ф Hx e Hom {Я}, then card Hx ^ a. Similarly, if 
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{0} ф Я 2 є Е х ї Н о т { Я } , then ca rdH 2 ^ a . Hence Gt does not belong to 
E x t H o m { # } . On the other hand, G ^ H o m { G } , thus G does not belong to 
Ta(H) = Ext Hom {H}. Therefore in view of 2.3, G is not unequivocal. 

3. THE CASE WHEN c{G) HAS AN ATOM 

Let L be a lattice, x and y be elements of L with x < y. If card [x, y] = 2, then 
we write x < y. We also say that y covers x. 

If G є ^ a and card c(G) ^ 2, then G is said to be a simple linearly ordered group. 

3.1. Lemma. Assume that G is unequivocal. Let c(G) /iat;e an atom. Then the 
following condition is satisfied: 

(a) c(G) is well-ordered. If Hec(G), H Ф {0} qnd if {Ні}ш is the set of all 
elements of c(G) with Я, < H, then either H\^)ieIHi = {0} or Я / и , Є І Я , is iso­
morphic to G0, where G0 is the atom in c(G). 

Proof. In view of 2.3 we have X(G) = G, where X = T^(G0), G0 being the atom 
of c(G). Moreover, G0 is simple and thus Hom {G0} = {{0}, G0}. Thus in view of2.2 
we obtain G є Ext {{0}, G0}. In the case G = G0 the condition (a) is obviously satis­
fied. Assume that G0 <= G. Hence there is an ordinal ß and for each oc < ß there is 
Ga e c(G) such that 

G0 £ Gj s G2 s ... s Ga s ... ( a< jS) 

where (Ja<^ Ga = G and for each a < ß, the linearly ordered group Ga/(Jy<a Gy is 
isomorphic either to {0} or to G0. 

Let H є c(G), {0} Ф Я Ф G. There exists a < ß such that Ga fails to be a subset 
of Я ; let a be the first ordinal having this property. Then 

Ga с Я s G a + 1 . 

Hence Ga+1lGa Ф {0} and thus Ga+1lGa is isomorphic to G0. Because G0 is simple, 
we must have Я = Ga+1 . Thus 

c(G) = {{0} ,Go ? G l 5 G 2 , . . . ,G a , . . . ,G} . 

We infer that the condition (a) is satisfied. 

3.2. Lemma. Assume that c(G) isfinite, c{G) = {{0}, G0, G ^ G , , . . . , G j , n ^ l , 
wfcrn? {0} < G0 < Gt < G2 < ... < Gn = G. Then the following conditions are 
equivalent: 

(i) G is unequivocal. 
(ii) If i e {0,1, ..., n - 1}, then the linearly orderedgroup G i+i/G f /s isomorphic 

to G0. 

Proof. The implication (ii) => (i) follows from 2.4. In view of 3.1, the relation 
(i) => (ii) holds. 
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3.3. Lemma. Assume that c(G) is a well-ordered set isomorphic to co + 1. Then G 
fails to be unequivocal. 

Proof. By way of contradiction, assume that G is unequivocal. The nonzero 
convex subgroups of G distinct from G can be indexed by the ordinals a with a ^ œ 
such that a(l) < a(2) implies Ga(1) c Ga(2). Put Я = G^. Then for no homomorphic 
image H' of Я, с(Я') possesses a dual atom. On the other hand, c(G) has a dual 
atom. Therefore G does not belong to Ext Hom {H). According to 2.2, G ф Та(Н). 
Thus in view of 2.3, G is not unequivocal. 

3.4. Theorem. Assume that c(G) ^a5 an atom. Then thefollowing conditions are 
equivalent: 

(i) G /s hereditarily unequivocal. 
(ii) either c(G) is finite, c(G) — {{0}, G0, Gl5 ..., Gn} wzìfo {0} < G0 < Gx < 

~< G2 < ... ~< Gn, where Gi + ijGi is isomorphic to G0for each i = n — 1, 
or c(G) = {{O}, G0, Gl5 G2 , . . .} wiifc {0} < G0 < Gx < G2 < ... , where Gř- + 1/Gt. 

is isomorphic to G0 for each positive integer i. 

Proof. The implication (i) => (ii) follows from 3.1 and 3.3. In view of 2.2 and 2.3, 
the relation (ii) => (i) is valid. 

Let °U be the class of all nonisomorphic types of unequivocal linearly ordered 
groups. Further let !Ш1 be a class containing exactly one linearly ordered group from 
each element of °U. We denote by °Ula the class of all linearly ordered groups G є úU1 

such that c(G) has an atom. Let <%lah be the class of all elements of 4lla which are 
hereditarily unequivocal. 

It will be shown that the class %la is rather large (it is a proper class in the sense 
that there exists an injective mapping of the class of all infinite cardinals into ^ l a ) 
on the other hand, %lah fails to be a proper class. 

Let a be an infinite cardinal. Let co(a) be as in Section 2. Let / be a linearly ordered 
set isomorphic to co(oc). Let K be a nonzero archimedean linearly ordered group. 
For each і є I let At be a linearly ordered group isomorphic to K. 

Consider the lexicographic product 

G(K,a) - ГшАі. 

The following result is easy to verify. 

3.5. Proposition. The linearly ordered group G(X, a) is hereditarily unequivocal. 
IfoL and ß are distinct infinite cardinals, then G(X, a) is not isomorphic to G(K, ß). 
The linearly ordered set c(G(K, a)) has an atom. 

For an infinite cardinal a we denote by / (a) the linearly ordered group which 
belongs to 4lXa and is isomorphic to G(K, a). Then in view of 3.5, / is an injective 
mapping of the class of all infinite cardinals into the class %la. 

Now let G e Wlah. Then the condition (ii) from 3.4 is satisfied. The linearly ordered 
group G0 is simple and thus it is archimedean. Hence G0 is isomorphic to a subgroup 
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of the linearly ordered group of all reals. Therefore card G0 g c (the power of the 
continuum). Thus in view of 3.4 we obtain: 

3.6. Proposition. Let G be a hereditarily unequivocal linearly ordered group. 
Then card G ^ c**0 = c. 

From 3.6 we infer that °illah fails to be a proper class. 

4. EXISTENCE OF A DUAL ATOM IN c(G) 

In this section we deal with linearly ordered groups G such that c(G) has a dual 
atom. 

4.1. Lemma. Let G0 be a dual atom ofc(G). Assume that G is unequivocal. Then 
(i) c(G) is dually well-ordered; 

(ii) if Ht and H2 are elements of c(G) such that Ht < Я 2 , then the linearly 
ordered group H2JHl is isomorphic to G|G0. 

Proof. By way of contradiction, suppose that (i) does not hold. Then there exists 
a sequence {An}™=i of elements of c(G) such that An c An+1 ф G is valid for each 
positive integer n. Put A = Un=1,2,...Ar We have Aec(G) and A Ф G. If A' is 
a homomorphic image of A with Л' Ф {0}, then c(A') has no dual atom. Hence if A" 
is a nonzero element of Ext Hom {Л}, then c{A") has no dual atom. Therefore G 
does not belong to Ext Hom {A]. Thus in view of 2.2 and 2.3, G fails to be unequi­
vocal, which is a contradiction. 

Let # ! and Я 2 be elements of c(G) such that Hx < Я 2 . Because G is unequivocal, 
we have G є Ta(H2) = Ext Hom {Я2}. Therefore, in view of the fact that c(G) has 
a dual atom, there exist K є c(G) and K1 e c(H2) such that К Ф G, K^ ф Я 2 and 
G/X is isomorphic to Яз /К^ Under such an isomorphism, the linearly ordered group 
G°JK corresponds to H1/K1. Hence the linearly ordered groups 

(G|K)|(G*|K) and (H,|K,)|(HJK,) 

are isomorphic. Therefore the linearly ordered groups G|G0 and H^Hj^ are iso­
morphic as well. 

A convex subgroup Я of G is said to be an upper limit element of c(G) if there are 
HneC(G) {n = 1,2, ...) suchthat Al cz A2 cz ... and Un = iA = Я . 

4.2. Theorem. Assume that c{G) has a dual atom G0. Then thefollowing conditions 
are equivalent: 

(a) The conditions (i) and (ii)from 4.1 are valid. If H is a nonzero upper limit 
element ofc(G), then the conditionfrom 1.2, (ii) holdsfor H. 

(b) G is unequivocal. 

Proof. Let (b) be valid. Then in view of 4.1 and 1.2 the condition (a) is satisfied. 
Conversely, assume that (a) holds. In view ofl .2 it suffices to verify that whenever Я 
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is a nonzero convex subgroup of G such that H is not an upper limit element of c(G) 
and H Ф G, then the condition from 1.2, (ii) is valid for H. 

Thus let {0} Ф H e c(H) and assume that H fails to be an upper limit element of G, 
H ф G. Hence there exists Ht є c(G) with H < Я х . In view of 4.1, (i), there is H2 e 
є c(G) such that H2 e H. According to 4.1 (ii), the linearly ordered group H1jH and 
HjH2 are isomorphic, which completes the proof. 

4.3. Corollary. Let I be adually, well-ordered set, card/ ^ 2. Assume that I 
has the least element. There exists a hereditarily unequivocal linearly ordered 
group G such that the linearly ordered set c(G) is isomorphic to I. 

Proof. Let A be a nonzero archimedean linearly ordered set. For each i eI let Gř 

be a linearly ordered group isomorphic to / . Put 
G = riGi Gi. 

Thenwe have c(G) ~ I. According to 4.2, G is hereditarily unequivocal. 
From 4.2 and 3.1 we obtain: 

4.4. Corollary. Let G be a linearly ordered group, G Ф {0}. Then thefollowing 
conditions are equivalent: 

(i) G is unequivocal and c(G) has an atom and a dual atom. 
(ii) c[G) isfinite and whenever Ht and Hj are elements ofc(G) such that Ht < Hj9 

then the linearly ordered group Hj|Hi is isomorphic to G0, where G0 is the atom 
of c(G). 

4.5. Corollary. Let G be a linearly ordered group satisfying the condition (ii) 
from 4.4. Then card G ^ c. 

Let us remark that there exists a nonzero unequivocal linearly ordered group G 
such that c(G) has neither an atom nor a dual atom. 

4.6. Example. Let R be the additive group of all reals with the natural linear 
order. Let / be a linearly ordered set isomorphic to R and for each i eI let At be 
a linearly ordered group which is isomorphic to the linearly ordered group R. Put 
G = ГІЄІАі. Then G is unequivocal, neither an atom nor a dual atom does exist 
in c(G). 

Let G be a linearly ordered group and let H 1 ? H 2 e c ( G ) such that Hx <H2. 
Then the linearly ordered group Н2ІНг will be said to be p-factor of G. 

From 3.1 and 4.1 we infer: 

4.7. Proposition. Let G be a linearly ordered group such that either an atom or 
a dual atom does exist in c(G). Then any two p-factors of G are isomorphic. 

If neither an atom nor a dual atom does exist in G, then the assertion of the above 
proposition need not hold. 

4.8. Example. Let R be as in 4.6. Let JR0 be the subgroup of R consisting of all 
rational numbers. Let / be as in 4.6 and for each ieI let Ax be a linearly ordered group 
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such that Ai is isomorphic to R0 if i is rational and At is isomorphic to R otherwise. 
Put G = ГІЄІ Ai. Then there exist ^-factors B1 and B2 in G such that Bx is isomorphic 
to R0 and B2 is isomorphic to Я. In fact, each p-factor of G is isomorphic either to R0 

or to R. The linearly ordered group G is unequivocal. 
By a method similar to that applied in 4.8 we can construct a linearly ordered group 

G which is unequivocal and possesses an infinite number of mutually nonisomorphic 
p-factors. 

Let G1 and G2 be unequivocal linearly ordered groups such that c(Gj) has a dual 
atom, c(G2) is isomorphic to c(G) and that, if Ci is a p-factor of Gx and C2 is a p~ 
factor of G2, then Ci is isomorphic to C2. The linearly ordered groups G1 and G2 

need not be isomorphic. 

4.9. Example. Let # be as in 4.6. Let a be an infinite cardinal and let I be a linearly 
ordered set dually isomorphic to oo(oc). For each ieI let At be a linearly ordered 
group isomorphic to R. Put G1 = ГІЄІ At. Let G2 be the subgroup of G1 consisting 
of all elements of G1 with finite support. Then both G1 and G2 are unequivocal and 
c(Gi) ~ c(G2). Gx is not isomorphic to G2. Each p-factor of G, (i — 1, 2) is iso­
morphic to R. 

5. HEREDITARILY UNEQUIVOCAL LINEARLY ORDERED GROUPS 

In this section the structure of a hereditarily unequivocal linearly ordered group G 
will be investigated (without assuming that c(G) has an atom or a dual atom). 

5.1. Lemma. Let G be a hereditarily unequivocal linearly ordered group. Let 
H є c(G) such that {0} ф H ф G. Then there exists H± є c(G) such that Hl <̂ H. 

Proof. By way of contradiction, suppose that there does not exist any Нг with the 
mentioned property. Then for each H2 є c(H) with H2 ф H the interval [Я2 , Я ] 
of c(H) is infinite. 

Since H Ф G, there exist H 3 and # 4 in c(G) such that Я ^ Я 3 < Я 4 is valid 
in c(G). Since G is hereditarily unequivocal, Я 4 must be unequivocal and thus 
Я 4 є Т а ( Я ) = Е х і Н о т { Я } . Because c(H4) has a dual atom there must exist 
a homomorphic image К Ф {0} of Я and a homomorphic image K' of Я 4 such that K 
is isomorphic to K'. But c(iC) has no dual atom and c(K') possesses a dual atom, 
which is a contradiction. 

5.2. Corollary. Let G and H be as in 5.1. Then the interval [Я, G] ofc(G) is either 
finite or is isomorphic to the linearly ordered set ofall ordinals a with ot ^ co. 

From 5.1 and 5.2 we obtain: 

5.3. Theorem. Let G ф {0} be a linearly ordered group. Assume that G is 
hereditarily unequivocal. Then one of thefollowing conditions is valid: 

(i) The linearly ordered set c(G) is dually well-ordered. 
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(ii) There exist linearly ordered sets Lt and L2 such that 
a) Lx is dually well-ordered; 
b) L2 is isomorphic to the set of all ordinals equal or less than co; 
c) c(G) is isomorphic to Lx © L2. 

Moreover, any two p-factors of G are isomorphic. 

5.4. Proposition. Let Lx and L2 be linearly ordered sets such that the conditions 
a) and b)from 5.3 are satisfied. Then there exists a linearly ordered group G such 
that 

(i) G is hereditarily unequivocal, 
(ii) the condition c)from 5.3 holds. 

Proof. Let / = Lj © L2 and for each i eI let At be a linearly ordered group iso­
morphic to R. Put G = ГіеІ At. By applying 1.2 we easily obtain that G is hereditarily 
unequivocal. The validity of (ii) is obvious. 

Let Ж be the collection of all radical classes Ta(G), where G is a hereditarily 
unequivalent linearly ordered group. The collection Ж is partially ordered by inclu­
sion. Put 0~ = Гл({0}). Then 0~ is the least element of Ж. 

5.5. Proposition. The partially ordered collection Ж has no maximal element. 

Proof. Let Ta(G) є H, G ф {0}. Let a be а cardinal, a > c(G). Let I be а linearly 
ordered set which is dually isomorphic to co(a). For each і є I let At be a linearly 
ordered group isomorphic to Ru where R± is a p-factor of G. Put Gx = ГША^ 
I f # i s a nonzero convex subgroup of Gl5 then card c(#) = a. Thus no homomorphic 
image of G is isomorphic to H. Hence Gx does not belong to Ext Hom {G} = Ta(G). 

Denote G2 = GooGi. Then G e H o m { G 2 } , whence Ta(G) й Ta(G2). In view 
of 5.4 and 2.4, G2 is hereditarily unequivocal. We have G2 ф Ta{G), whence Ta(G) < 
< Ta{G2). 

Since the cardinal a in the above proof can be chosen as to be arbitrarily large, 
Proposition 5.5 can be sharpened as follows. 

5.5.1. Proposition. For each element Ta(G) of Ж there exists Жх с Ж such that 
(і) Жх is a proper collection and Ж1 is linearly ordered; 

(ii) Ta(G) is the least element of Ж±. 

The p roof will be omitted. 
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