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1. INTRODUCTION

The concept of an implication algebra was introduced by J. C. Abbott [1]. It is
a groupoid <I, ) with the support I and one binary operation (denoted by a dot
or by a simple juxtaposition) which satisfies the following axioms:

11: (ab)a = a;
12: (ab) b = (ba)a;
13: a(bc) = b(ac)

(The elements a, b, ¢ are always arbitrary elements of I.)

In [1] some fundamental properties of implication algebras are shown. We shall
quote some of them.

In every implication algebra <I, ) there exists an element denoted by 1 and satis-
fying the equality aa = 1 for each a € I. The existence of such an element enables
to introduce a partial ordering < on I such that a < b if and only if ab = 1. The
element 1 has the property that la = a, al = 1 for each a €I and it is the greatest
element in the ordering <. The set I with the ordering < forms a join semilattice
(in general not a lattice).

Let [a]t = {xel|x = a}. The set [a]l is called a principal filter of I, *)
and it is a Boolean algebra with respect to the restriction of the ordering < onto [a]1.
All Boolean algebras [a]1 for a eI have the common greatest element 1. Hence
every implication algebra is a union of Boolean algebras with a common greatest
element. Then ab can be interpreted as the complement of a v b (where v denotes
the join in </, ) as in a join semilattice) in the filter [a]1.

In particular, every Boolean algebra (B, v, A,’,0,1) can be considered as an
implication algebra <I, +», where I = B and ab =a’ v b for any ae B, beB.
The unit element 1 of B is also the element 1 of the implication algebra. The term
“implication algebra” has its origin in this fact. Namely, the statement “‘a implies b
is the disjunction of two statements, one of which is the negation of a and the other
is b; hence it corresponds to the expression @’ v b in a Boolean algebra.
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2. VARIETIES OF IMPLICATION ALGEBRAS

Since every implication algebra is a union of Boolean algebras, one can expect
that the variety of all implication algebras would have similar properties as a variety
of Boolean algebras. We shall give a list of congruence properties of this variety
which show differences.

Theorem 1. The variety of all implication algebras has the property that the
congruence lattice of any of its elements is distributive.

Proof. Put n = 3, po(x, y, z) = x, py(x, y, z) = (¥(zx)) x, pa(x, y,z) = (xy) z,
ps(x, ¥, z) = z. Then we have

pO(x7 Y, X) =X,
pi(x, ¥, x) = (y(xx)) x = (y1) x = 1x = x,
pZ(x7 2 x) = (Xy)x = X,
pa(x, y, x) = x.
Further

pi(x, %, z) = (x(2x)) x = (2(xx)) x = (z1) x = 1x = x = po(x, x, z),
pi(x, z, z) = (z(zx)) x = (zx) x = (xz) z = py(x, z, z),
pa(x,x,2) = (xx) z = 1z = z = py(x, x, 2).

By the well-known Mal’cev condition (given by B. Jénsson) the assertion is prove. []

Now we shall define a tolerance relation. It can be defined for algebras in general
(as in [7] and [8]) similarly as a congruence, only the requirement of transitivity is
omitted. For lattices it was studied in [4], for semilattices in [9]. Every tolerance
on a Boolean algebra is a congruence, i.e. it is transitive.

For implication algebras the tolerance may be defined as follows. Let <I, *)
be an implication algebra. A tolerance on <I, - is a reflexive and symmetric binary
relation T on I with the property that (xq, y;) € T, (x5, y,) € Timply (x,X,, y1y,) € T
for any four elements x,, y;, X5, y, of I. »

A variety ¥ is congruence permutable (congruence 3-permutable) ife,.0, =
=0,.0,(0,.0,.0, =0,.0,.0,)for each two congruences @, ®, € Con 4
forany Ae?".

Theorem 2. The variety of all implication algebras is congruence 3-permutable,
but not congruence permutable.

Proof. By the result of Hagemann and Mitschke, a variety is congruence 3-
permutable, if there exist ternary polynomials py, p, such that p,(x, X, y) =y,
pa(x, ¥, ) = x and py(x, y, y) = pa(x, x, y). In the variety ¥~ of all implication
algebras we can put py(x, y, z) = (xy) z, p,(x, y, z) = (zy) x. Then

pi(x, x,y) = (xx) y = 1y =y,

pax ¥, ) = (yy)x = 1x = x,

pi(x. 3, 5) = (x3) y = (yx) x = py(x, x, y).

Il

208



Hence 7~ is congruence 3-permutable .By [2], #” is congruence permutable, if and
only of ¥ is tolerance trivial, i.e. if every tolerance T on every 4 € ¥~ is congruence
on A. If we consider the three-element implication algebra <I, *), where I =
= {a, b,1} and the operation on this algebra is given by aa = bb = 11 = 1,
ab = b, ba = a, la=a, 1b = b, al = bl = 1, then the binary relation T = {(a, 1),
(1, a), (b, 1), (1,b), (a,a), (b, b), (1,1)} is evidently a tolerance on <I,-)
and is not transitive (i.e. it is not a congruence). Hence 7~ is not congruence
permutable. [

A block of a tolerance T on <I, *) is a maximal (with respect to set inclusion)
subset B of I with the property that (x, y) e T for each x € B, y € B.

The set of all tolerances on an algebra A forms an algebraic lattice. Hence, for
any a, b € A there exists the least tolerance 1(a, b) containing the pair <a, b). An
algebra A is called principal tolerance trivial (see [2]) if 7(a, b) = 6(a, b) for each
a, b e A. An algebra A is tolerance trivial if each tolerance on A is a congruence on 4.

Since every implication algebra is a join semilattice with respect to the operation

avb=(ab)b

in which every filter [a]t is a Boolean algebra and since every distributive lattice is
principal tolerance trivial, we have a question whether also implication algebras
have this property.

Theorem 3. The variety of all implication algebras is not principal tolerance
trivial.

Proof. Let (I, - be a free implication algebra with two free generators a, b and
let T be the least (with respect to set inclusion) tolerance on (I, *)» which contains
the pair (ab, ba). Then clearly the blocks of T are exactly those visualized in Fig. 1.
Since (a, (ab) b)e T, ((ab) b, b)e T, but (a, b) ¢ T, the tolerance T is not a con-

Fig. 1.
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gruence and the principal congruence generated by (ab, ba) is not equal to the
principal tolerance generated by (ab, ba). [J

Let A be an algebra with a nullary operation ¢. We say that A is weakly regular,
if [c]e = [c]o implies ©® = & for any two congruences @, @ on A; here [c]q denotes
the congruence class of @ containing ¢ and similary [c],. A variety ¥~ of algebras
is weakly regular, if every A € ¥ has this property. B. Csdkdny [5] gave a characteri-
zation of such varieties.

Theorem 4. The variety of all implication algebras is weakly regular.

Proof. By [5], 7" is weakly regular (with respect to the constant c) if and only if
there exist binary polynomials by(x, y), ..., b,(x, y) on an algebra 4 € ¥" such that
bi(x,y) = cfori=1,...,nif and only if x = y. We can put n = 2 and by(x, y) =
= xy, by(x, y) = yx. Then clearly we have simultaneously xy = 1 and yx =1 if
and only if simultaneously x < y and y < x; this holds if and only if x = y. [

The following concepts are introduced in [3] and [6].

An algebra 4 with a nullary operation c is congruence permutable at c if [¢]g.o =
= [c]d,_@ for any two congruences @, ® on A. A variety ¥ is congruence permutable
at c if every A € ¥ has this property.

" Theorem 5. The variety of all implication algebras is congruence permutable at 1.

Proof. By Theorem 1 in [3] (see also [6]), ¥~ is congruence permutable at 1 if
and only if there exists a binary polynomial b(x, y) such that b(x,x) = 1 and
b(x, 1) = x. Clearly b(x, y) = yx satisfies these identities. []

Following [3], a binary relation R on an algebra 4 with a nullary operation ¢ is
reflexive at c if (x, ¢) € R implies (x, x) € R for each x € A. The relation R is sym-
metric at c if (x, ¢) € R implies (c, x) € R for each x € 4.

Theorem 6. Let A be an implication algebra and let R be a binary relation on A
compatible with the operation of A (i.e. R is a subalgebra of the direct product
A x A).If R is reflexive at 1, then R is symmetricat 1in A. [0

Proof is a direct consequence of Theorem 2 in [3]. O

3. IMPLICATION ALGEBRAS OF THE RANK 2

Here we shall study finite implication algebras. If <I, -> is a finite implication
algebra, then the minimum number of Boolean algebras whose union is <I, +> will
be called the rank of {I, - ).

Thus an implication algebra of the rank 1 is a Boolean algebra. We shall be in-
terested in finite implication algebras of the rank 2. For the sake of simplicity we shall
denote all algebras by the same symbols as their supports, i.e. we shall write only I
instead of (I, +)>. Thus let I be a finite implication algebra of the rank 2. Let it be
the union of two Boolean algebras A4, B. These two algebras have the common
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greatest element 1. Their least elements will be denoted by 0, and Op respectively.
The intersection C = A n B is again a Boolean algebra. If C = {1}, the algebra I
will be called simple. Otherwise we denote the least element of C by 0.

We shall prove a theorem.

Theorem 7. Let I be a non-simple finite implication algebra of the rank 2. Then
I =1, xI;, where I, is a simple implication algebra of the rank 2 and I, is
is a Boolean algebra.

Proof. Let 4, B, C, 0, 03, Oc have the meaning described above. Let d(A4), d(B),
d(C) be the dimensions of the algebras A, B, C respectively. Let ay, ..., a4, (or
by, ..., bygs)) be the atoms of A (or B respectively). Then the element O as an element
of A is the union of d(4) — d(C) atoms of 4 and as an element of B it is the union
of d(B) — d(C) atoms of B. Without loss of generality let

d(A)—d(C) d(B)—d(C)

: Oc= V a= V b;.
i=1 i=1
For the sake of simplicity we denote d; = ayc4)-acc)+i> b, = bypy-acy+: for i =
=1,...,d(C). Let A4, (or C,) be the subalgebra of 4 generated by the atoms aj, ...
o> Qaeay—accy (OT dy, ..., dy(c) Tespectively). Let B, (or Cp) be the subalgebra of B
generated by the atoms by, ..., bymy—ac) (or by, ..., byc, respectively). Consider
the mapping ¢: C, — Cp defined so that ¢(x) = (x0,) 0z for each xe C,. Let
NA(x) be the subset of the number set {1, ..., d¢} consisting of all numbers i such

that a; < x; then x = V a;. Denote N (x) = {1,...,d(C)} — N,(x). As both x
ieN 4(x)
and 0, belong to A, the element x0, is the complement of x v 0, = xin [0,4]1 = 4.

Thus
d(4)—d(C)

XOA:( i\=/1 ai)V( V a.’)ZOCV( \'% ai)'

ieN a(x) ieN a(x)

The element  V  g; is the complement of x in C; we denote it by (x')c,. Therefore
ieN 4(x)

x0,4 = 0¢ Vv (x’)CA. We have x0, = 0. and thus x0, € C = B. As x0, = 0O, we have
x0, = O¢ Vv z, where z is an element of Cp. The element (x0,) O is the complement
of x0, v O = x0, in [OB]T = B. (In our notation the operation of the implication
algebra has the priority before the join and the meet similarly as the multiplication
of numbers has the priority before the addition and the subtraction.) Evidently
y = (x0,) O is the complement of z in Cp. Hence ¢ maps C4 onto Cp. Analogously
we can prove that (y0z) 0, = x and thus the mapping ¢ ~* defined so that ¢ ~*(y) =
= (y0p) 0 is the inverse mapping to ¢ and maps Cy onto C,. This implies that ¢
is a bijection of C, onto Cp. Now let x; € C 4, x, € Cy, X; < X,. According to Lemma
4 in [1] the operation of the implication algebra is right antitone, hence x,0, = x,0,
and (x,0,) Op < (x,0,) 0p. The mapping ¢ is isotone; as it is a bijection of one
Boolean algebra onto another, it is an isomorphism.

Let I, = Ay U B,,. The algebras Ay, B, have the unique common element which
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is the greatest one in both of them; namely Oc. Hence I, is a simple implication
algebra of the rank 2. Each element of 4 is the join of an element of A4, and an ele-
ment of C,; similarly each element of B is the join of an element of B, and an element
of Cg. Consider an element ce C = AN B. As ¢ =2 0., we have ¢ =0, v ¢, =
= 0¢ Vv cp, where c,eCy, cge Cz. We have c =c, v O¢c = (c;)CA and, on the
other hand, ¢ = cg v O¢ = (cj)c,. This implies ¢((c))c,) = ((c4)c, 04) 05 = cOp =
= ((¢g)cy 05) O = (cp)c,- As @ is an isomorphism of C, onto Cp, we have also
¢(c,) = cp. Thus put I, = C, and consider the direct product I, x I;. We shall
define the mapping y:I, x I, — I as follows. Let [xo, x;] €I, x Iy, i.e. xq€l,,
x; €l If xqe€ Ay, then Y([xo,%;]) = Xo V x;. If xo€ By, then Y([x,, x,]) =
= Xo V ¢(x;). (If xp = Oc € 4y N By, then both the ways lead to the same result;
this follows from the above proved facts.) Evidently y is a bijection of I, x I onto I.
From the definition of the implication algebra it is evident that { is an isomorphism.

O

3. TOLERANCE RELATIONS

Now we shall prove some theorems concerning tolerances and congruences on
finite implication algebras of the rank 2.

Theorem 8. Let B = (B, v, A,’,0,1> be a Boolean algebra, let T be a reflexive
and symmetric binary relation on B. Then T is a tolerance on B as on a Boolean
algebra if and only if T is a tolerance on B considered as an implication algebra
with ab = a’ v b. '

Proof. The operation of the implication algebra was yet expressed as ab = a’ v b.
On the other hand, the operations of join, meet and complementation can be expressed
in the following way:

xVvy=(x0)y,
x Ay =(x(y0))0,
x" = x0.

This implies the assertion. []

Now we turn to finite implication algebras of the rank 2. First we shall investigate
simple ones.

Following [1], an upper section of an implication algebra <I, *) is a subset M
of I with the property that a e M, x = a imply x € M.

If D is a congruence on <I, *> and a €I, then the symbol D(a) denotes the class
of D containing a.

Theorem 9. Let {I, -> be a simple finite implication algebra of the rank 2 being
the union of Boolean algebras A and B, let T be a reflexive and symmetric binary
relation on I. Then the following two assertions are equivalent:

(i) Tis a tolerance on (I, +).
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(ii) The restriction Ty (or Tp) of T onto A (or B) is a congruence on A (or on B
respectively) and (a,b)eT, aeA, beB imply aeTy(1), be Tyl), (4,6)eT
for any ¢ = a and b = b.

Proof. (i) = (ii). Let T be a tolerance on I. The restriction of T onto A (or onto B)
is a tolerance on A (or on B respectively); as every tolerance on a Boolean algebra
is a congruence on it, this restriction is a congruence on A (or on B respectively).
Now let (a, b)e T, a € A, b € B. As T'is reflexive, we have (a, a) € T. From (a, b) e T,
(a,a)eT we have (aa, ba) = (1,a)e T and thus a € T,(1). Analogously be Ts(1).
Let ¢ = a, b = b. From (d0,, d0,)e T, (a,b)e T we have ((d0,) a, (40,) b) =
= (4, b) e T. From (b0g, b0g) € T, (d, b) € T we have ((60z) d, (b0g) b) = (d,b) € T.

(ii) = (i). Let (ii) be true. Let (xy, ;) € T, (x,, y,) € T. First suppose that x, € 4,
vy € A. If also x, € A, y, € A, then (x4, y;) € Ty, (x2, y,) € T,, where T, is the restric-
tion of T onto A, i.e. a congruence on A. This implies that also (x;x, y;y,) € T.
If x,eB, y,eB, then (x;x,, yyV2) = (X2, y,)eT. If x,€A, y,€eB, then
(Xlxza J’1Y2) = (x1x27 )’2)- As x;x, = (XIOA) vV X; 2 X, and (xz,yz)e T, we have
(xlxz, y2) € T. Analogously for x, € B, y, € A. If we suppose that x; € B, y, € B,
the proof is analogous. Now suppose that x, € 4, y, € B. Then x, € T(1), y, € Ts(1).
If x,ed, y,€A4, we have (x;X;, V12) = (X5, ;). As (x;,1) e T, we have
(x9%3, 1y,) = (x(X5, y,) € T. If x, € B, y, € B, the proof is analogous. If x, € 4,
Y2 €B, then XX, = X5, y1V2 Z V2, X1X2 € 4, y,y, € B and hence (x;X, y1y,) € T.
If x, € B, y, € A, then (x,x,, ViYa) = (xz, y2) € T. In the case when x; € B, y, € 4
the proof is analogous. We have proved that T'is a tolerance on I. []

Theorem 10. Let {I, *)> be a simple finite implication algebra of the rank 2,
being the union of Boolean algebras A and B, let T be an equivalence relation on I.
Then the following two assertions are equivalent:

(iii) T is a congruence on {I, +).

(iv) The restriction T, (or Tg) or T onto A (or onto B) is a congruence on A
(or on B respectively) and (a, b)e T, ae A, be B holds if and only if ae T (1),
b e Ty(1).

Proof. (iii) = (iv). Let T be a congruence on <I, *>. As it is a tolerance on I,
the condition (ii) from Theorem 3 is satisfied. Hence T4 (or Ty) is a congruence on A4
(or on B respectively). Further if (a, b)e T, ae A, be B, then a € T,(1), b e Ty(1).
On the other hand, suppose that a € T,(1), b e Ty(1). Then (a, 1) e T, (1, b) € T and
the transitivity of T yields (a, b) € T.

(iv) = (iii). Let (iv) be true. If ae 4, be B, (a, b)e T, then (a,1)e T, (b, 1)e T.
The sets T,(1), Ty(1) are filters of I, therefore if d =-a, b = b, then also de T,(1),
b e Ty(1) and (4, b) e T. Hence (iv) = (ii) = (i) and T is a tolerance on I. As T is
evidently transitive, it is a congruence on I. []

Now we shall use Theorem 1 and Theorem 3 to the study of tolerances on finite
implication algebras of the rank 2 which are not simple. First we shall define a concept
which will be important in the sequel.
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Let J,, J, be two implication algebras, let T; be a tolerance on J; and let T,
be a tolerance on J,. A tolerance T on J; x J, is called the direct product of tole-
rances T, and T, and denoted by T, x T, if ((uy, u,), (vy, v,)) € T holds if and
only if (uy, v,) € Ty, (uy, v,) € Ty

Now consider a finite implication algebra I of the rank 2. According to Theorem 1
it is isomorphic to the direct product I, x I, where I, is a simple implication algebra
of the rank 2 and I, is a Boolean algebra. Thus we may consider I as this direct
product.

The algebra I, will be considered as the union of two Boolean algebras A4, B,
whose intersection consists only of their common greatest element; we denote it
by 1,. The least elements of 4, and B, will be denoted by 0, and O respectively. The
greatest element of I, will be denoted by 1,, its. least element by 0,. Further we
denote 4 = Ay x I, B = B, x I,; this corresponds to the notation used above.

Before proving a theorem, we state some lemmas.

Lemma 1. Let T be a tolerance on I = I, x I,. Let T, (or Tp) be the restriction
of T onto A (or B respectively). Then there exists a congruence T% on A, a con-
gruence Ty on By and a congruence T** on I, such that T, = T x T** T, =
= Ty x T**

Proof. Consider T,. Let ((uy, x,), (v1, ¥1)) € Tu» (42, x,), (v, ¥,)) € T, for some
elements uy, vy, Uy, v of Ag and xy, yy, X5, y, of I,. From ((1o, 0,), (19, 0)) € T,
((uy, x1), (v1, ¥1)) € T4 we obtain ((uq, 1;), (vy, 1)) € Ty. From ((04, 1,), (04, 1,)) €
€ Ty, (425 x3), (v2,¥,)) €T, we obtain ((14, x,), (1o, y,)) € Ty. From this and
((04,04), (04,0,)) € T, we obtain ((04, x,0,), (04, ¥,0,)) € T,. Now from ((u,, 1,),
(v1, 1)) € Ty, (045 x20,), (04, ¥20,)) € T, we obtain ((u,0,, x,0,), (v,0,, y,0,)) €
€ T4. From this and ((0, 0,), (0,4, 0,)) € T4 we obtain ((uy, x,), (v, y,)) € Ty. We may
define T as the set of all pairs (u, v), where u € Ay, ve Ay and ((u, 1,), (v, 1,)) € T}
Similarly we define T** as the set of all pairs (x, y), where x e I, y € I, and ((1o, x),
(1o, y)) € T4 As the elements u,, vy, Xy, ¥y, Uz, U2y X2, ¥, used in the above con-
sideration were chosen arbitrarily, we see that T, = Tj x T**. Analogously we
may prove Ty = Ty x T**; the tolerance T** is the same as in the preceding case,
because 1, is the common greatest element of both 4, and B,. [

In the sequel we shall use a further notation. If xeI,, yely, (x, y) e T, then by
T(x, y) we denote the set of all pairs (u, v) such that u e Iy, ve Iy, ((u, x), (v, y)) e T.

Lemma 2. Each T(x, y) is a tolerance on I, and T(x, y) 2 Ty x Tj.

Proof. Let (uy,v,) e T(x, y). (us, v;)€ T(x,y), ie. ((uy, x), (up y)eT,
((uz, x), (v2,y)) € T. From (1o,0,), (10,0,))e T, ((uy,x), (vy, )€ T we obtain
((uy, 1), (v4,1,))e T. From this and ((uy, x), (v, )€ T we obtain ((uyu,, x),
(v,v,, y)) € T and hence (u,u,, v,v,) € T(x, y); this proves that T(x, y) is a tolerance
on I,. As (x,y)e T** from Lemma 1 it follows that ((u, x), (v, y))e T for any
(u,v)e Ty U Ty and thus T(x, y) 2 Tf v Ty. O
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Lemma 3. Let xel,, yel,, £el,, yel;, (x,y)eT** (& 9)eT*, £=x,
9 = y. Then T(x,y) = T(%, 9).

Proof. Let (u, v) € T(x, ), i.e. (u, x), (v, y)) € T. As (%, §) € T**, also (£0,, $0,) €
e T** and ((1,, £0,), (1o, 0,)) € T. From this and ((u, x), (v, y)) € T we obtain
((u, %), (v,9)eT, ie. (u,v)eT(%, P). As the pair (u,v) was chosen arbitrarily,
this proves the inclusion. [] ‘

Lemma 4. If ((u, x), (v, y)) € T for some elements uel,, vel,, xely, yel,,
then (x, y) e T**.

Proof. From ((u,x), (v,y))eT. ((15,04), (15,0,))e T we obtain ((1, x0,),
(1o, x0,)) € T. As 15 € Ay U By, according to Lemma 1 we have (x0,, y0,) € T** and
then also (x, y) e T**. [J

Now we can prove a theorem.

Theorem 11. Let the symbols I,1,,1,, Ay, By, A, B have the above described
meaning. Let T be a reflexive and symmetric binary relation on 1, let T, (or Tg)
be the restriction of T onto A (or B respectively). The relation T is a tolerance on I
if and only if the following conditions are satisfied:

(a) There exists a congruence T; on A, a congruence Ty on B and a congruence
T** on I, such that T, = T§ x T**, Ty = Ty x T**,

(b) For each (x,y)e T** the set T(x,y) = {(u,v)ely x Iy | (u,x), (v, y)) e T}
is a tolerance on I, and T(x, y) 2 Ty L Ty.

(c) If xel,, yel,, ely, pel,, (x,y)e T, (%, 9)eT**, 2 2 x, § 2 y, then
T(x, y) = T(%, ).

(d) Ifuely, vely, xely, yel, and ((u, x), (v, y)) € T, then (x, y) € T**.

Proof. The necessity of the conditions follows from Lemmas 1, 2, 3, 4. It remains
to prove their sufficiency. Let the conditions (a,)(b), (c), (d) be fulfilled. Let
((ug, x1), (v1, 1)) €T, ((uz, x2), (v25¥2)) € T. Then (uy, vy)e T(xy, yy), (uz,v;)€
eT(xZ,yz). We have u u, = u,, 010, = U5, XX, = X,, V1V, = y,. This implies
T(x,, y;) € T(x1X,, y1y,) and thus (u,, v,) € T(x;X5, ¥1,). If uyu, € Ay, v,0, € By,
then also u, € Ay, v, € By. As (uy, v,) € T(x1x,, 1), then, according to (c), also
(uyuy, v,0,) € T(x,X,, y1¥,) S T, because uyu, = u,, v,0, = v,. In the case when
u,u, € By, v,v, € Ay the proof is analogous. If u,u, € Ay, v,v, € 4,, then also
u,e Ay, v,€A4, and, according to (a), (uy,v,)e T(0y,0;) S T(xy, y;). Then
(uquy, v,v,) € T(xy, y;) = T according to (b). In the case when u,u, € By, v,0, € By
the proof is analogous. []

Theorem 12. Let I = I, X I, be a direct product of a simple finite implication
algebra I, of the rank 2 and of a finite Boolean algebra I,. Let T be an equivalence
relation on I. The relation T is a congruence on I if and only if T= T, x Ty,
where T, is a congruence on I, and T is a congruence on I .

Proof. We shall use the introduced notation. Suppose that T is a congruence on I.
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Then it is a tolerance on I and Theorem 5 holds for it. Evidently the tolerance T(x, y)
for each (x, y)e T is also a congruence. As it contains Tj U Ty as a subset, it is
uniquely determined (this follows from Theorem 3) and thus it is also the same for
each (x, y) e T; it contains all pairs from T}, all pairs from Ty and all pairs, one of
whose elements is in Tj(1o) and the other is in T3(1,). We denote this tolerance
by T,. If we put T; = T**, then evidently T = T, x T;. Conversely, a direct product
of a congruence on I, and a congruence on I, is evidently a congruence on I =
=1, xI,. O

At the end we shall prove two theorems concerning tolerances of finite implication
algebras in general.

Theorem 13. Let T be a tolerance on an implication algebra I. Then each block
of T'is a convex subset of I.

Proof. Let B be a block of T and let a€ B, b e B. Suppose that a < b in the
described ordering. Now let x, y be elements of I such that a < x < b,a < y < b.
Then x < b implies xb = 1 and thus

(bx)x = (xb)b=1b =b..

Then (a, b) e T and (x, x) € T imply ((ax) x, (bx) x) e T, i.e. (x, b) = (x, (bx) x) e T.
Analogously (b, a) e T and (y, y) € T imply (b, y) e T. This yields

((x(ba)) a, (b(ya)) a)e T.

By Theorem 5 in [1] we have
(x(ba))a=x A b,

(b(ya))a=b Ay,

where the meets are taken in the Boolean algebra [a]f. Hence we have
(x Ab,b Ay)eT. As x < b, y < b, this implies (x, y)e T. Thus the convexity
of Bis proved. []

Theorem 14. Let I be a finite implication algebra, let T be a tolerance on I. Then
for each block B of T there exists a block B of Tsuch that IB[ < |B| and 1 € B.

Proof. The tolerance T is also a tolerance on I as on a semilattice, because the
join can be expressed in terms of the operation of the implication algebra. Thus [5]
the block B is closed under the join and has the greatest element a. Let ¢ be a map-
ping of I into itself given by ¢(x) = ax. If (x, y)e T, then also (¢(x), ¢(y) =
= (ax, ay) e T; hence there exists a block B of T which contains all elements (p(x)
for x € B. We have ¢(a) = aa = 1 and thus 1 € B. Now suppose that ¢(x) = ¢(y)
for some elements x, y of B. This means ax = ay. As a v x =a Vv y = a, the
element ax is the complement of a in [x]1 and ay is the complement of a in [y]1.
Hence ax A a = x in [x]1 and ay A a = y in [y]1. But, as ax = ay and a meet
of given two elements is at most one, we obtain x = y. Hence ¢ is a one-to-one
mapping. As ¢ maps B into B, we have [B| < [B|. O
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Now we generalize the notation T(a) to tolerances. If I is an implication algebra,
Tis a tolerance on I and a €1, then T(a) = {x eI |(a, x)e T}.

Theorem 15. Let I be a finite implication algebra, let T be a tolerance on I. Then
|T(a)| £ |T(1)| for each ael.

Proof. Also T(a) is closed under join; hence the proof is analogous to the proof
of Theorem 14. []
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