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1. INTRODUCTION

Let A denote an n x n positive definite symmetric matrix and p a nonzero real
number. Lutwak [5] defined the (absolute) p-mean of A, ®,[A], by

1 2/p
o,[4] = (_ fnos (u, Au)?” dS(u)) :
nw,
where w, denotes the volume of the unit ball in the Euclidean space R", dS(u) denotes
the area element of S"~* at u and (,) denotes the usual inner product in R". For
p = —0,0, or co the (absolute) p-mean of A is defined by

®,[4] = lim &,[A] .
q-p

The (absolute) p-means of A are related to some of the fundamental scalar functions
(such as the determinant and trace) of A. It is therefore worthwhile to use the pro-
perties of p-means and prove results for the matrices themselves. In particular, we
consider finite sequences of matrices and introduce the concept olr‘,relative p-means.

For a finite sequence o/ = (A4, ..., 4;), k = 2, of n x n positive definite sym-
metric matrices we define the relative p-mean of A, rel(®,[4;]) = @, » **), by

Gpie = BLA A2 (i=1,..,0),
where

Z=i(A1+...+Ak)

and * denotes the Hadamard (elementwise) product. For k = 1 we define the relative
p-mean of A to be equal to its (absolute) p-mean.

If A and B are positive definite symmetric matrices, then we shall write A < B
if B — A is positive semidefinite. All matrices are assumed to be of order n.

The importance of relative p-means is given by the following Proposition, the proof
of which appears at the end of section 2.

*) Supported in Part by the National Science Foundation.
**) If o is specified then we shall write @, ; instead of & ; 4.
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Proposition 1. Let o/ = (4,, ..., A,) and B = (By, ..., B,), k 2 2, k: even, be two
finite sequences of positive definite symmetric matrices. Assume that A; + A < ...
...S A4,*A,B *B < ... < B, * Band A < B. Suppose that there exists a subset K
of {1, ..., k} of cardinality k|2 and a permutation ¢ of K such that:

(a) A;* A < B,y=B forall ieK

(b) either 1 or k is a member of K.

(c) A;* A= A;% 4 forall i,jeK.

If for some p, —o0 < p <

O Z Ppia =2 Ppia=2 Ppias
ieK ieK i¢K
then
Ayxl = ... =A,«x]I =B« =...=B.*I,

where I is the unit matrix.
If in addition all the entries of 4 and B are nonzero, then

Aj=..=A, =B, =..=B,.

Remark 1. If 4; < ... £ 4, and B, < ... £ B, then the hypothesis of Proposi-

tion 1 is satisfied; since 4 > 0, B> 0, 4; < A;and B, < B;imply 4,* A < A;x A
and B;* B < B; * B.

Remark 2. No comparison is assumed between all the members of o/ and %,
though the assumption that A < B is significant.

Problems which involve a comparison of matrices in the sense A £ B are useful
in statistics and especially in linear models. The reader is referred to [7] and the
references therein.

The aim of this paper is to investigate the relative p-means of a finite sequence of
positive definite symmetric matrices &f = (Al, ..., 4), k = 2. In particular, we find
lower bounds of the product and the sum of the relative p-means of &. Since some
of the p-means of A are related to some of the fundamental scalar functions of A4,
then the inequalities proved in sections 3 and 4 automatically hold for these functions.
This gives us a general method to prove inequalities for these functions. Moreover,
more applications will be given in section 5.

2. PRELIMINARY RESULTS

The following is the first major result on Hadamard products.

Theorem 1 (Schur [6]). If A, B are positive definite hermitian matrices, then
A * B is positive definite hermitian.

Also, we shall need the following result.

Theorem 2. If A;, B; (i = 1, ..., k) are positive definite hermitian matrices and
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A; < B;(i=1,..,k), then
Ay *...x A < B, *...«B,.
Proof. [1, p. 224]

The basic properties of the (absolute) p-mean were proved by Lutwak in [5]
We shall continuously make use of the following properties. (All matrices 4, B‘
are assumed to be positive definite.)

1. For all p and all positive scalars 4,
o, [AA] = A D, [A].
2. For a fixed matrix 4, ®,[ 4] is continuous in p.
3. If A £ B, then
®,[4] = @,[B]
for all real p, with equality if and only if A = B.
4. If p > 2, then
o,[4 + B] = &,[4] + ¢,[B],
with equality if and only if A = AB. If p = 2, then
®,[A + B] = ¢,[A] + @,[B].
If p <2, then
<PP[A + B] = @F[A] + CDI,[B] s

with equality if and only if 4 = AB, where 4 is a positive scalar.

5. ®,[A] = (1/n)tr 4,
where tr A denotes the trace of A.
6. (4] = A4(4) and o_[4] = 1,(4),

where 1,(4) and 1,(4) denote the largest and smallest of the eigenvalues of A4,
respectively.

7. @ _,[A4] = (det )",
where det 4 denotes the determinant of A.

The following results will be used in sections 3 and 4.

Lemma 1. If A is a positive definite symmetric matrix, then for all p > 0

0,47 2 0,[4]"",

with equality if and only if A = Al, A a positive number.

Proof. If we integrate both sides of the following inequality [2, p. 69]
(1) (u, Au) (u, A~ "u) = (u, u)*,

and then apply Schwarz’s inequality [4, p. 132] to the functions on the left we obtain
the result. The conditions of equality follow from the observation that equality in (1)
holds if and only if 4 = AL
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Lemma 2. Let A4, ..., A, be positive definite symmetric matrices. If p < 2, then

2% 412 ¥ 004].

with equality if and only if A; = LA, i = 1, ..., k — 1 and A, are positive numbers.
If p> 2, then

S
~N
. m~m
g
o~
bed
A

< Y o4].

with equality if and only if A; = LA, i=1,...,k — 1.

Proof. Let p < 2, then the case k = 2 is property 4. If k > 2 then using property
6 repeatedly we obtain

O A + Ay + ...+ A] 2
2 P A+ P[4 + ...+ 4] = . B JA ]+ ...+ B [A].
Equality holds if and only if equality holds in all the inequalities above and so by

property 4 we obtain
Ay =2(A, + ... + A)
Ay = 25(A5 + ... + A4

Apmy = K1 Ay
Hence the result.
A similar argument is used for the case p > 2.
Lemma 3. For a positive definite hermitian matrix A the following holds
Ax A=A (A)AxI,
where 2,(A) is the smallest eigenvalue of A.
Proof. [1, p. 238].

Lemma 4. If Dy, ..., D, are positive definite diagonal matrices and if ay, ..., 0

k .
are positive numbers such that Y a; = 1, then the following holds
i=1

k k
Ya Dz (YD) .
i=1 i=1

Equality holds if and only if D, = ... = D,.

Proof. The result follows from the arithmetic-harmonic mean inequality of
numbers.

Kantorovich’s inequality will be used in sections 3 and 4. We shall use a formulation
of this important inequality, due to Clausing [3].

k
Let0 <m < m; £ M(i =1,...,k).Suppose 0 < o; (i = 1, ..., k),and Y a; = L.
Sety, =Y o;for I = {1,...,k}. Let I, = {1, ..., k} be such that i=1

iel

[vro— 3| S |y — 3 forall IT<{1,.. k}.
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M — m)?
Calm. M) = 1+ 751 = ) P

Define

Lemma 5. (Kantorovich’s inequality). The following inequality holds

(i%mi (i %) < Cy(m, M),

i=1 i= i

with equality if and only if there is a subset I of {1, ..., k} such that Y o; = .

iel

Proof. [3].
- 2
If n = 2 then Calm, M) = 1 + aya, (L E)A .
mM
Also, in the special case o; = 1/k (i = 1, ..., k)
_ 2
Cym M) = 1+ M2 e ki even
dmM
_ 2
Com M) =1+ (1L (M = m)” it kis odd .
k*) 4mM

Lemma 6. If 4 is a matrix with the main diagonal consisting of real numbers, then
®,[A x A] = &,[A],
with equality if and only if 4 xI = AL

Proof. By property 5 @,[A] = (1/n) tr A. Then the result follows from Cauchy’s
inequality.

We give now the proof of Proposition 1.

Using property 3 and the fact that
A; x A < B,;, * B for every i € K, we obtain that ¢,[A4; x A] < ®,[B,, * B] for
every i € K, and hence
2 Prict =2 Ppairf = L Pia-

ieK ieK
By (*), the above inequality and property 3 we deduce that
A;x A= B,;,*B forall ieK.
Hence B;* B = B; B for all i,jeK. Set A;* 4 = A and B;* B = B for ieK.
Clearly A = B. We may assume, without loss of generality, that for all indices j
not belonging to K, the sequences {A;* A} and {B;* B} contain only distinct
elements. From (b) of Proposition 1 we have the following three possible cases:
(I) If 1 is in K, then
A=..
k/2-times
B=...

k/2-times

kN

A, *

J

A; *

i

BN
I\
lIA

A

lIA

Il

B < B;x

i

IA
o1
IIA
AN
=]
*
o]
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(1) If k is in K, then

A;*A L ..gAj*Z§A=...=A
k/2-times
B;+B<..<B,*B<B=..=8B
k/2-times
(III) If 1 and k are in K, then
A=... =A< A+ AL .S A4«xA<A=..=
B=..=B<B*B<..<B,*B<B=..=B8,

= J
where all the indices are not members of K.
If (I) occurs, then Y. &, ; 4 = k ®,[B]'/%. Therefore by () ¢, 4 = @,[B] for all
i¢K

i ¢ K. This implies that B; * B = B for all i ¢ K. Since A £ B, then by Theorem 2
and (I) we obtain

Now (I) implies that k4 < Y A, * A. The last two inequalities imply that
ik
YA, xA= (k) A

i¢K
and so using (I), we deduce that
A;* A=A forall i¢K.
So, we have proved that
A;*A=B;*B forall 1<i, j

I\

k,
and hence
A;x1 =B;x1 forall 15i, j<k,

since 4 and B are positive definite.
The proof for the case (II) is similar to the previous one and therefore is ommitted.
The proof for the case (III) is trivial. Hence we have proved that

A;*A=B;*B and A;xI=B;xI forall 1<i, j<k.
Assume now that all the entries of 4 and B are nonzero. Then,
A;*A=A;«A implies (4, — A)*A=0,

and hence 4; = 4; for all 1 < i, j < k. Similarly, B; = B; for all i, j. Using the
previous equalities and the fact that 4 < B, we obtain

A; £B; forall 1i, j=k.
But 4;x A = B; » Bfor all i, j and hence 4 = B and A; = B; for all i, j. This com-
pletes the proof.
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3. INEQUALITIES FOR THE CASE p < 2

In this section we assume that —oo < p < 2. The conditions of equality hold
for —o0 < p < 2.

Proposition 2. For any sequence of = (A, ..., A,) of positive definite symmetric
N k

matrices and for any sequence o, ..., o, of positive numbers such that Z o; =1,
the inequality i=1

x min @, k™12 .

[Tom z ==k T[(0-,[A4] &,[4; +I])

i=1

B a?A, x A2
i=1

holds, where A = (1/k) (A; + ... + A)). If A,y S ... £ Ay, for some permuta-
tion o of {1,...,k}, then equality holds if and only if A; = AI and o; = (1/k)
(i=1,..,k).

Proof. Using the properties of the (absolute) p-mean we obtain the following
inequalities

& k A+ A
) L [ Yol = -] (by property 3)
1?il£k¢p'i i=1 D,
1 k k A % A
= ¢ af =L by property 1
k [izﬁjgl P, ] (by property 1)

1 k . %2 . X 2
=0, (Y Lh) + Y A4 2
k i=1 D, ; 1gi<j<k b, D,

k )2
d>p|: Y o ~A—> ] (by property 4) .

@ e[ Bmar] e [(Be )]

(by property 3, Lemma 2 and Property 1)

1 koA koAl
= — (D-w o; —t
k I:igl d)p,i] [; Dy :I

®) z

%

) 2 (5 “;?,,[_A ])(z "[2,,,, L ep—
(6 2 Ly (%14 %‘[Aiﬂ])ﬁ

(by the arithmetic-geometric mean inequality).
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Hence the result.
For p = — o0 or 0, a limit argument yields the result.
Equality holds in (2) if and only if

¢, =o,; forall 1Zi, j<k,

by property 3. By property 4 and the fact that ¢,[A4;* A;] > Oforall 1 <i,j < k
(Theorem 1), equality holds in (3) if and only if a; = a; for all 1 < i, j < k. So, by
the previous remarks and property 3 equality holds in (4) if and only if

™ (340 +($.4) = 2T 4) (S A) 1.

Now, by Lemma 2 equality holds in (5) if and only if A;*I = 4,4, = I where J,
(i =1,...,k — 1) are positive numbers. Also, equality holds in (6) if and only if
d_[A] = ®_[A;] and &[4, 1] = &,[A;«I] forall 1 < i, j < k. So We get
Ai=1(i=1,...,k— 1) since ®,[A4;*I] + 0 for all 1 < i £ k. This means that

tr A; = tr A;, and so using property 3 we get 4; = ... = 4, = A.
Now, (7) reduces to
(8) AxA=1A%1

for some positive number A. By (8), 4 is diagonal. Let A = (a;;). Then by (8), a?, =
= Ja;; so that a;; = A, since a;; # 0 for all i = 1, ..., n. This completes the proof.

Proposition 3. Let o/ = (Ay, ..., A;) be a sequence of positive definite symmetric
matrices such that A,y < ... £ Ay for some permutation ¢ of {1,...,k!. Let
k

dy, ..., 0 be positive numbers such that Y o; = 1; then the inequality
i=1

min @, ,Cs(m,, M,)™!

1<isk - (iap_w[Ai])(iai@p[A;*I])

1%

Cy(mys My) k. @[y a?d,« 4] " ‘
i=1

k
(.glaid)p.i)z

holds, where A = (1]k)(A; + ... + Ay), my = ®[A,qyx 1], My = ®,[A,q, +1],
my, = &_ [Ayny] and My = &__[A,)]. Equality holds if and only if k is even,

Ay =...=A, =M and o =...=aqa,=1[k.

Proof. Using the arithmetic-harmonic mean inequality in the right-hand side of
(5) we obtain

min @, ;

: .
k. @[ Y o2A, * 4]
i=1

£
If Ay < Ay then Ay #{A,y + 1 and Ay x A < A+ A by Theorem 2.
So, @[ Ay *I] = [ Ay ¥ I], Ppoty £ Ppogy and _[A,;)] £ P [Aap]-

bo 635
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This means that the sequences

@ (grparemy) ™ @ (5pag) 629

are oppositely ordered and so Tchebychef’s inequality [4, p. 43] applies,

(zw,,.)(z 2 Y e

) =1 p[A ]) [A *I]
(10) and

k

Eed (2,5 ) 2he e

By Lemma 5 we have

i &; < Cs(mn Mi)

i=1 ¢P[A *I] Z ¢ [A *I]
(11) and

L a; < C3(m2, M2)

)

i1 @_ [A]

Zafb—w[A]

Combining inequalities (9), (10) and (11) we obtain the result .

As in the proof of Proposition 2 equality holdsin (9)ifand onlyif A; = ... = 4, =
= M and a; = ... = o = 1/k. Also, by Lemma 5 equality holds in (11) 1f and only
if there is a subset I of {1,..., k} such that ) a; = }. The last condition on a;’s
forces k to be even. el

4. INEQUALITIES FOR THE CASE p > 2
In this section we assume that 2 < p < oo. The conditions of equality hold for
2<p< oo

Proposition 4. Let of = (A4, ..., A;) be a sequence of positive definite symmetric
matrices such that A,y < ... £ A,q for some permutation ¢ of {1,...,k}. Let
k

a5, ..., % be positive numbers such that Y o; = 1, the the following inequality
holds =1

K k
(Tt TeAr
(X o®,,:) I:Il oz H— = .
. Z 0B, (4; x1)71]

i=1

Equality holds if and only if A;= ... = Ay =AU and &y = ... = o = 1/k.

Proof. Using the properties of the (absolute) p-mean, we obtain the following
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inequalities

(by property 4)

j] (by property 1)

1 O\ %2 o; o 2
=-—¢p Z“i“i‘ + Z Ai*A.i(_;_—l>
k i=1 P,; 18i<jsk D, Py

A; \*?
1 NS ———) ] (by property 3)

k
k k
> % o, [Z % _ﬂ] ®, [( Y a _Aj_) *I] (by property 3, Lemma 2

1D, =1 P, and property 1)
k k
> 1 Yo (p—_w[ii’_) o, Yo Aixl (by property 4 and property 1)
k\i=1 (Dp i i=1 ¢p,i
1/8 o [4; k -
(12) z —(z a;—[——]) @, [( X 0:®,(4: 1)) 7]
k\i=1 L i=1
(by Lemma 3 and property 3)
k
g_l_n —ao[A] d5 [za(pp;(A *I) 1] 1
kisn\ o,

(by the arithmetic-geometric mean inequality and Lemma 1).

So we obtain

(13) _gla,-d‘p‘;(ﬁp[(Ai*l)“] > «p,,[izzk 0@, (A;*1)71] 2

k

a?)1 a
> o=t (2% ﬁ D[4 ]>
h k i=1 ¢

where the left-hand inequality is obtained by property 4.

If 4,y = AG(J) then by Theorem 2, 4,;) * I < Ay *I and 4, * A< A+ A
So, (A, D)~ 12 (4 Lo, #1)"! and by property 3 we get (bP[(Aa(:) «1)71]
> @, [(A,) * I)“l] and @, ,;) < @, ;- This mans that the sequences (\b

(@ L(4xD)7]), () (=1

are oppositely ordered and so Tchebychef’s inequality [4 p- 43] applies,

(14) (Z“‘I’p J(Z“%[A +1)7']) = Zdﬂ’n @o[(4ixD)71]

IV r
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If we combine (13) and (14), we obtain the result. For p = oo, a limit argument
yields the result.

A similar argument used in the proof of Proposition 1 yields the case of equality.

Corollary 1. Under the assumptions of Proposition 4 the following inequality
holds

k (L)
(D) 2 o (T oo [4]) (Sa (4 DD,

Ci(my, M) k
where m, = &__[A,1)] and M, = ®_[A,u)]. Equality holds if and only if
kiseven, A, =...=A, = Al and o, = ... = o, = 1]k.

Proof. If we combine (12) and Lemma 3 we obtain

(Z )" :
hts D_,[4] [

3o (4011 2 45 -

and if we use the arithmetic-harmonic mean inequality in the right-hand inequality
above we obtain

P, i

%

(S )
(15) (St DD (S trs) 2 Ee

As in the proof of Proposition 4 the sequences

@ (g pag) (=

are oppositely ordered and so Tchebychef’s inequality [4, p. 43] applies,
k k D .
(16) (3, ( > 2

_L> g Z oy ——FP2—
o_[A]) = o_[A]
If we combine (11), (14), and (15) we obtain the result. For p = co, a limit argument
yields the result.

The equality conditions follow from Proposition 4 and the facts that the conditions
of equality of Lemma 5 and o; = ... = o, = 1/k imply that k is even.

Covollary 2. Under the assumptions of Proposition 4 the following inequality
holds

k (ia?)—l k1

(2 oy 2 (Z“(Dw[f’])(zddj[f‘ *1]),

= (mz,Mz) Cy(my, M) = !
where m, = cbp[(A,,(,‘) *I)™'] and M; = ®,[(A,1y*I)™"]. Equality holds if and
only if k is even, Ay = ... = Ay = M and oy = ... = o = 1]k.
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Proof. By Kantorovich’s inequality we have

k
(17) 3 (4,4 1)1] £ - Calma M)
i=1 o,
";1 (pP[(Ai xI)” 1
If we combine (11), (15) and (17) we obtain

(L0, 2 B e (LoD (% o)
P, ; : o d_ |4 —_—— .
SR Cs(m;, My) C3(m3, M) i (, 1 @,[(4;+1)” 1])
By Lemma 1, ®,[4;*xI]7' < ¢,[(A;*I)" "] for i = 1,..., k, and so
k o;
—_— o Pl A; %1
.zx D,[(4;+])” 1] - z ! 1.
Finally, tf we combine the last two inequalities we obtain the result.
For p = o0, a limit argument yields the result.
The conditions of equality follow from Proposition 4 and Corollary 1.

5. APPLICATIONS

For a positive definite symmetric matrix A from properties 6 and 7 we have
_[A] = 2,(4), ®_[A] = (det A)/", D [A] = 4,(4),

where 4,(4) denotes the smallest eigenvalue of A4, det A denotes the determinant of A
and 4,(A) denotes the largest eigenvalue of A. So, the inequalities in sections 3 and 4
hold for these functions. In particular the results in sections 3 and 4 can be extended
in the case where the matrices A4, ..., A, are positive definite hermitian. This is true
because Lemma 2 and property 3 hold for positive definite hermitian matrices when
p = —oo, —n, or o (see e.g. [2]). Hence, we have the following

“The inequalities in sections 3 and 4 hold for a finite sequence &/ = (4, ..., 4;)
of positive definite hermitian matrices if p = —oo, —n and 00.”

Let A be a positive definite hermitian matrix. Then, using the well-known inequality
(see e.g. [8])
(18) @,[4%4] 2 &, [AT,
for p = —oo or —n, we can reformulate the inequalities in section 3. This can be

done by using (18) in (3) in the proof of Proposition 2. For the case p = —n see [9].
We are dealing now with the case p = 2.

roposition 5. Let o/ = (Al, ey Ak) be a sequence of positive definite symmetric
K

matrices and let o, ..., o, be positive numbers such that 3 o; = 1. Then the fol-

i=1
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lowing inequality holds
k k k
[193 = (kY af) ™2 [ 22[ 4]
i=1 i=1 i=1
If A,y S ... £ A, for some permutation o of {1, ..., k}, then equality holds if
and only if Ay =...=4, Aj*I=...=A*xI=2A and o, = ... = o, = 1]k.
Proof. Using the linearity of ®,[ -], we obtain

: . A kok
Z“?=‘Pz[ a?@]ﬁ%[z zuf%’;ﬁ]z
=1 i ]

i=1 j=1 2.

k \#2 _ N2
Lo (e AN 4y s (- Y2
k i=1 @, ; 15i<j<k Dy Dy

> i b, [(i o i")*z] > -9, [ zla _»—]2 (by Lemma 6)

(19 - £ (3 2y |

1 <D2[A,~] 2a
E\i=1  @,; ki D, )

(by the arithmetic-geometric mean inequality)

%

u:ja-

Hence the result.
By the proof above, equality holds if and only if a;/®, ; = a;/®, ; for all 1 < i,
j £ k and so by Lemma 6 equality holds if and only if

k
(23) Y A+l =AI.
i=1

Now equality holds in (19) if and only if

®,[4,] = ... = 8,[4,].

Using property 3, we obtain
Ay =...= A,.

So by (23) A;*I =pl (i=1,...,k) where u = A[k. Therefore, we obtain that
&, ;= @, ; for all i,j, and so &; = ... = a, = 1/k. This completes the proof.

Proposition 6. Let o/ = (A, ..., A;) be a sequence of positive definite symmetric
matrices such that Ay, < ... < A, for some permutation o of {1,...,k}. Let
k

oy, ..., % be positive numbers such that ) a; = 1. Then, the inequality
i=1

K
i (kY af)™ %,
Zdﬁpz,; z e Za (DZ[A]
i=1

C3(m4, M,) i=
holds, where 4 = (l/k) (A + ... + A), my = D,[A,y] and My = ®,[A,,,]
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X

Equality holds if and only if kiseven, Ay = ... = Ay, Ay xI = ... = A, «I = ul
and oy = ... = o = 1]k,

Proof. Using the arithmetic-harmonic mean inequality in the right-hand side of
(19) we obtain
(p2 i

(20 Sogtan 2 (D

If A, £ A, then by Theorem 2, A,; * A < A, * A. So, by property 3
D,[Aiy] £ P2[Ay] and B, 4y £ P, (). This means that the sequences

(9,,), <<152[A]) (i=1,...,k

are oppositely ordered and so Tchebychef’s inequality [4 p. 43] applies,
(21) (300 >(z )>?

i=1 ¢2[A] <1>2[A]
Also by Kantorovich’s inequality (Lemma 5) we have
. o; C3(m4, M 4)

(22) Py ik Za on]

If we combine (20), (21) and (22) we obtain the result.
The conditions of equality are obtained by Proposition 5 and Lemma 5.
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