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A GLOBAL CONTINUATION THEOREM FOR OBTAINING 
EIGENVALUES AND BIFURCATION POINTS 

MiLAN KuČERA, Praha 

(Received January 9, 1986) 

0. INTRODUCTION 

Let us consider the equation of the type 

(0.1) u - T(X)u + Ht(X,u) = 0 

in a real Banach space V, and the norm condition 

(0.2') ||w||2 - fc, 

where X є J is a bifurcation parameter (J is an open interval), т e <0, 1) is an 
additional parameter, ô > 0 is fixed. We shall suppose (with the exception of Section 
3) that 

(0.3) for any X є J, T(X) is a linear completely continuous operator in V; the 
mapping X ~> T(X) of J into the space of linear continuous operators in V 
is continuous; 

(0.4') for any тє <0, 1), HT: J x ¥ -»- V is a continuous mapping; the mapping 
R(X, u, x) = T(X) u - Ht(X, u) of J x V x <0, 1) into V is completely 
continuous, #0(A, u) = 0; 

(0.5) lim '' '—^ = 0 uniformly on compact X — subintervals of J . 
IMI+t̂ o flu + T 

ueV,t6<0,l) " IJ 

We shall consider a simple critical point X0 ofT, i.e. X0 such that the solutions of 

(0.6) u - T(X) u = 0 

for X = X0 form a one-dimensional subspace in V. Our aim is to show, under certain 
assumptions, the existence of a connected branch of solutions [Я, w, т] of (0.1), 
(0.2') containing at least one [AT, wT, т] for any т є <0, 1), starting at [A0, 0, 0] and 
lying in a suitable subinterval J0 of J in the variable X. If Hx is defined (and con­
tinuous) for all г є <0, 1> then it implies the existence of a solution Xu u± of 

(0.7) u - T{X) u + #i(A, и) « 0 
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with |]wiJ| = ô, kx є J0 . In general, H1 need not be defined but in some applications 
the limiting process т ^ 1 in (0.1), (0.2') yields a solution ofa problem which cannot 
be written as an equation of the type (0.7) in ¥, e.g. a variational inequality (see 
Example 1.2, cf. also [4], [3]). If our assumptions are fulfilled for any ôe(0,ôo) 
(with J0 fixed) then it follows that there exists a bifurcation point [Aj, 0] of (0.7) 
(or of the corresponding limit problem if Ht is not defined) with respect to the line 
of trivial solutions, X\ є J0 . In some cases it is possible to show that also k\ є J0(see 
e.g. [5], [2]). Roughly speaking, (0.1) can be understood as a homotopy joining 
(0.6) to (0.7) (or to the corresponding limit problem) and we transfer the information 
concerning the existence of critical points of (0.6) to that concerning the existence 
ofcritical or bifurcation points of(0.7). Notice that Hx need not be o (flw||) at u = 0 
under our assumptions, i.e. the linearization 

(0.8) u - Ti(A) u = 0 

of (0.7) (where T^X) is the Frechet differential of T(X) - ЯХ(Я, •) at u = 0) can 
differ from (0.6). 

From the point ofview ofthe proof, it is more natural to transform our problem 
in such a way that # T is defined for all т є <0, + oo) (instead of <0, l)), that means, to 
replace (0.2') by 

v 7 " " 1 + г 
and (0.4') by the assumption that 

(0.4) for any т є <0, +oo), HT: J x ¥ ^> ¥ is a continuous mapping; the mapping 
R(1, u, x) = T(X) u — #T(A, w) of J x ¥ x R+ into ¥ is completely con-
tinuous, #0(A, u) = 0. 

Further, we shall consider our problem in this form (with the exception of Theorem 
1.3, where the closed interval <0, 1> is considered). 

The main results are formulated and illustrated by examples in Section 1. First, 
we describe all possibilities of the behaviour of the branch of nontrivial solutions of 
(0.1), (0.2) starting at [A0, 0, 0] in the direction of a given eigenvector w0 of T(X0) 
(Theorem 1.1). The continuation theorem mentioned above (Theorem 1.2) is an easy 
consequence. The principle of the proof is the same as in [2 — 6] where it was used 
for some particular situations. The system (0.1), (0.2) is transformed to the bifurca­
tion equation of a similar type as that studied in [1] and then the proof consists 
of Dancer's considerations combined with the investigation of the properties of the 
set of solutions of (0.1), (0.2) under our special assumptions. The detailed proof 
(including a repetition of considerations from [l]) is presented in Section 2. The 
relations to [1] are mentioned in Remarks 1.4, 2.7. A generalization to the case of 
nonlinear operators T(X) is given in Appendix. 

Throughout the paper, we shall use the following notation: 

R, й+ — set of all reals and of all nonnegative reals, respectively, 
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V — real Banach space, 
X = V x R9 

INI' llhlll ~~norm i n ^ an(* m% 0-e- IIHII2 = IIм!2 + т 2 > x = [ м ? т ] ) ' 
^ , ^ — strong convergence and weak convergence, 
<% *>> <'> *>x — duality between V and V* (the dual space) and between X and X*, 
£ — fixed positive number, 
J — open interval in R, 
M - set closed in J x V x ^ + or in J x V x <0, 1), 
ET(X), EL(X) — set of all solutions of (0.6) and of (2.5), respectively (with a given X), 
C = C1 {[Л, u, <r] є J x V x R+; x ф 0, (0.1), (0.2) is fulfilled} (closure in 

R x V x R), 
A = { l e J ; Er(A) Ф {0}} (= {XeJ; EL(X) Ф {0}} - see Remark 2.1) - set ofall 

critical points of our problem in J, 
ô> wo ~~ given critical point and the corresponding solution from ET(À0) (see 

Theorem 1.1), 
*o = [̂ o> 0], 
y* — fixed element ofZ* such that <yJ, x0}x = 1 = sup 0>*? *>x> 
Kn - {[A, x] є J x X; |<y*, x>*| > ФІЦ}, Kj = { [ { ф К ч ; <y*, x>* > 0}, 

£~ = К„\К;(гі є (0, 1) will be fixed), 
Br(z) — open ball in the space considered (usually in R x X or X) with the radius r 

centered at z (sometimes we write B*(z), B*(z) etc. in order to indicate the 
space), 

M0, 8M — interior and boundary of M, respectively. 
Further, the following symbols will be introduced in the text: 
Ce — see Remark 2.4, 
L, G, Ф(Х) - see Remark 2.1, 
S — see Remark 2.3, 
ôu ô2 — see Remark 2.6. 

1. FORMULATION AND ILLUSTRATION OF MAIN RESULTS 

We shall always suppose that 

(1.1) A is nowhere dense 

and consider a critical point A0 є A satisfying ET(X0) = Lin {w0} and the following 
condition: 
(1.2) for any y0 > 0 there exist y+, y__ such that 0 < y_ < y+ < y0, k0 ± y± ф Л, 

0(̂ o + У+) - 0(AO - У-) is oddt 

where Ѳ(Х) denotes the sum of all algebraic multiplicités of all positive eigenvalues 
of the operator T(X) — L 
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R e m a r k 1.1. Recall that if ХфА then deg(J - T(A),0,B,(0)) = ( - l ) 0 a ) for 
any о > 0. (This holds for a general linear completely continuous operator — see 
e.g. [10].) Hence, (1.2) ensures that the number deg(/ - T(A0 + y+),0,B t f(0)) -
- deg(/ — Г(Л0 - y_),0,J5^(0)) is even, different from zero for a > 0 small 
enough. 

Further, an open bounded interval J0, a set M closed in J x V x R+ such that 
10 e J0 , J0 u {i0} cz J, and the following assumptions about the structure of the 
set of solutions of (0.1), (0.2) in a neighbourhood of [A0, 0, 0] will play a basic role: 

(1.3) [ln, un9 r J є C , [Ли, ия, ти] ^ [Я0, 0, 0] , 
M»/IW«| "^ W0 s> K Є ^0 5 

[K> Un, *n] Ф M for n ^ n0 , 
(1.4) [4« я , т и ]єС\М, Ли Є J 0 , 

[^, "», < ] ^ [̂ o> 0, 0] => wn/||w„|| ^ w0 . 
Note that in examples, M is usually of the form. M = J x K x #?+, where K is 
a closed cone in V with its vertex at the origin. 

R e m a r k 1.2. If we know that the implication 

(1.5) [A,, w„, тп] є C , [AB, w„, r„] ~» [A0s 0, 0] , 

X / | K | | ^ ^o => Лі > ^o /<>r w ^ n0 

holds then we try to consider an interval J0 = (A0, Am) with some Am > Д0. See 
Examples 1.1, 1.2 below. Analogously for Xn < A0, see Example 1.3. 

R e m a r k 1.3. Suppose that M = J x K x й+ where K is a closed cone in V 
with its vertex at the origin. Then it is easy to see (precisely, see the considerations 
in Remark 2.2) that the following assertions hold. If w0 ф K and (1.5) holds then (1.3) 
is satisfied with an arbitrary J0 = (A0, Am), Xm > A0. If - w 0 є K0 then (1.4) is fulfilled. 
In general, if J0 = (A0, Am), then (l.4) is equivalnt to the implication 

[K> un, VÍ є C , un ф K , [A„, u„, Tn] ^ [A0, 0, 0] , 
unlhn\\ ^ ~w0 => An ^ Я0 / o r n ^ n0 . 

Lemma 1.1. Let (0.3)-(0.5), (1.1) befulfilled and let X0 є A satisfy (1.2), ET(À0) = 
= Lin {w0}. Suppose that M is a set closed in J x V x ^ + , J0 is an open bounded 
interval such that J0 u {A0} c J, A0 є J 0 аиа (1.3) is satisfied. Then there exist 
a closed connected set C^ c C containing [A0, 0, 0], and x0 > 0 sucfo thatfor any 
x є (0, т0) there is at least one couple At, wT satisfying [AT, wT, т] є C£ \ M, ЯТ є J0 . 

R e m a r k 1.4. In the sequel, we shall study the global behaviour ofthe branch С£ 
of solutions to (0.1), (0.2) starting at [A0, 0, 0] in the direction w0, i.e. containing 
a sequence [A„, un, zn~\ from (l.3). (For the definition of Cj" see Remark 2.4.) Roughly 
speaking, it can be shown that C^ either returns to a neighbourhood of [A0, 0, 0] in 
the opposite direction —w0 or it is not compact (see Lemmas 2.4, 2.5). This idea is 
taken from E. N. Dancer [1] where it is used in another situation (see also Remark 
2.7). The condition (l.3) ensures that C% lies in J 0 (in X) and outside of M at first 
(Lemma 1.1). Condition (1.4) says that C£ cannot return immediately to [Я0, 0, 0] 
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in the direction —w0 from J 0 and from outside of M. But C^ can possibly return 
to [Я0, 0, 0] in the direction —w0 either if it crosses dM with some X e J0 , т > 0 
(the condition (a) in Theorem 1.1 below) or if it crosses dM at X є A n J0 , т = 0 
and continues outside ofM(the condition (b)) or ifit reaches dJ0 from J 0 and outside 
ofM at a point different from [Я0, 0, 0] (the condition (c)). Ifnone ofthese situations 
occurs then Co remains in J 0 and outside of M and therefore it cannot return to 
a neighbourhood of [Ao ,0,0] in the direction — w0. Hence, it is noncompact, i.e. 
unbounded in і in view of the boundedness of J0 , local compactness of C (following 
from (0.4)) and (0.2) (the condition (d) in Theorem 1.1). The last case is interesting 
for our purposes. 

Theorem l.l.Let (0.3)-(0.5), (1.1) befulfilled, let X0eÁ satisfy (1.2), ET(X0) = 
= Lin {wo]. Consider aset M closed inJ x V x R+ and an open bounded interval 
J 0 such that X0 e J0 , J 0 u {X0} c J, (1.3), (1.4) hold. Then there exists a closed 
connected set Co cz C satisfying at least oneof thefollowing conditions: 

(a) there exists [Я, u, т] є C£ n ôM with X є J0 , т Ф 0; 
(b) there exist XeAn J 0 and [Я*, u\, т*] є C j \ M, [Я ,̂ w ,̂ т*] є C^ n M 5^c^ that 

т* Ф 0, [Я;„ ttí, тІ] ^ [Я, 0, 0] (/or n ^ + сю, і = 1, 2); 
(c) there exist [Яи, ww, т„] є C^ \ M, Xn є J 0 swcfo řftař [Я„, мя, тп] ~> [1 , w, f] ф 

Ф [ Я о , 0 , 0 ] , Я е с Ѵ о ; 
(d) for any т є R+ there is at least one Хь щ with [Ят, ux, т] є C£ ; further, X є J 0 

/ o r any [Я, и, т] є Co, [Я, w, т] ф [Я0, 0, 0], and C^ n M contains only points 
ofthe type [A,0;0]. 

R e m a r k 1.5. In applications we desire to choose J 0 and M for (a), (b), (c) to be 
excluded in Theorem 1.1, i.e. for (d) to be ensured. Hence, Theorem 1.1 can be under­
stood as a continuation theorem in the sense mentioned in Introduction. For ins­
tance, it is easy to see that the condition (1.7) below ensures (1.3), (1.4) and excludes 
(c), while the conditions (1.8) and (l.9) exclude (a) and (b), respectively: 

(1.7) if [Xn, ию <rJ є С , Xn ^ X є dJ0 , xn ^ т then 

[Я = Я0, т = 0, и„]\\ип\\ -> ѵѵ0 о Хп e J 0 , [Хп9 ип, т„] ф M for n ^ и0] ; 

(Г.8) [Я, и, т] ф дМ for any [Я, и, т] є С , X є J 0 , ||w|| Ф 0 ; 

(1.9) if X є J 0 n Л then either C n Br(X, 0, 0) с М 

or C n ß r ( l , 0, 0) n M = 0 for r small enough . 

The last condition is ensured e.g. if 

(l.9') ({Я} x ET(X) x {0}) n M = {[1, 0, 0]} for any X e J 0 n Л , 
i.e. 
(1.9") £Г(Я) n K = {0} for any X є J 0 n Л 

in the case M = J x K x ß?+. (Precisely, see the considerations in Remark 2.2.) 
Hence, the following continuation theorem is a consequence ofTheorem 1.1. 
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Theorem 1.2. Let (0.3)-(0.5), ( l . l ) befulfilled, let X0 satisfy (1.2), ET(X0) = 
= Lin {w0}. Consider a set M closed in J x ¥ x R* and an open bounded inter­
val J0 such that X0 є J0 , J0 u {X0} c J, ( l .7 ) - ( l .9 ) hold. Then there exists a closed 
connected set C£ c: C containing [Ao ,0,0] and satisfying (d)from Theorem 1.1. 

R e m a r k 1.6. Let M = J x K x R+ where K is a closed cone in fl/ with its 
vertex at the origin, w0 ^K , —w0 e K . Suppose that the conditions (l.5) and 

(1.10) X < Xm for any [A, u, т] є С (with some Xm > X0 fixed) , 

(1.11) А ф Я 0 forany [1, м, т] e C with ифК 

hold. (See Examples 1.1,1.2.) Set J0 — (X0, Xm). Let us show that then (1.7) is ensured 
if 
(1.12) [Xn, un, т„] є C , un ф K , Xn ^ X0 , xn ^ г , uJ\\un\\ ~> w є K => Xn й h 

for n ^ n0 . 

Indeed, the implication => in (1.7) follows from the first part of Remark 1.3. Further, 
let [An, un, ти] є C \ M, Xn є (A0, Am), A„ ^ X є dJ0, xn ^> т. The compactness argument 
yields ttn/||ttB|| ^ w at least for some subsequence (denoted again by [Л„,м„,т„]). 
Precisely, see Remark 2.2. The condition (0.2) implies un ^ u = (òx\(ì + т))1/2 w. 
Consequently, [Я, м, т ] є С , i.e. Я = X0 by (1.10), and w^i£ by (l.l2).The case т > 0 
is impossible by (1.11). Hence т = 0 and we£ r (A 0 ) follows (precisely, see Remark 
2.2), i.e. w = w0 (because £Г(Я0) = L in{w 0 \ —w0eX). This holds for any con­
vergent subsequence of wB/||tt„|| and it follows that <= in (1.7) is true. 

Note that a special version of our continuation theorem based on the assumptions 
(1 .10) - ( l . l 2 ) i sg iven in [3 ] . 

Theorem 1.3. The assertions of Theorems 1.1, 1.2 remain valid if we replace R+ 

by <0, 1) or <0, 1> in all assumptions (including the definition of C), and (0.2) 
by (0.2'). Particularly, under the assumptions of Theorem 1.2 modified in this 
wayfor <0, 1>, there is at least one couple Xu u1 satisfying (0.1), |ttjJ = d, Xt є J0 , 
[Хиии1]фМ. 

Proof fo r the case <0, 1) follows directly from Theorems 1.1, 1.2 by substitution 
<r' = <r/(l + T). The case <0, 1> follows by the limiting process т ^ 1 —. The assertion 
that Xx e J0, [Ab uu 1] ф M is a consequence of the assumptions (1.7), (1.8) where 
also T = 1 is admissible in the case considered, (lfwe had Xt e dJ0, [A1? uu 1] є Cç 
then [Л,„ uB, т„] є Co \ M would exist such that Xn є J0 , [An, uB, tB] ^ [Я ь wl5 1] 
by the properties of Co on <0, 1), and this would contradict (l.7).) 

R e m a r k 1.7. In the following examples, we shall suppose that V is a Hilbert space, 
A is a linear completely continuous operator in ¥, Kt is a closed convex cone in ¥ 
with its vertex at the origin. We shall consider an eigenvalue problem for the inequality 

(1.13) w e K , , 

{Xu — Au9 v — м> ^ 0 for all v є Kr. 
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Note that (1.13) is equivalent to the equation 

(1.14) Au-PAu = 0 

where P is the projection onto Kr, i.e. \\Pu — w|j = min \\v — u\\ for any ueKT 
veKi 

(cf. [7], for the properties of projections on convex sets see [15]). Recall that P is 
lipschitzian, positively homogeneous (i.e. P(tu) = tPu for t ^ 0, u є V), and 
(1.15) (/ - P) v = 0 , <(/ - P) w, м> > 0 , 

<(/ - P) u, v} ^ 0 for all v e Kr, и ф K, . 
Set 

KP = {v є K; <(/ - P) и, ü> < 0 for all w ф Kr} . 

It is easy to see that Kp z> K°. (In the opposite case <(J — P) м, v} = 0 for some 
и ф Kj, v e Kj in accordance with (1.15); there is w e V such that <(/ — P) u, vv> > 0 
and v + w e K j , i.e. <(/ — P) w, v + w> > 0, which contradicts (l.l5).) As an 
illustration consider V = W\{Q), where Q is a domain in Rn with a lipschitzian bound­
ary dQ, 
(1.16) iC/ = {u e W\(Q)\ u ^ 0 on Г in the sense of traces} , 
where Г cz dQ. 

Then Kp => {v є V; v ^ e on Г for some є > 0}. (This can be shown analogously 
as the inclusion Kp z> Kj.) Note that {v є V; v ^ s on Г for some г > 0} = K° in 
in the case n = 1, 0 = (0, 1), but K° = 0 in the case n > 1. 

E x a m p l e 1.1. Let A0 > 0 be a simple eigenvalue of A with the corresponding 
eigenvector w0. Let w* be the corresponding eigenvector of the adjoint operator A*9 

i.e. 
(1.17) A0w* - ^ * w * = 0 . 

We shall use the notation from Remark 1.7. Suppose that 

(1.18) щфКІ9 -WosKr, wteKp, <Wo,w*>>0 , 

(1.19) all the eigenvectors corresponding to the tentative eigenvalues ofA greater 
then X0 lie outside ofKj. 

(The last condition is automatically fulfilled ifA0 is the greatest real eigenvalue o f A ) 
Set Ô = 1, J = R+, M = J x K x <0, 1>, T(X) u = (l/A) Au, ЯТ(А, u) = (т/Я) . 
. (J - P) Au (for т є <0, 1>), where К = {u є V; Au e Kt}. Setting т = 0 and т = 1 
in (0.1), we receive Xu — Au = 0 and (1.14), respectively, i.e., (0.1) joins the eigen­
value problem for A to that for the inequality (l.l3) (see Remark 1.7). We shall 
show that the assumptions of Theorem 1.2 modified for <0, 1> (see Theorem 1.3) 
are fulfilled for J 0 = (A0,AW) with Aw large enough. Verification of (0.3)-(0.5), 
( l . l ) is trivial, (1.2) follows from the simplicity ofA0. 

Verification of(l .7): In accordance with Remark 1.6, it is sufficient to prove (1.5), 
(1.10)-(1.12). (Note that if -w0eK° were supposed in addition to (1.18) then (1.12) 
would be unnecessary — cf. Remark 1.3.) First, realize that [Л,р un, т„] є C means 

' 126 



that 

(1.20) Xnun - Aun + xJj - P) Aun = 0 

and (0.2) holds. 

Proof of (1.5). Multiply (1.20) by w*, (1.17) by un and subtract the resulting 
expressions. We get 

(1.21) (Xn - Ao) <"n, O + tÄ<(/ - P) Aun9 w*> = 0 . 

If мл/||м„|| ^ w0 = Aw0jX0 then (1.18) implies <w„, wJ> > 0, Aun фКи 

<(/ — P) Лми, w*> < 0 for и ^ и0 and Aw > X0 follows. 

Proof of (1.10). If there were no such Xm then [Яя, un, ти] satisfying (1.20), Xn ^ + oo, 
||мя|| Ф 0 would exist. Multiply (1.20) by un. The resulting left-hand side shouldbe 
positive due to the boundedness of A and P for n *> n0, which is a contradiction. 

Set J0 = (X0, Xm). 
Proof of (1.11). If this were not true then 

(1.22) Xu - Au + x(l - P) Au = 0 

would hold with X = X0, и фК, i.e. АифКъ x Ф 0. Multiply (1.22) by w*, (1.17) 
by u and subtract. We receive <(/ — P) Au, wJ> = 0 which contradicts (1.18) and 
the definition of Kj. 

Proof of (1.12). Let (1.20) hold with ипфК, Xn ^ X0, *« ^ *> unl\\un\\ -+ w e I 
Dividing it by ||w„||, letting n ^> oo and using (1.15), we receive X0w — Aw = 0, i.e. 
either w — w0 or w = — w0. The first case is excluded by (1.18) because Aw — X0w e 
єК, i.e. w eKj. Now, (1.21) implies Xn ^ X0 analogously as in the proof of (1.5). 
(Note that <м„, w*> now has the opposite sign.) 

Verification of (1.8): (1.22) with Au e дКь ||w|| ф 0 means by (1.15) that X is an 
eigenvalue oïA corresponding to the eigenvector u = (l|X) Au є dKj. This is excluded 
for X > X0 by (1.19). 

Verification of (1.9) : (1.19) implies (1.9") and it is sufficient to use the end of 
Remark 1,5. 

Now, Theorem 1.3 together with Remark 1.7 ensures the existence ofan eigenvalue 
Xl є (Я0, Xm) of (1.13) with the corresponding eigenvector ui є dKj. The last inclusion 
follows from the fact that [Хьих,х~\фМ (i.e. АихфКІ) for any [^t, мт, т] e C j 
with x є (0, 1> (see (d)), and from the fact that 

Xxux = (1 — x) Aux + xPAux ф Kj if Aux ф Kt, x is close to 1 , 

and that X^u^ = PAux eK^ 
R e m a r k 1.8. Consider a completely continuous operator ß in V such that 

(1.23) ßv = 0 , <ßu, и} > 0 , ißu, v} ^ 0 for all и ф Kj, v e Kr 

(a penalty operator corresponding to Кґ). Let ß be positively (1 + a)-homogeneous 
with some a ^ 0 (i.e. ß(tu) = tl+*ßu for t > 0, u є V). Set Kßj = {veK; <ßu, v} < 0 
for all и фК{]. Analogously as for Kp

t (see Remark 1.7) we receive Kßj => K®. For 
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instance, in the case ofthe cone (1.16) we can consider the operator defined by 

<ßu9v>=-$r(u-)1+*vdS forall u,veV 

with an arbitrary fixed a ^ 0. Then K^ = {v є V; v > 0 on Г in the sense oftraces}. 
This set coincides with K°j in the case n = 1, Q = (0, 1), while K° = 0 in the case 
n > 1. In general, it is known that if Xnun — Aun + xnßun = 0, Xn ~> Хъ un фКІ9 
un ^ Ujr, xn -^ + oo then un ~> Uj and Хъ щ satisfy (1.13), Uj є dKj (see [4, proof of 
Lemma 2.4] or [5, proof of Lemma 3.3]). 

Example 1.2. Consider the same situation as in Example 1.1 but replace Kj by K% 
(Remark 1.8) and set / = R+, K = Kl9 M = J x K x R+, T{X)u = (l|X)Au, 
#T(A,u) = (x|X)fiu (for xeR+). Then (0.1) joins the eigenvalue problem for A 
(т = 0) to that for the inequality (1.13) ("т = + oo") again (see Remark 1.8). Since 
the properties of the penalty operator ß are analogous to those of (/ — P) A (cf. 
(l.23), (l.l5)), the assumptions ofTheorem 1.2 can be verified similarly as in Example 
1.1. (In the case a > 0 it is necessary in the proof of (1.12) to use the fact that 
j8tt/]|tt|| ^ 0 if flu|| ~+ 0. Theorem 1.2 together with Remark 1.8 yields the existence 
ofan eigenvalue Аод є <A0, Am> of(1.13) with the corresponding eigenvector u^ є дКг. 
In fact, in reasonable cases (e.g. in the case of the cone (l.l6)) it is possible to show 
ôo > ^o (see e-g- [5, Lemma 3.3], [3, proof ofTheorem 1.1]). 

Example 1.3. Let A0, X0 be two simple eigenvalues of A with the corresponding 
eigenvectors w0, w0, X0 > ^o > 0. Denote by w* and w* the eigenvectors of Л* 
corresponding to X0 and A*, respectively, and suppose that 

(1.24) щфКІ9 щфКІ9 w*0eKÏ, Я*єК7°, <wo,w*><0, 

<w0, w*> < 0 , 
(1.25) -щеКЇ 

(see Remark 1.9 below). Let all the eigenvectors corresponding to the tentative eigen­
values À є (10, A0) of A lie outside of K,. Consider Ô, J, M, K, T(X), Hx (т є <0, 1» 
from Example 1.1, J0 = (10, A0). Analogously as in Example 1.1 we can show that 
(1.5), (1.11) and (1.12) with > replaced by < and S replaced by ^ hold. It follows 
that the equivalence in (1.7) is true for Xn -^ X0 (cf. the considerations in Remark 1.6). 
Analogously, it can be shown that (1.5), (1.11) with X0, w0, > replaced by 10, w0, < 
hold. Simultaneously, the assumption —w0 = — (llX0)Aw0eK° excludes the exis­
tence of a sequence {un} satisfying un фК, uJ\\un\\ ^ — w0. (Here we really need Kj, 
which could be replaced by Kj in all other considerations, cf. Example 1.1.) It fol­
lows that there is no [A, u, т] є ßrf(A0, 0, 0) n C with X > X0i и ф К if а > 0 is small 
enough (precisely, see Remark 2.2). Now, it is easy to see that for the proof of (1.7) 
it is sufficient to show that there is no sequence satisfying 

(1.26) [Xn, un9 гп] є C , un ф K , Xn є (I0, A0) , Xn ~+ X0 , xn ^> % Ф 0 , 
un ~> u є K . 
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If (1.26) were true then we would receive X0u — Au = 0 by the limiting process 
in (1.20) and (1.15). Hence, u = ±w0, u = (l/A0) Au є dKj. This would contradict 
the assumptions $0фК, —її0єК®. The assumptions (1.8), (1.9) can be verified 
analogously as in Example l.L Now, Theorem 1.3 (the case of the closed interval 
<0, 1>) together with Remark 1.7 ensure the existence of an eigenvalue Xx e (I0, X0) 
of the inequality (1.13) with the corresponding eigenvector uledKI similarly as 
in Example 1.1. 

Remark 1.9. If A is selfadjoint then (l.24) means w* — — w0 єК°, wJ = ~w0 є 
є K°j and the inequalities demanded are fulfilled automatically. 

Remark 1.10. The aim of Examples 1.1 — 1.3 is only to illustrate our abstract 
theorems. In fact, Theorems 1.2, 1.3 can be used to prove more general results con­
cerning the existence of eigenvalues and bifurcations of inequalities lying above the 
greatest eigenvalue of the operator ([2], [3]), or between given eigenvalues of the 
operator ([4], [5]). Also multiple eigenvalues can be considered ([6]). In the papers 
mentioned above, no general continuation theorem is used but in fact its assertion 
is always proved on the basis of Dancer's global bifurcation result [1] for the particular 
situation. A special version of Theorem 1.2 (formulated for M = R x K x ß?+by 
using the assumptions (1.5), (1.10), (1.11), (1.12)) is used and briefly proved in [3]. 

The results concerning eigenvalues and bifurcations of inequalities of the type 
mentioned can be proved also by a method developed by P. Quittner [12], [13]. 
It is based on a direct application of the Leray-Schauder degree and is simpler than 
the proofofTheorems 1.1, 1.2. However, this method can give only existence results 
while Theorem 1.2 simultaneously gives approximations of the eigenvalues 
(or bifurcation points) and eigenvectors of the inequality by those of the equation 
with the penalty. Speaking about higher eigenvalues and bifurcations of variational 
inequalities we must mention also the first results in this direction given by E. 
Miersemann [8], [9], where the potential case is considered. 

2. PROOF OF ABSTRACT RESULTS 

Remark 2.1. The system (0.1), (0.2) can be written in the form of the single 
equation 

(2.1) л; -L(A)x + G(A,x) = 0 
in the space X = V x R, or simply 
(2.1') Ф(А)(х) = 0, 
where 

L(X) x = [T(A) Щ 0] , 
G(X,x) = [H&u),-{(l + <v)|S)lul2] forall x = [u,r]eX, XeJ, 

Ф(Х) (x) = x - L{X) x + G(A, x) . 
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The following conditions are satisfied under the assumptions (0.3), (0.4), (0.5): 
(2.2) for any X є J, L(X) is a linear continuous operator in X; the mapping X ~+ L(X) 

of J into the space of linear continuous operators in X is continuous; 
(2.3) the mapping M(X9 x) = L(X) x — G(X, x) of J x X into X is completely 

continuous, G(X, 0) = 0; 

(2.4) lim j ' ' = 0 uniformly on compact X-intervals . 
!ll*!ll-o |||*||| 

Hence, the corresponding linearized equation to (2.1) is 
(2.5) x - L(X) x = 0 . 

Further, x є EL(X) if and only if x = [w, 0], u є ET(X), We shall set x0 = [vv0, 0]. 
Hence, EL(X0) = Lin {x0} under our assumptions. 

Remark 2.2. Let [Ял, x„] = [Я„, un, тп] є С, тп Ф 0 (i.e. \ип\\ ф 0), [Яй, хп] ^ 
^ [Я, 0]. It follows from (2.1) for Яи, xn (see Remark 2.1) divided by |j|x,,||| and from 
(2.2), (2.4) that there exists a subsequence such that xfcn/|||xfcJ|| ^ y for some у є EL(X), 
\\\y\\\ = 1. According to (0.2) and Remark 2.1, that means also м&п/||н&п|| ~> w є ET(X), 
\\w\\ = 1, where y = [vv,0]. Particularly, XeA for any [Я,0,0]єС. Further, if 
[̂ »5 *«] = [Л^ ию ти] e C n ^ (see n s t °f notation), [Я„, x„] ^ [Я0, 0], then 
хп/|||хи||| ~> x0, i.e. wn/||wn|| ^ w0. Indeed, in the opposite case the considerations 
mentioned above would imply the existence of a subsequence such that хЛп/|||хЛп||| ^ 
->> уєЕь(Х0) n i£+, j ; ф x0. But this is impossible because x0 is the only normed 
element in EL(X0) n K* under our assumptions. Analogously for K~, — x0. Of course, 
all these assertions could be shown directly on the basis ofthe equation (0.1) and the 
assumptions (0.3), (0.5), without Remark 2.1. 

Remark 2.3. For any ne(0, 1) fixed there is S > 0 such that (C\{[X09 0]} n 
nBs(Xo,0)czK^ (cf. [ l ] , [H]) . In the opposite case rje(0,l) and a sequence 
{[Яи, x„]} c C would exist such that [Я„, xJ ^ [Я0, 0], |<yJ, хи>х| < rç. According 
to Remark 2.2, we can suppose x„/|||xn||| ^ у є EL(X0), i.e. y = ±x0 . Simultaneously 
Ky*> ̂ ) | < */ which contradicts the definition ofyJ (see list ofnotation). Moreover, 
it follows from Remark 2.2 that under the assumption (l.3) S can be chosen so that 
K* n Б5(Я0, 0) n {[Я, u, т] є С; Я £ J0} = 0. 

It is easy to see that ifwe consider a sequence ofmappings Gm satisfying (2.3), (2.4) 
uniformly with respect to m then S with the properties mentioned (for Gm instead 
of G) can be chosen indepedently of m (cf. [11]). 

Remark 2.4. According to Remark 2.1 we have 

C = cl {[Я, x] є J x X; |||x||| Ф 0, (2.1) is fulfilled} , 

Note that C is locally compact by (2.3). Choose n e (0, 1) fixed. For any є > 0, 
we denote by Ce the component of C\Be(X0, 0) n K~ containing [Я0, 0]. It follows 
from Remarks 2.2, 2.3 that if [Яд, xw] є Ce, [Я,„ хи] ~> [Я0, 0] then хп/|||хи||| ^ х0. 
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That means [Я, x] ф М, Я є J0 for any [Я, x] є C£ n Д,(Я0, 0) \ {[Я0, 0]} if a > 0 
is small enough under the assumption (1.3). Further, we shall show that C£ has all 
properties of Co from Theorem 1.1 if г > 0 is small enough. 

Lemma 2.1. Let none of the conditions (a), (b), (c)from Theorem 1.1 be satisfied 
for C£ = C£ with some s > 0fixed. Then 

(2.6) [Я, M, т] ф M for any [Я, u, т] є CE with т ф 0 , 

(2.7) Я є J 0 for any [Я, w, т] є C£ \ {[Я0, 0, 0]} . 

Proof. The assumption (1.3) together with Remark 2.4 imply that our assertion 
holds in a neighbourhood of [Я0, 0, 0], i.e. (2.6), (2.7) with CE replaced by CE n 
n Bff(A0, 0, 0) hold for a > 0 small enough. It follows by using the connectedness 
of C£ and Remark 2.2 that if (2.6) or (2.7) were not true then at least one of the con­
ditions (a), (b), (c) for Co = Ce would be fulfilled. 

R e m a r k 2.5. Note that 
deg (Ф(Х), 0, B*(0)) = deg (/ - Ь(Я), 0, # ( 0 ) ) = deg (/ - T(X), 0, Bj(0)) - ( - l f A > 
for any Я є J\Á and a > 0 small enough. This follows from Remarks 1.1, 2.1 by 
using the homotopy invariance and elementary properties of the Leray-Schauder 
degree. 

R e m a r k 2.6. Let us consider that there exists öt > 0 such that 

(2.8) Ф(Я о ) (х )ф0 if 0 < | | | j c | | | s a i 

(i.e., x = 0 is an isolated solution of (0.1), (0.2) with Я = Я0). In this case, (2.3) 
implies also the existence of ö2 > 0 such that 

(2.9) Ф(Х) (x) Ф 0 if |||x||| = öt , |Я - Я0| й S2 . 

Lemma 2.2. (cf. [1, Lemma 1]). Let (2.8), (2.9) befulfilled with Su ô2 > 0, ôl + 
4- ô2 < S. If 0 < y+ < ô2, 0 < y_ < ô2, Я0 ± y± фЛ, y± satisfy the oddness 
conditionfrom (1.2) then 

(2.10) deg (Ф(Я0 + y+), 0, W+Si) - deg (Ф(10 - y_), 0, W*tl) 

is oddfor any a > 0 small enough, where W*&1 = {xeX; [A, x] eK*, a < |||x|[| < 
<*i}. 

Proof. There exists a mapping ö: J x X ^> X such that о(Я, x) = С(Я, x) for 
[1 ,х ]є і ( ч

+ (where G is from Remark 2.1), G(X,x) = —б(Я, —x) for all XeJ, 
x є X, G satisfies (2.3), (2.4) again (with G instead of G), and 

(2.11) ( Є ч { [ А 0 , 0 ] } ) п В 5 ( Л 0 , 0 ) с Я ч 

where Č = cl {[A, x] є J x X; Ф(А) (x) = 0} , Ф(Я) (x) = x - L(A) x + Ö(X, x ) . 
Indeed, we can define 

Ö(X, x) = G{X, x) for all [Я, x] є l Ç , 
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ö(A, x) = ^ 4 r i r G(A' #111 x° + У) for 

w x l 
x = <xJ, *> x0 + y , i/|||x||| 1 <x*, *>x ^ 0 , 

б(Л, - x ) = - 0 ( 1 , x) for <x*, x> £ 0 

(cf. the proof of Theorem 1.25 in [11]). It follows from (2.11) and the oddness 

of ${X) that 

2 deg (Ф(Х0 ± y±), 0, W;M) = deg (i(Ao ± y±), 0, iF,+ ,) + 
+ deg ($(X0 ± y±), 0, W~Sl) = deg ($(X0 ± y±), 0, B,,(0)) -

-deg(^(Ao + Ti),0,B,,(0)), 
where 

W~Ö1 = { x e I ; [А0 ,х]єХ;5 er < |||x||j < 5 j . 
Subtract these equations (for + and —). Our, assertion is an easy consequence 
because deg (Ф(А0 + У+), 0, B9í(0)) = deg (Ф(Я0 - yJ), 0, B,{0)) by the homotopy 
invariance and (2.9), deg ($(X0 + y+), 0, B,(0)) - deg (#(A0 - y_), 0, Bď(0)) = 
= ±2 for a small by the assumption (1.2) (see Remark 2.5). 

Analogously as in [11] and [1], we shall use the following assertion on continua. 
Lemma 2.3 (see [14]). Let K be a compact metric space, A, B disjoint closed subsets 

ofK. Then either there is a closed connected subset ofK meeting both A and B 
orK = KA u KB, whereKA, KB are disjoint compact subsets ofK, A c KA, В с KB. 

Lemma 2.4 (cf. [1, Lemma 2]). If (2.8) holds and 0 < e < S, CE n дВЕ(Л0, 0) n 
n K~ = 0 then CE is noncompact. 

Proof. We can suppose 5г < s, (2.9) holds with 52 < s — Sx* Assume that CE is 
compact and CE n dBE(X0, 0) n K~ = 0 (i.e. also CE n dBE(XQ, 0) n K~ = 0 by 
Remark 2.3). Let JFbe an €0-neighbourhood of CE, e0 < e, e0 < dist (CE, dBe(A0, 0) n 
пЩ), Wcz J x X. The set (Wn C)\(BE(Xo,0)nK~) forms a compact metric 
space in view of (2.3), CE and (C n cW)\(#£(A0, 0) n i£~) are its closed disjoint 
subsets. The first possibility in Lemma 2.3 is excluded with respect to the definition 
of CE and therefore there exist disjoint compact sets Kl9 K2 such that 

(2.12) (Wn C) \ (B,(Ao, 0) n K~) = K± u K2 , 

(2.i3) cE c= X!, (c n аж) \ (Be(A0, o) n x ; ) с к 2 . 
We can choose y+, y~ satisfying the oddness condition from (1.2), such that 

(2.14) 0<y-uy+<inf{ôuô2), Х0±у±фА, 
(2.15) |A - A0| > y+ for any [A, x] eK2 , |||x||| ^ Sx . 
Further, there exists an open set U in X such that 
(2.16) [7cTF, К±сіи, K2nU = 0, [Ло±у±,0]фѴ, 
(2.17) # U n B£(A0, 0) n К; с Бу„(А0, 0) . 
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Particularly, 
(2.18) дѴглС a Бу_(Я0 ,0). 
Now, we shall show that 

(2.19) deg (Ф(Х0 ± y ± ) , 0, UXo±7±) are even , 

where we denote Ux — {x є X; [Я, x] є U}. 
First, deg (Ф(Я), 0, Ux) = 0 for 1 sufficiently close to dJ because Ux = 0 for such Я. 

It follows from (2.16) that for any [Я, 0]eK2 there is 0 > 0 such that 0 ф Ux if 
\X — X\ ^ Ѳ. Thus, deg (Ф(Я), 0, Ux) is constant for \X — X\ ^ 0 by the homotopy 
invariance of the degree. (Realize that if Ф(Х) (x) = 0, [Я, x] ^ C then x = 0.) Hence, 
fortheproofof(2.19)i t issufficienttoshowthatifA!,A2^^^^5^2 > ^i ^ ^o + 7 + 
or Xt < Я2 ^ Я0 - У-, 0 í UAí u 17Я2, [А, 0] ф K2 for all Я є <ЯІ5 Я2>, then 
deg (Ф(Яі), 0, U"Al) — deg (Ф(Х2), 0, t/A2) is even. For any such couple Xt, X2

 t nere 
is a sufficiently small a > 0 such that UXl n £ď(0) = Ukl n £ď(0) = 0 and [Я, x] í i£2 

for any Хє(ХиХ2У, |||x||| = o\ This together with (2.12), (2.18) yields that 
deg (Ф(А), 0, Ux u #ď(0)) *s constant for Я є <Я1? Я2>. Thus, 

deg (Ф(ЯХ), 0, tfAl) - deg (Ф(Х2), 0, UAa) = 

= deg (Ф(Х2), 0, B,(0)) - deg (Ф(А1), 0, S,(0)) . 

The right-hand side is even for a small by Remark 2.5 and (2.19) is proved. Further, 

deg (Ф(Х0 + у+), 0, UÀQ+y+ \ B*(0)) = deg (Ф(Л0 ~ 7-), 0, ^ 0 _ у _ \ B*(0)) = 0 

by (2.9), (2.14), (2.18). Hence, (2.19) means that also 

(2.20) deg (Ф(Х0 + y + ) , 0, tfAo+y + n B,,(0)) - deg (Ф(Х0 - y_), 0, ^ 0 _ y _ n B j 0 ) ) 
is even. 

There is a є (0, c^) such that Ф(Я0 ± y±) (x) Ф 0 if 0 < |||x||| < a (see (2.14) and 
Remark 2.2). It follows from Remark 2.3, (2.17), (2.12), (2.15), (2.16) that if 
Ф(Х0 ± y±) (x) = 0, |||x||| < òu then x є иХо±у± if and only if [Я0 ± y±9 x] еХч

+ , 
сг < ]||x||| < ái. 

That means 

deg (Ф(А0 ± y±) , 0, UXo±y± n B,,(0)) = deg (Ф(Х0 ± y±), 0, И&,) , 

where И ^ was introduced in Lemma 2.2. This together with (2.20) contradicts 
Lemma 2.2. 

Lemma 2.5 (cf. [1, Lemma 3]). The assertion of Lemma 2.4 holds without the 
assumption (2.8). 

Proof. Let x* be a nontrivial solution of y — Ь(Я0)* y = 0 where Ь(Я0)* is the 
adjoint operator to L(X0). Let x0 eX be such that <xJ, x0>* = 1. According to (2.4) 
there exist c > 0 and a continuous function Q on ß?+ such that 

e(0) = 0 , e ( i ) > sup <*5><foo,*)>x f o r o < r ^ c . 
IIWII-« |||*||| 
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Consider continuous functions/„: R+ ~> <0, 1> such that/„(ř) = t for 0 g t ^ c|2n, 
fn(t) = 0 for t S> c|n (n = 1, 2,...). Introduce the mappings Gn: J x X ~> X by 
Gw(A,x) = G(A,x) +/,,(|||x|||)^(|j|x|||)xo.Thesemappingssatisfy(2.3),(2.4)uniformly 
with respect to n, and (2.8) holds for any Фп (with ^ depending on n, n = 1, 2, ...), 
Ф„(Я) (x) = x — L(X) (x) + G„(A, x). Remark 2.4 implies that there is S > 0 such 
that (C„ \ {[A0, 0]}) n 5S(A0, 0) e Kn, where 

C„ = C1 {[A, x] є J x X; <p,(A) (x) = 0, |||x||| + 0} . 

Let C" be the component of Cn \ (£e(A0, 0) n K~) containing [A0, 0]. Suppose that 
the assertion of Lemma 2.4 is not true, i.e. Cg is compact and Ce n d2?e(A0, 0) n 
n X~ = 0. Analogously as in the proof of Lemma 2.4 there exists a bounded 
open set tf in J x X such that [A0, 0] є tf, [dtf n (C u Л)] с (#£(А0, 0) n X"), 
Ü n д#е(А0, 0) n K~ = 0, E7 с J x X. Lemma 2.4, the connectedness of C" 
imply the existence of [А„, х„] є dU n С" (и = 1, 2,...). We can assume [Aw, x„] ~* 
~> [A, x] using the compactness argument. It follows [A, x] є [dU" n (C u Л)] \ 
\ (#£(A0, 0) n K~) which contradicts the properties of U. 

Proof of Lemma 1.1. Lemmas 2.4, 2.5 ensure that Ce ф {[Ao,0]} for any 
e > 0. Hence, the assertion of Lemma 1.1 follows from Remark 2.4. 

ProofofTheorem 1.1. Ifthe set Cj = Cs satisfies at least one ofthe conditions 
(a), (b), (c) for some s > 0 then the assertion of Theorem 1.1 is true. Suppose that 
all the conditions (a), (b), (c) are excluded for C£ = Ce with any e > 0. Let us prove 
that then 
(2.21) Ce n dße(A0, 0) n K; = 0 for є > 0 small enough . 

If (2.21) were not true then we would receive [Лп,хп]єСЕппдВЄп(Ло,0)пК~, 
sn -^ 0. Remark 2.2 gives хл/[||х„||| ^ —x0, but this contradicts the assumption (1.4) 
because [A„, xJ ф M, Аи є J0 by Lemma 2.1. Hence, (2.21) is proved. Fix г є (0, S) 
such that (2.21) holds and set C^ = Cg. Lemmas 2.4, 2.5 ensure that C% is non-
compact. It follows from(0.2) (which holds for all elements of Cj), local compactness 
of Cg, Lemma 2.1 and the boundedness of J0 that Co is unbounded in t. Moreover, 
T ^ 0 for all [А,м,т]єСо because [Ao,0,0]eCj, C% is connected and (0.2) 
cannot be fulfilled with тє(—1,0). The assertion (d) is now a consequence of 
Lemma 2.1. 

Remark 2.7. Lemmas 2.2, 2.4, 2.5 are only modifications of Lemmas 1 — 3 from 
[1], where the case J = R, T(X) — ATwith a linear completely continuous operator 
in a real Banach space is considered. (Note that our Lemmas are proved in fact also 
for a general real Banach space X.) In this special case, the assumption (1.1) is fulfilled 
automatically and (1.2) is a consequence ofthe algebraic simplicity ofthe characteris­
tic value A0 which is supposed in [1]. The proofs of Lemmas 2.2, 2.4, 2.5 are almost 
the same as in [1]. 
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3 APPENDIX 

Remark 3.1. The linearity of the operators T(X) (for Яє / fixed), the simplicity 
of the critical point X0 and the assumption (1.2) were not used directly in the proof 
of Theorem 1.1. Only the foUowing conditions were essential: 
(3.1) for any couple Xu X2 є J \ A0 there is a0 > 0 such that deg (Ф(Аі), 0, #ď(0)) — 

- deg (Ф(Л2), 0, B,(0)) is even*) for 0 < a < cr0, 
Д0 є J is such that there exist open sets K*, K^ in J x V x R satisfying 
(3.2) j ^ n ^ = {[^o,0,0]}, 
(3.3) CnBs(Xo,0,0)czK+vK-v{[lo,0,0]} forsome S>0, 
(3.4) for any y > 0 there exist y+ e(0, y), y_ e(0, y+> such that X0 ± y± фА0, 

deg (Ф(Л0 + y+), 0, Tf^ì) - deg К Я о ~ У-\ 0, ^ i ) ř'5 odd f°r апУ ü > ° 
small enough, 

where W+Ôi = {xeX; [Л0,х]єК+,о< |||x||| < $ J , 4 o = {>leJ; [A,0,0]eC} с 
с: Л (see Remark 3.2 below) and òx > 0 is such that 

(3.5) Ф(Ао)(х)ф0 if 0 < | | | x | | | g ^ . 
Throughout Sections 1, 2, the set Л was considered instead of Л0, but in fact only 
points from A0 played a role in the conditions just mentioned (precisely, see Remark 
3.2). Hence, we can replace the assumption (1.1) by 
(3.6) A0 is nowhere dense . 
Under the assumptions of Theorem 1.1, (3.1) was automatically fulfiUed with A 
instead of A0 (precisely, see Remark 3.3 below) and (3.2), (3.3) were satisfied with 
K+ = K*, K~ = K~ (see Remark 2.3). The condition (3.4) was proved only under 
the assumption (3.5) (i.e. (2.8), see Lemma 2.2). The assumption (3.5) (i.e. also (3.4)) 
was removed in Lemma 2.5, but the linearity of T(X0) (the Fredholm alternative) 
was used in its proof. If we do not explicitly suppose the linearity of T(A0) then the 
assumptions (3.4), (3.5) cannot be omitted. Further, suppose that 
(3.7) C n Be(A0, 0, 0) n K+ = {[A, «, т] є C \ M; X e J0} n B8(A0, 0, 0) 

for e > 0 small enough , 
which is equivalent to (1.3), (1.4) for X і = K* under the assumptions of Theorem 
1.1 (see Remarks 2.2, 2.3). 

Now, we can formulate an abstract version of Theorem 1.1 for a mapping T: J x 
x ¥ ^> V (T(X) (u) = T(A, u), T(X) nonlinear in general): 

Theorem 3.1. Let (0.4), (0.5), (3.6), (3.1) be fulfilled, let A0 є J be such that there 
exist open sets K+, K~ and S1 > 0 satisfying (3.2)-(3.5). Consider a set M closed 
in J x V x R+ and an open bounded interval J0 such that Я0 є J, J0 u {A0} c J, 

•) Particularly, zero is admissible. 
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and (3.7) holds. Then there exists a closed connected set C$ с С satisfying at 
least one of the conditions ( a ) - ( d ) / r o m Theorem 1.1 with A replaced by A0 in (b). 

R e m a r k 3.2. RecaU that A0 с Л under the assumptions of Theorem 1.1 (see 
Remark 2.2) and this was the basic property of the set of all critical points. This 
property is not preserved if T(X) are nonlinear because ET(X) = {0} can happen 
even if [Я, 0, 0] є C. On the other hand, all points X є A playing a role in Sections 1, 2 
lie in fact in A0 with the exception of X0 which is not in A0 by the assumption (but 
X0eA0 follows from Theorem 1.1). The assumption Х0єА, ET(X0) = Lin{w0} is 
replaced by the existence o f K + , K~ and St satisfying (3.2)-(3.5). Hence, to replace 
A by A0 is natural in our present setting. 

R e m a r k 3.3. Recall that deg (I - T(A), 0, Bj0)) was defined for X ф A and a > 0 
small enough in the situation of Sections 1, 2 and tha t the precise formula for this 
degree was given in Remark 2.5. But this was used only for the proof of (3.4) in 
Lemma 2.2, and in the form of the condition (3.1) in the proof of Lemmas 2.2, 2.4 
(with A instead of A0). In our present situation, deg (Ф(Х), 0, B<,(0)) is defined for 
any X ф A0 and a > 0 small enough (such that Ф(Х) (x) # 0 for 0 < |||x||| ^ a), and 
(3.1), (3.4) are explicitly supposed. Hence, we need no further information about 
deg(J - T(X), 0, Bď(6f). The set A0 takes the role of A and therefore ( l . l ) must be 
replaced by (3.6). 

The idea of the p r o o f of T h e o r e m 3.1 is the same as that of Theorem 1.1 in 
Section 2. The whole proof is formally simpler because all the basic conditions are 
now summarizedin the assumptions (3.1)-(3.7) while it was necessary to prove 
some ofthem on the basis ofthe assumptions (0.3), (1.2) in Section 2. First, Lemma 
2.1 remains valid in the present situation. In its proof, it is sufficient to replace 
(1.3) by (3.7). (Remark 2.2 is useless because A is replaced by A0.) Lemma 2.2 is 
useless because ofthe assumption (3.4). In the formulation ofLemma 2.4 we replace 
K~ by K~ (and realize that (2.8) = (3.5)). In its proof, it is sufficient to replace 
the oddness condition from (1.2) by that from (3.4), Lemma 2.2 by (3.4), Remark 2.5 
by (3.1) and Remark 2.3 by (3.3). We need no analogue of Lemma 2.5 under the 
assumption (3.5)(=(2.8)). 

P roo f of T h e o r e m 3.1 is now the same as that of Theorem 1.1 in Section 2. 
The only difference is that (2.21) follows now directly from (3.7) and Lemma 2.1. 
We need no Lemma 2.5 because (3.5) ( = (2.8)) is supposed. 
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