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TOLERANCES AND CONGRUENCES ON IMPLICATION ALGEBRAS 

IvAN CHAJDA, Přerov and BoHDAN ZELiNKA, Liberec 

(Received January 9, 1986) 

1. INTRODUCTION 

The concept of an implication algebra was introduced by J. C. Abbott [1]. It is 
a groupoid <J, •> with the support I and one binary operation (denoted by a dot 
or by a simplejuxtaposition) which satisfies the following axioms: 
1 1 : (ab) a = a; 
12: (ab)b = (ba)a; 
I 3: a(bc) = b(ac) 

(The elements a, b, c are always arbitrary elements ofL) 
In [1] some fundamental properties of implication algebras are shown. We shall 

quote some of them. 
In every implication algebra <J, • > there exists an element denoted by 1 and satis­

fying the equality aa = 1 for each a є / . The existence of such an element enables 
to introduce a partial ordering ^ on I such that a ^ b if and only if ab = 1. The 
element 1 has the property that \a = a, a\ = 1 for each a eI and it is the greatest 
element in the ordering ^ . The set I with the ordering g forms a join semilattice 
(in general not a lattice). 

Let [a ] t = {xeI j x ^ a}. The set [a] t is called a principal filter of <J, •> 
and it is a Boolean algebra with respect to the restriction ofthe ordering ^ onto [ a ] | . 
All Boolean algebras [ a ] | for aeI have the common greatest element 1. Hence 
every implication algebra is a union of Boolean algebras with a common greatest 
element. Then ab can be interpreted as the complement of a v b (where v denotes 
thejoin in </, •> as in ajoin semilattice) in the filter [ a ] | . 

In particular, every Boolean algebra <J5, v , л , ', 0, 1> can be considered as an 
implication algebra </, •>, where / = B and ab = a' v b for any aeB, beB. 
The unit element 1 of B is also the element 1 of the implication algebra. The term 
"implication algebra" has its origin in this fact. Namely, the statement "a implies b " 
is the disjunction of two statements, one of which is the negation of a and the other 
is fe; hence it corresponds to the expression a' v b in a Boolean algebra. 
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2. VARIETIES OF IMPLICATION ALGEBRAS 

Since every implication algebra is a union of Boolean algebras, one can expect 
that the variety of all implication algebras would have similar properties as a variety 
of Boolean algebras. We shall give a list of congruence properties of this variety 
which show differences. 

Theorem 1. The variety of all implication algebras has the property that the 
congruence lattice of any of its elements is distributive. 

Proof. Put n = 3, p0(x, y, z) = x, pt(x, y, z) = {y{zx)) x, p2(x, y9 z) = (xy) z, 
p3(x, y, z) = z. Then we have 

Po(*, У, *) = *> 
Pi(x, У, x) = (Xх*)) x = (У{) x = lx = x> 
p2(x, y, x) = (xy) x = x, 
p3(x, y, x) = x. 

Further 
Pi(x, x, z) = (x(zx)) x = (z(xx)) x = (zl) x = lx = x = Po(x, x, z), 
Pi{x, z, z) = (z(zx)) x = (zx) x = (xz) z = P2(*> z> z)> 
р2(х, x, z) = (xx) z = lz = z = p3(x, x, z). 

By the well-known Mal'cev condition (given by B. Jónsson) the assertion is prove. • 

Now we shall define a tolerance relation. It can be defined for algebras in general 
(as in [7] and [8]) similarly as a congruence, only the requirement of transitivity is 
omitted. For lattices it was studied in [4], for semilattices in [9]. Every tolerance 
on a Boolean algebra is a congruence, i.e. it is transitive. 

For implication algebras the tolerance may be defined as follows. Let <J, •> 
be an implication algebra. A tolerance on <7, •> is a reflexive and symmetric binary 
relation Ton / with the property that (xi9 j ^ ) є T, (x2, y2) є Timply {xxxl9 У1У2) E T 
for any four elements xl9 yi9 x29 Уг of/. 

A variety V is congruence permutable {congruence 3-permutable) if Ѳх . Ѳ2 — 
= ®2 • ®i (®i • @2 • ^ i = &2 • ®i • @i) f ° r e a c n t W 0 congruences Ѳи Ѳ2 є Соп Л 
for any А є т^. 

Theorem 2. Tfte variety of all implication algebras is congruence 3-permutable, 
but not congruence permutable. 

Proof. By the result of Hagemann and Mitschke, a variety is congruence 3-
permutable, if there exist ternary polynomials pl9 p2 such that Pi(x, x9 y) = y9 

p2(x, y, y) = x and Pi(x, y, y) = p2(x, x, y). In the variety i^ of all implication 
algebras we can put Pi(x, y9 z) = (xy) z, p2(x, y9 z) = {zy) x. Then 

pt(x9 x, y) = (xx) y = ly = y, 
P2(x> У* У) = {yy) x = lx = x, 
Pi(x, У> У) = (ХУ) У = (yx) * = p2(x9 x, y). 
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Hence іґ is congruence 3-permutable .By [2], У is congruence permutable, if and 
only of У is tolerance trivial, i.e. if every tolerance Ton every A e У is congruence 
on A. If we consider the three-element implication algebra <J, •>, where / = 
= {a, b, 1} and the operation on this algebra is given by aa = bb = 11 = 1, 
ab = b, ba = a, la = a, lb = b, я1 = Ы = 1, then the binary relation T = {(a, 1), 
( l , a ) , ( b , l ) , ( l , b ) , ( a , a ) , ( b , b ) , ( l , l ) } is evidently а tolerance on <!,•> 
and is not transitive (i.e. it is not a congruence). Hence У is not congruence 
permutable. • 

A block of a tolerance Г о п <J, •> is a maximal (with respect to set inclusion) 
subset B of I with the property that (x, y) e T for each x e В, у є B. 

The set of all tolerances on an algebra A forms an algebraic lattice. Hence, for 
any A, b є A there exists the least tolerance т(а, b) containing the pair <a, b}. An 
algebra Л is called principal tolerance trivial (see [2]) if т(а, b) = Ѳ(а, b) for each 
a, b є Л. An algebra A is tolerance trivial ifeach tolerance on A is a congruence on A. 

Since every implication algebra is a join semilattice with respect to the operation 

a v b = (ab) b 

in which every filter [a ] t is а Boolean algebra and since every distributive lattice is 
principal tolerance trivial, we have a question whether also implication algebras 
have this property. 

Theorem 3. The variety of all implication algebras is not principal tolerance 
trivial. 

Proof. Let <J, •> be a free implication algebra with two free generators a, b and 
let T be the least (with respect to set inclusion) tolerance on </, • > which contains 
the pair (ab, ba). Then clearly the blocks o fTare exactly those visualized in Fig. 1. 
Since (a, (ab) b) e T, ((ab) b, b) e T, but (a, b) ф T, the tolerance T is not a con-

Fig. 1. 
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gruence and the principal congruence generated by (ab, ba) is not equal to the 
principal tolerance generated by (ab, ba). • 

Let A be an algebra with a nullary operation c. We say that A is weakly regular, 
if [с]ѳ = [с]ф implies Ѳ = Ф for any two congruences Ѳ, Ф on A; here [с]ѳ denotes 
the congruence class of Ѳ containing c and similary [с]ф . A variety У of algebras 
is weakly regular, ifevery A є У has this property. B. Csákány [5] gave a characteri­
zation of such varieties. 

Theorem 4. The variety ofall implication algebras is weakly regular. 

Proof. By [5],тГ is weakly regular (with respect to the constant c) if and only if 
there exist binary polynomials bt(x, y),..., bn(x, y) on an algebra A є іґ such that 
bi(x, y) = c for i = 1, ..., n if and only if x = y. We can put n = 2 and bx(x, y) = 
= xy, b2(x, y) = j;x. Then clearly we have simultaneously xy = 1 and yx = 1 if 
and only if simultaneously x ^ j and y ^ x; this holds if and only if x = y. • 

The following concepts are introduced in [3] and [6]. 
An algebra A with a nullary operation c is congruence permutable at c if [ с ] Ѳ Ф = 

= [e]a>.0 for any two congruences Ѳ, Ф on A. A variety "V is congruence permutable 
at c if every Л є f has this property. 

Theorem 5. Tfoe variety ofall implication algebras is congruence permutable at 1. 
Proof. By Theorem 1 in [3] (see also [6]), У is congruence permutable at 1 if 

and only if there exists a binary polynomial b(x, y) such that b(x, x) = 1 and 
b(x, 1) = x. Clearly b(x, y) = yx satisfies these identities. • 

Following [3], a binary relation R on an algebra A with a nullary operation c is 
reflexive at c if (x, c) є jR implies (x, x) є iE for each x є А. The relation ,R is sym­
metric at c if (x, c) є Я implies (c, x) є jRfor each x є А. 

Theorem 6. Let A be an implication algebra and let R be a binary relation on A 
compatible with the operation of A (i.e. R is a subalgebra of the direct product 
A x A). IfR is reflexive at 1, then R is symmetric at 1 in A. • 

P roof is a direct consequence of Theorem 2 in [3]. • 

3. IMPLICATION ALGEBRAS OF THE RANK 2 

Here we shall study finite implication algebras. If <i, •> is a finite implication 
algebra, then the minimum number of Boolean algebras whose union is </, • > will 
be called the rank of <I, •>. 

Thus an implication algebra of the rank 1 is a Boolean algebra. We shall be in­
terested in finite implication algebras of the rank 2. For the sake of simplicity we shall 
denote all algebras by the same symbols as their supports, i.e. we shall write only / 
instead of <i, •>. Thus let / be a finite implication algebra of the rank 2. Let it be 
the union of two Boolean algebras A, B. These two algebras have the common 
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greatest element 1. Their least elements will be denoted by 0A and 0B respectively. 
The intersection C = A n B is again a Boolean algebra. If C = {l}, the algebra I 
wiJl be called simple. Otherwise we denote the least element of C by 0C. 

We shall prove a theorem. 

Theorem 7. Let I be a non-simp1efinite implication algebra of therank2. Then 
I = IQ x Il9 where I0 is a simple implication algebra of the rank 2 and Ix is 
is a Boolean algebra. 

Proof. Let A, J5, C, 0^, 0B, 0C have the meaning described above. Let d(A), d(B), 
d(C) be the dimensions of the algebras A,B, C respectively. Let au ..., ad(A) (or 
°ъ • • •> bd(B)) be the atoms of A (or B respectively). Then the element 0C as an element 
of A is the union of d(A) — d(C) atoms of A and as an element of B it is the union 
of d(B) - d(C) atoms of B. Without loss of generality let 

d(A)-d(C) d(B)-d(C) 

0C= y a,= V bt. 
i = l i = l 

For the sake of simplicity we denote ât = cid(A)-d{C)+b $i — °d(B)-d(C)+i f ° r l — 
= 1, ..., d(C). Let A0 (or CA) be the subalgebra of A generated by the atoms au ... 
..., 0d(4)-d(c) (or ûu ..., âd{C) respectively). Let B0 (or CB) be the subalgebra of B 
generated by the atoms bu...,bd{B)^d{C) (or b1,...,Bd(C) respectively). Consider 
the mapping cp: CA ̂ > CB defined so that cp(x) = (х0 л)0Б for each xe CA. Let 
Njx) be the subset of the number set {1, ..., dc] consisting of all numbers i such 
that at ^ x; then x = V «i- Denote Njx) = {1, ..., d(C)] - Njx). As both x 

ieNA(x) 

and 0A belong to A, the element x0A is the complement of x v 0A = x in [ 0 Л ] | = A. 
Thus 

d(A)-d(C) 
x0A = ( V e,) v ( V a,) = 0C v ( V a,) -

i = l r6JV^(jc) іеНл(х) 

The element V a i is t n e complement of x in CA; we denote it by (х')Сл. Therefore 
ÍeŇA(x) 

X®A — 0C v (х')Сл. We have х0л ^ 0C and thus x0A e C £ Б. As x0^ g> 0C, we have 
х0л = 0C v 'z, where z is an element of CB. The element (x0A) 0B is the complement 
of x0A v 0B = x0A in [ 0 j t = B. (In our notation the operation of the implication 
algebra has the priority before the join and the meet similarly as the multiplication 
of numbers has the priority before the addition and the subtraction.) Evidently 
y = (x0A) 0B is the complement of z in CB. Hence cp maps CA onto CB. Analogously 
we can prove that (y0B) 0A = x and thus the mapping cp~x defined so that cp~x(y) = 
= (y0B) 0A is the inverse mapping to cp and maps ÇB onto CA. This implies that cp 
is a bijection of CA onto CB. Now let л^ є CA, x2 є C^, xx ^ x2. According to Lemma 
4 in [1] the operation ofthe implication algebra is right antitone, hence хг0А ^ x20A 

and (хх0л) 0ß ^ (^2^л) 0fj. The mapping ф is isotone; as it is a bijection of one 
Boolean algebra onto another, it is an isomorphism. 

Let I0 = A0 u B0. The algebras A0, B0 have the unique common element which 
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is the greatest one in both of them; namely 0C. Hence I0 is a simple implication 
algebra of the rank 2. Each element of A is the join of an element of A0 and an ele­
ment of CA; similarly each element of B is the join of an element of B0 and an element 
of CB. Consider an element c є C = A n B. As c ^ 0C, we have c = 0C v cA = 
= 0C v cB, where cA e CA, св є CB. We have c = cA v 0C = (сА)Сл and, on the 
other hand, c = cB v 0C = (с'в)Св. This implies q){{c'A)cA) = {{cA)cA 0A) % = cOB = 
— ((св)св Oß) 0ß = (св)Св. As )̂ is an isomorphism of CA onto CB, we have also 
<Ксл) = св- Thus put / х = CA and consider the direct product i 0 x / 1 . We shall 
define the mapping ф:І0 x I1 ^I as follows. Let [xo,Xi]eJo x /1 ? i.e. х 0 є / 0 , 
xíeIí. If х 0 є Л 0 , then *A([xo,xJ) = ^o v *i- If ^ о є ^ о ? then ^ ( [ x o , x J ) = 
= x0 v ф(х1). (If x0 = 0C є A0 n Б0 , then both the ways lead to the same result; 
this follows from the above proved facts.) Evidently ф is a bijection of/0 x I1 onto / . 
From the definition of the implication algebra it is evident that ф is an isomorphism. 

D 

3. TOLERANCE RELATIONS 

Now we shall prove some theorems concerning tolerances and congruences on 
finite implication algebras of the rank 2. 

Theorem 8. Let 93 = <£, v , л , ', 0, 1> be a Boolean algebra, let T be a reflexive 
and symmetric binary relation on B. Then T is a tolerance on 3$ as on a Boolean 
algebra ifand only ifTis a tolerance on 23 considered as an implication algebra 
with ab = a' v b. 

Proof.Theoperationoftheimplicationalgebrawasyetexpressedasab = a! v b. 
On the other hand, the operations ofjoin, meet and complementation can be expressed 
in the following way: 

x v y = (x0) y , 

x л y = (x(y0)) 0 , 

x' = x0. 
This implies the assertion. • 

Now we turn to finite implication algebras of the rank 2. First we shall investigate 
simple ones. 

Following [ l ] , an upper section of an implication algebra </, •> is a subset M 
ofI with the property that a є M, x ^ a imply x e M. 

If D is a congruence on </, • > and a e I, then the symbol D(a) denotes the class 
of D containing a. 

Theorem 9. Let <J, •> be a simplefinite implication algebra of the rank 2 being 
the union ofBoolean algebras A and B, let Tbe a reflexive and symmetric binary 
relation on I. Then thefollowing two assertions are equivalent: 

(i) Tis a tolerance on </, •>. 
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(ii) The restriction TA (or TB) of T onto A (or B) is a congruence on A (or on B 
respectively) and (a, b) e T, a є A, b є B imply a є TA(i), b e TB(l), (а, В) є T 

for any â ^ a and ß ^ b. 
Proof, (і) => (ii). Let Tbe a tolerance on I. The restriction ofTonto A (or onto B) 

is a tolerance on A (or on B respectively); as every tolerance on a Boolean algebra 
is a congruence on it, this restriction is a congruence on A (or on B respectively). 
Now let (a, b) e T, a є A, b e B. As Tis reflexive, we have (a, a) є T. From (a, b) є Г, 
(a, a) є T we have (aa, ba) = ( l , a) e Г and thus a є T^(1). Analogously beTB(l). 
Let я ^ я, 5 ^ b. From (âOA, âOA) e T, (a, b) e T we have ((âOA) a, (âOA) b) = 
= (a, Ь) є Т. From (5oB, fiOß) є Т, (а, Ь) є T we have ((B0B) â, (B0B) b) = (а, В) є T 

(ii) => (i). Let (ii) be true. Let (xu yx) e Г, (x2, y2) є T. First suppose that xx є Л, 
j ^ є Л. If also x2 e A, y2 є A, then (x l3 yx) є Тл, (x2, y2) є Тл, where Гл is the restric­
tion of T onto A, i.e. a congruence on A. This implies that also (xxx2, yxy2) є Г. 
If X2 Є Б, J2 Є Б, then (*!*2, JlJ2) = (*2> J2) Є T. If *2 Є ^ > ^ 2 Є ^ > tnen 

(*i*2>J>i3>2) = (*i*2> Уг)- A s *1*2 = (*і°л) v х2 è *2
 a n d (*2>J>2)e Г, we have 

(*1*2> У2) є Г. Analogously for x2 e Б, y2 є A. If we suppose that Xi є Б, j 2
 є ^> 

the proofis analogous. Now suppose that x t є A, yx e B. Then xx є 7^(l), yx є TB(l). 
If x2 є Л, y2 e A, we have (xxx2, У1У2) = C*1*2> ^2)- As (x l5 1) є Г, we have 
(xxx2, \y2) = (xxx2, Уі) e T. If x2 є Б, y2 є Б, the proof is analogous. If x2 e A, 
y2 є Б, then xxx2 ^ x2, yxy2 ^ y2, xxx2 є A, yxy2 e B and hence ( x ^ 2 , У1У2) є T. 
If x2 є Б, y2

 є ^4> t n e n (*i*2> У1У2) = (x2> ^2) є T. In the case when xx e Б, j ^ є А 
the proof is analogous. We have proved that Tis a tolerance on I. • 

Theorem 10. Let </, •> be a simplefinite implication algebra of the rank 2, 
being the union ofBoolean algebras A and Б, let Tbe an equivalence relation on I. 
Then thefollowing two assertions are equivalent: 

(iii) Tis a congruence on <J, •>. 
(iv) The restriction TA (or TB) or T onto A (or onto Б) is a congruence on A 

(or on B respectively) and (a, b) є T, a e A, b є Б holds if and only if a є T^(l), 
b e TB(Í). 

Proof, (iii) => (iv). Let T be а congruence on </, •>. As it is а tolerance on / , 
the condition (ii) from Theorem 3 is satisfied. Hence TA (or TB) is a congruence on A 
(or on Б respectively). Further if (a, b) є T, a є A, b є Б, then a є Тл(і), b є ТБ(1). 
On the other hand, suppose that a є TA(ì), b e TB(l). Then (a, 1) є T, ( l , b) e Tand 
the transitivity ofTyields (a, b) є T. 

(iv) => (iii). Let (iv) be true. If a e A, b є Б, (a, b) є Г, then (a, 1) є Г, (b, 1) є T. 
The sets TA(l), TB(l) аге filters of/, therefore if a ^<a, B ^ b, then also âe TA(l), 
В є TB(l) and (a, В) є T Hence (iv) => (ii) => (i) and T is a tolerance on J. As T is 
evidently transitive, it is a congruence on L • 

Now we shall use Theorem 1 and Theorem 3 to the study of tolerances on finite 
implication algebras ofthe rank 2 which are not simple. First we shall define a concept 
which will be important in the sequel. 
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Let Jl9 J2 be two implication algebras, let Tx be a tolerance on Jx and let T2 

be a tolerance on J2. A tolerance T on Jx x J 2 is called the direct product of tole­
rances Tx and T2 and denoted by Tx x T2, if ((wl5 w2), (y1? v2))e Tholds if and 
only if (ttl5 üj) є T1? (u2, t?2) e T2. 

Now consider a finite implication algebra I of the rank 2. According to Theorem 1 
it is isomorphic to the direct product I0 x Il9 where /0 is a simple implication algebra 
of the rank 2 and Ix is a Boolean algebra. Thus we may consider I as this direct 
product. 

The algebra I0 will be considered as the union of two Boolean algebras A09 B0 

whose intersection consists only of their common greatest element; we denote it 
by 10. The least elements of^0 and B0 will be denoted by 0A and 0B respectively. The 
greatest element o f i ^ will be denoted by l l 5 its.least element by 0t. Further we 
denote A = A0 x Ii9 B = B0 x Ix; this corresponds to the notation used above. 

Before proving a theorem, we state some lemmas. 

Lemma 1. Let T be a tolerance on I = I0 x Ix. Let TA ( or Tß) be the restriction 
of Tonto A (or B respectively). Then there exists a congruence TA on A09 a con­
gruence Tß on B0 and a congruence T** on lx such that TA = TA x Г**, TB = 
= TB x T**. 

Proof. Consider TA. Let ((ui9 xx)9 (vl9 yx)) e TA, ((w2, x2)9 (v2, y2)) є TA for some 
elements ul9 vi9 u29 v2 of A0 and xl9 yl9 x29 y2 of I2. From ((10 , 0X), ( l 0 , 0X)) e TÄ9 

((ul9 xx)9 (ví9 yx)) є TA we obtain ((ul9 lx)9 (vl9 lx)) є TA. From ((0Ä9 lx)9 (0A, ÍL)) e 
єТА, ((u29 x2)9 (v29y2))eTA we obtain ((l09x2)9 (і09у2))єТА. From thisand 
((0Ä9 OJ, (ÓA9 0X)) e TA we obtain ((0^, x20x)9 (0A9 y20x)) є TA. Now from ((ul9 lx) , 
(vl9 lx)) e TA9 ((0A9 x20x)9 (0A9 y20x)) є TA we obtain ((ux0A9 x20x)9 (vx0A9 y20x)) e 
є TA. From this and ((0Л, О^, (0Л, 0X)) є TA we obtain ((uux2)9 (vl9y2)) є TA. We may 
define T* as the set of all pairs (u, v)9 where u є A09 v e A0 and ((w, l j) , (^, lj)) є TA. 
Similarly we define T** as the set of all pairs (x, y)9 where x є It9 у є i \ and ((10, x)9 

( l o j ) ) e T ^ . As the elements uX9vl9xX9yX9u29v29x29y2 used in the above con­
sideration were chosen arbitrarily, we see that TA = TA x T**. Analogously we 
may prove TB = TB x T**; the tolerance T** is the same as in the preceding case, 
because 10 is the common greatest element of both A0 and B0. • 

In the sequel we shall use a further notation. If x є / ь y eIl9 (x, у) є T9 then by 
T(x9 y) we denote the set of all pairs (w, v) such that u e I09 v e 70, ((w, x), (^, y)) є Г. 

Lemma 2. Each T(x, j ) is a tolerance on I0 and T(x, y) 2 Tjf x T^. 
Proof. Let (ttl9 üi) e T(x, y)9 (u29 v2) e T(x, y)9 i.e. ((wl5 x), (w2, y)) є Г, 

((w2,x), (v29y))eT, From ( l o , O j , ( 1 ^ 0 ^ e T , ((и1 (х), (ví9y))eT v/e obtain 
((«і ,1і) , ( ^ i , l i ) ) e T . From this and ((u29x)9 (v29y))eT we obtain ((uxu29x)9 

{vxv2, y)) e Tand hence (uxu29 vxv2) є T(x, y); this proves that T(x, j ) is a tolerance 
on J0. As (x9 у) є T**9 from Lemma 1 it follows that ((w, x)9 (v, y)) e T for any 
(w, v) є T* u TB* and thus T(x, у) э T* u 7£. D 
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Lemma 3. Let xeIu yeIl9 xeIu уєІи ( x j ) e P * , (X,p)eT**, x ^ x % 
У ^ У- Then T(x, у) S T(x, у). 

Proof. Let (и, v) є T(x, у), i.e. ((м, x), (t;, y)) e Т. As (x, j)) є Г**, also (*0І9 $0Х) e 
є Т * * and ((lo,xOi), (lo,pOj)eT. From this and ((u,x), (v,y))eTwe obtain 
((w,x), ( u , | ) ) e T , i.e. (u,v)eT(x,y). As the pair (w,u) was chosen arbitrarily, 
this proves the inclusion. П 

Lemma 4. J / ( (w,x) , (v,y))eTfor some elements ueI0, vel0, х б / ь yeIx, 
then (x, y) e T**. 

Proof. From ((u,x), (v,y))eT, ( ( l o , 0 ^ ( lo ,Oi ) )eT we obtain ( ( lo ,xOj , 
(1 0 , xOx)) є T. As 10 є Л0 u Б0 , according to Lemma 1 we have (xOl5 yOx) є T** and 
then also (x, у) є T**. • 

Now we can prove a theorem. 

Theorem 11. Let the symbols I,I09IU A0,B0, A,B have the above described 
meaning. Let T be a reflexive and symmetric binary relation on I, let TA (or TB) 
be the restriction ofTonto A (or B respectively). The relation Tis a tolerance on I 
ifand only if thefollowing conditions are satisfied: 

(a) There exists a congruence Tjf on A, a congruence TB on B and a congruence 
T** on Ix such that TA = T* x T**, TB = T% x T**. 

(b) For each (x, у) є T** the set T(x, y) = {(w, v)eI0 x I0 | (u9 x), (v, y)) e T} 
is a tolerance on I0 and T(x, j ) 2 T* u X̂ f. 

(c) / / x є Iu у є J1} x є J1? j) є Iu (x, j ) e T**, (x, j)) є Г**, x ^ x, j) ^ y, then 
T(x, y) £ T(x, y). 

(d) / / w є J0, t? є J0, x є Iu j є / i and ((w, x), (ü, y)) є T, ^ви (x, у) є T**. 
Proof. The necessity ofthe conditions follows from Lemmas 1, 2, 3, 4. It remains 

to prove their sufficiency. Let the conditions (a,) (b), (c), (d) be fulfilled. Let 
((tt!,*i), (vuy1))eT, ((tt2,x2), ( ^ 2 , j 2 ) ) eT . Then ( M ! , ^ ) e % , ^ ) , (w2^2)e 
є T(x2, y2). We have uxu2 ^ w2, viv2 è 2̂? x i x 2 è x2, j ^ y 2 ^ j 2 . This implies 
T(x2, j 2 ) c T(xjX2, У1У2) a n ( i t n u s (w2> ^2) є Т(хгх2і УіУг)- If wiw2 є ^o> ^ 2 є ^o> 
then also tt2 є Л0 , v2 e B0. As (м2, v2) є T ^ x ^ , УіУ2), then, according to (c), also 
(u^2,v^2)e T(x^^y^^ £ T, because w ^ ^ w2, t;^2 ^ ü2. In the case when 
ихи2еВа, ^ 2 £ І 0 the proof is analogous. If м ^ е ^ и^2єА0, then also 
u2eAQ, v2eA0 and, according to (a), (и2,ѵ2)еТ(01,01)Я:Т(х1,уі). Then 
(uxu2, v^2) e T(x1? j j ) £ Taccording to (b). In the case when uxu2 є B0, vxv2 є B0 

the proof is analogous. • 

Theorem 12. Leř I == I0 x / 1 be a direct product of a simple finite implication 
algebra I0 of the rank 2 and ofafinite Boolean algebra Iv Let Tbe an equivalence 
relation on I. The relation T is a congruence on I if and only if T= T0 x Tl5 

where T0 is a congruence on I0 and Tx is a congruence on Iv 

Proof. We shall use the introduced notation. Suppose tha tTis a congruence on L 
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Then it is a tolerance on I and Theorem 5 holds for it. Evidently the tolerance T(x, y) 
for each (x, у) є T is also a congruence. As it contains T* u T% as a subset, it is 
uniquely determined (this follows from Theorem 3) and thus it is also the same for 
each (x, у) є T; it contains all pairs from T*, all pairs from Tß and all pairs, one of 
whose elements is in Tjf(l0) and the other is in T^(l0). We denote this tolerance 
by T0. Ifwe put T± = Г**, then evidently T = T0 x Tx. Conversely, a direct product 
of a congruence on / 0 and a congruence on Ii is evidently a congruence on / = 
= h x h- • 

At the end we shall prove two theorems concerning tolerances of finite implication 
algebras in general. 

Theorem 13. Let Tbe a tolerance on an implication algebra I. Then each block 
ofTis a convex subset ofI. 

Proof. Let B be a block of T and let a e Б, b є B. Suppose that a S b in the 
described ordering. Now let x, y be elements of/ such that a g x ^ b, a ^ y ^ b. 
Then x ^ b implies xb — 1 and thus 

{bx)x = (xb)b = 10 = b. 

Then (a, b) є T and (x, x) є T imply ((ax) x, (bx) x) є T, i.e. (x, b) = (x, (bx) x) e T. 
Analogously (b, a) e T and (y, y) e T imply (b, y) e T. This yields 

((x(ba))a,(b(ya))a)eT. 

By Theorem 5 in [ l ] we have 
(x(ba)) a = x A b , 

(b(ya)) a = b л y , 

where the meets are taken in the Boolean algebra [ a ] | . Hence we have 
(x A b, b A у) є Г. As x ^ b, у й b, this implies (x, y) e T. Thus the convexity 
of B is proved. • 

Theorem 14. LetI be afinite implication algebra, let Tbe a tolerance on I. Then 
for each block B ofTthere exists a block B of Tsuch that \B\ ^ |jS| and 1 є B. 

Proof. The tolerance Tis also a tolerance on / as on a semilattice, because the 
join can be expressed in terms of the operation of the implication algebra. Thus [5] 
the block B is closed under the join and has the greatest element a. Let q> be a map­
ping of / into itself given by q>(x) = ax. If (x, у) є T, then also (^>(x), q>(y) = 
= (ax, ay) є T; hence there exists a block Ê of T which contains all elements (p(x) 

for x є B. We have q>(a) = aa = 1 and thus 1 є B. Now suppose that q>(x) = cp(y) 
for some elements x, y of B. This means ax = ay. As a v x == a v y = a, the 
element ax is the complement of a in [ x ] | and ay is the complement of a in [ j ] | . 
Hence ax A a = x in [ x ] | and a j л a = y in [j>]T- But, as ax = aj; and a meet 
of given two elements is at most one, we obtain x = y. Hence cp is a one-to-one 
mapping. As cp maps B into Д we have \B\ <g |# | . • 
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Now we generalize the notation T(a) to tolerances. If I is an implication algebra, 
T is a tolerance on / and a є I, then T(a) = {x e 11 (a, x) є Г}. 

Theorem 15. Let I be afinite implication algebra, let Tbe a tolerance on I. Then 
|T(a)| й \T(l)\foreach aeI. 

Proof. Also T(a) is closed underjoin; hence the proofis analogous to the proof 
of Theorem 14. • 
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