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GROUPOIDS WITH NON-ASSOCIATIVE TRIPLES ON THE DIAGONAL
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(Received June 25, 1984)

Given a non-empty set S, every binary operation . on S divides S* into two disjoint
sets: that of associative triples (i.e. x. yz = xy.z) and the complement. On the
contrary, given T < S3, we may ask if there is a binary operation on S whose set of
non-associative triples coincides with T. It is known (see [1]) that for S finite such
an operation exists whenever card (T) < (card (S) — 2)/4. On the other hand,
there is no such an operation if T is the diagonal of S° (i.e. T = {(x, x, x); x € S}).
The class & of groupoids whose non-associative triples belong to the diagonal seems
therefore to be worth of study.

In this paper we describe the variety generated by & and give an estimate of
card (T). Moreover, we show that an “almost free” groupoid E(X, s)e & can be
connected (in a natural way) with every non-empty partially ordered set (X, s).

1. INTRODUCTION

Let & denote the class of all groupoids G such that a . bc & ab . ¢ implies a =
=b=cforany a,b,ceG. For Ge ¥ let K = K(G) = {aeG; a.aa * aa . a}
and L=L/G)={aeG; a.aa=aa.a}, so that G=KuUL and KnL=0.
Moreover, define a relation r = #(G) by (a, b) e r iff a, be G and either a = b or
b=abek.

1.1. Proposition. (i) The class & is closed under subgroupoids and nomomorphic
images.
(i) If Ge &, then G x Ge & iff G is associative.
(iii) If G e & is not associative, then G is neither cancellative nor divisible.

Proof. The assertions (i) and (ii) are easy and (iii) is clear from [2], [3] and [4].

1.2. Lemma. Let Ge &. Then

(i) For all a,be G, either abe Lor a = ab or b = ab.
(ii) For every aeG, a®eL.
(iii)y For allaeK and be G, a = ab iff a = ba.
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(iv) If a,b,c,d€G, a = abeK and b = cd, then a = ac = ca = ad = da and
c*+a=d.

Proof. (i) Let ab=c¢, a+c+b. Then cc.c=(c.ab)c = (ca.b)c =
=ca.bc=cla.bc)=clab.c)=c.ccand ceL.
(ii) is an easy consequence of (i).
(iii) Letab = a #+ ba. Thenaa.a = (a.ab)a = (aa.b)a = aa . ba = a(a . ba) =
= a(ab . a) = a . aa, a contradiction.
(iv) By (iii), ab = a = ba, and hence b + a’. Consequently, either a + c ora * d.
Ifa=d thena+c,c.a?=ca.a=cd.a=ba=a¢L,c.a> +c,c.a®>=a’
by (i), @ = a?, a contradiction. Thus a + d and, similarly, a % ¢. However, ac.d =
= a = c. da, and therefore ac = a = da by (i). The rest follows from (iii).

1.3. Corollary. If G € &, then Lis a subgroupoid of G and card (L) 2 2 provided G
is nontrivial.

1.4. Lemma. Let A be a generator set of a groupoid G € &. Then:
() K = 4.
(ii) If abe L for all a, b e A then cdeLforallc,deG

Proof. (i) is an easy consequence of 1.2(i).
(ii) Suppose that cd € K for some ¢, d € G. In virtue of 1.2(i) we can restrict ourselves
to the case c¢d = c. Let W be the absolutely free groupoid over 4 (A4 is non-empty
by (i)) and let f be the homomorphism of W onto G such that f(a) = a for every
a € A. There is a term ¢t e W with f(f) = d and we can assume that d is chosen in
such a way that the length l(t) of ¢t is minimal. Since c € A, d ¢ A, and hence t¢ A.
We have t = pq for some p, g € Wand d = uv where u = f(p) and v = f(q). Now,
¢ = cu by 1.2(iv) and /(p) < I(t), a contradiction.

1.5. Lemma. Let Ge ¥, a€G and T(a) = {beG; b = ab = ba}. If the set
T(a) is non-empty, then it is a subgroupoid of G.
Proof is easy.

1.6. Lemma. Let G € &. Then the relation r is a partial ordering.
Proof. By 1.2(i), (iii), r is antisymmetric. If (a, b), (b, c)€r, a % b * ¢, then
ac=a.bc=ab.c=bc=cand (ac)er.

1.7. Lemma. Let Ge & and Z(a) = {be G; (b,a)er, b + a}. Then: .
(i) For any a e G, Z(a) is either empty or a subgroupoid of G.

(i) If A is a generator set of G and Z(a) is non-empty, then Z(a) is generated by
the set AN Z(a).

Proof is easy (use 1.2(iv)).

1.8. Lemma. Let Ge &, let A, B be non-empty subsets of G and let C, D be the
subgroupoids generated by A, B, respectively. Suppose that (b,a)er and b + a
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whenever ae€ A, be B. Then c¢d = dec = ¢ for any ce C, de D. Moreover,
card(Cn D) < 1.

Proof. By 1.7(i), D < Z(a) for every a € A. Hence, by 1.5, C = T(d) for every
1eD.

1.9. Lemma. Let Ge &, aeK and let H be the subgroupoid generated by a.
Then H n Z(a) = 0.

Proof. If be H n Z(a), then a = ab = ba € K, which contradicts 1.4{ii).

1.10. Lemma. Let G, H € & and let f be a homomorphism of G into H.If a, b € G,
a # b and f(a) € K(H), then f(a) # f(b).
Proof is obvious.

2. REGULAR GROUPOIDS

Let G € &. We shall say that G is regular if ab € Lfor all a, b € G.

2.1. Proposition. Let G e &.
(i) If G can be generated by the empty set(i.e. G contains no proper subgroupoid),
then G is associative.
(ii) If G can be generated by a one-element set {a}, then K < {a} and G is regular.

Proof. Apply 1.2(ii) and 1.4.

Now, let # denote the variety of groupoids satisfying the following identities:
xy.uv=(xy.u)v, xy.uv = x{y.uv) and (x. yu)v = x(yu . v).

2.2. Lemma. Let W be the absolutely free groupoid over a non-empty set X
and r,s e W, I(r) = 5. Then the identity r = s is satisfied in & iff it is satisfied in
every semigroup.

Proof. Only the converse implication requires a proof. First, observe that for
every te W with I(r) = 4 there exist a variable x € X and a term g € W such that
t = xq is satisfied in #. On the other hand, x(y(uv.z)) = (xy)(uv.z) =
=(xy.uv)z = ((xy.u)v)z = (xy.u)(vz) = (xy) (4 .vz) = x(y(u . vz)) holds in #
and the rest is clear.

2.3. Lemma. Let F be a free groupoid in & and let 0. = 1 be the rank of F. Then
there exist two congruences p and q of F such that F/p is free in & and of rank 1,
F|q is a free semigroup of rank o and p n q = idp.

Proof is easy.

2.4. Corollary. Let F be a free R-groupoid of rank 1. Then the variety R is
generated by F and by the variety of semigroups.

2.5. Proposition. (i) A groupoid G e & is regular iff G € .
(ii) If Ge & can be generated by at most one element, then G € .
(iii) If G € # can be generated by at most one element, then G € &.
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Proof. (i) If G is regular, then clearly G € #. Now, suppose that ab € K for some
a, beG. Then we can assume ab = a and ab.aa = a.aa % aa.a = (ab.a)a,
so that G ¢ Z.

(ii) Follows from (i) and 2.1{ii).
(iii) It is easy to see that every free Z-groupoid of rank 1 is contained in &.

2.6. Corollary. Z is just the variety generated by all regular groupoids from &.

2.7. Lemma. Let G € & be a non-associative groupoid which is generated by an
element a. Then K = {a}, the elements a, aa, a . aa, aa . a are pairwise different
and card (G) = 4.

Proof. By 2.1(ii), K = {a}. If aa = a . aa, then aa = a{a{a.aa)) = (ala.aa)) a =
= aa . a, a contradiction. The rest is clear.

2.8. Example. Consider the following groupoid G(*) = {0,1,2,3}: a* b = 0 if
a,beG, (a,b) *+(1,1), (2,1); 1*1 =2 and 21 = 3. Then G{x)e ¥ and G(*)
is not associative. Moreover, if H € &, H is not associative and card (H) = 4,then H
is either isomorphic or antiisomorphic to G(x).

2.9. Corollary. Let G € & be non-associative. Then card (L) = 3.
2.10. Corollary. Let Ge & and a€ G. Then aa,a . aa, aa .a,...€ L.

2.11. Lemma. Let W be the absolutely free groupoid over a one-element set {x}
and f a homomorphism of Winto Ge &.
() Ify = f(x), theny .(yy.y) = (y.yy).yandy .(y.yy) =yy.yy = (yy.y)y.
(ii) If p, g e Wand I(p) = I{q) = 5, then f(p) = f(a).

Proof. Use 2.5(ii) and 2.2 for the subgroupoid of G generated by y.

3. AUXILIARY RESULTS

Let X be a non-empty set with a partial ordering s, W the absolutely free groupoid
over X and S the free semigroup over X. Denote by g the unique surjective homo-
morphism of Wonto S such that g(x) = x for every x € X.

Lette W,2 < l(t) = nand 1 < i < n. We shall define a term d(¢, i) by induction
on n as follows: Let t = pg, p,ge W.Ifi = land pe X, then d(t,i) = ¢. If 1 £ i £
< I(p) and 2 < I(p), then d(t,i) = d(p,i)q. If I(p) + 1 < i and 2 < I(g), then
d(t, i) = pd(q, i — I(p)). If i = n and q € X, then d(t, i) = p.

3.1. Lemma. Let teW, 3
= d(d{t,1),j — 1).
Proof is obvious.

Now, if £ € Wand M is a proper non-empty subset of {1, 2, ..., I(f)}, we can define
a term d(t, M) by 3.1. Further, we put d(t,0) = 1.

IIA

I(f) and 1 <i<j<I(f). Then d(d(t,j),i) =
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Lette W, 1) = nand g(t) = X,X, ... x,. Define a relation s, on the set {1, 2, ..., n}
as follows: If 1 < i < nthen(i,i)es.If | < i <j < n,then(i,j)es, iff (x; x;) €5,
(XivX;) €8, oo (xjp, x;)€s and x; & X, Xjp1 F X0 X;o F XL 120 <
< j < n, then (j, i) e s, iff (X;41, x;) €5, (X142, X;) €5, ..., (xj, X)) €sand x4y * X,
Xiv2 ¥ X .., X; F x;. It is easy to see that s, is a partial ordering of the set
{1,2,...,n}. We denote by M(t) the set of all maximal elements of {1,2,...,n}
(in the ordering s,) and put N(f) = {1, 2, ..., n} — M(t). Further, define a relation s;
on {1,2,...,n} by (i, j)es; iff (i, j)es, and |i — j| £ L

A term t € Wis said to be s-irreducible iff s, = id. This is clearly equivalent to the
fact that N\f) = 0, i.e. s, = id.

Now, define a relation « on W by (p, q) e« iff p = d(q, i) for some (i, j) g,
i # j. Let B be the least equivalence containing «. Then, as one can easily see, f3 is
a congruence of the absolutely free groupoid W.

3.2. Lemma. Let p,qe W and (p,q)ep. Then t = d(p, N(p)) = d(q, N(q)) is
s-irreducible and (g, t) € B.

Proof. Without loss of generality, we may assume that (p, q) € o, i.e. p = d{q, i)

for some (i, j) € s;. Suppose that g(q) = x; ... x,, n = I(q). The rest of the proof is
divided into two parts.
(i) Denote by f the bijection of the set {1,2,...,i — 1,i + 1,...,n} onto the set
{1,2,...,n — 1} defined by f(k) =k for l =k <i—1 and f(k) =k — 1 for
i + 1 = k = n. We shall show that N(p) = f(N(q) — {i}). Indeed, let (f(k), f(m)) €
esyand put I = {r;k <r=<morm=r =k} If i¢I then (k,m)es, If iel
then j eI as well, and hence (f(j), f.m)) € s, (x;, Xu) € s and (x;, x,) €5, X; * X,
Hence we get (i, m)€s, and then (k, m) e s, The proof of the other inclusion is
immediate.

(ii) From (i) we conclude that d(p, N(p)) = d(q, N(q)) = t and r = card (N(g)) =
= card (N(p)) + 1. There is a sequence ¢ = q,, §,—1, ---, 41, 4o Of terms such that
(9r-1>9:) €% (4r-29,-1) €% ..., (4o, q;) €« and card (N(g,)) = k for any 0 <
< k < r. This implies that t = g, = d{q, N(q)) is s-irreducible and (g, ) € p.

3.3. Lemma. Every block of B contains just one s-irreducible term.

Proof. If p,ge W are s-irreducible terms such that (p,g)e p, then p =
= d(p,N(p)) = d(q, N(q)) = q by 3.2.

Taking into account 3.3, we can view the set F(X, 5) of all s-irreducible terms in
a natural way as a groupoid isomorphic to the factorgroupoid W/B.

Finally, define an equivalence y on F(X,s) by (xx.. xx, x.(x.xx) €y, (xx.xx,
(xx.x)x) ey, (x(xx.x), (x.xx)x)ey for every xeX and (p,q)ey whenever
p, q € F(X,s), g(p) = g(q) and either I(p) = 5 or p contains at least two different
variables. Then y is a congruence of the groupoid F(X, s) and we denote by E(X; s)
the corresponding factorgroupoid.
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4. AUXILIARY RESULTS

Let X be a non-empty set, W the absolutely free groupoid over X, S the free
semigroup over X and g: W — S, g(x) = x for every x € X. Further, let f be a homo-
morphism of Winto G € &.

4.1. Lemma. Let te W, g(t) = x, ... x,. Then f(t) € K(G) iff there is 1 £ k < n
such that f(x;) % f(x,), (f(x)), f(x:)) € 7.G) for any 1 £ i < n, k + i. Moreover,
if f(t) € K(G) then f(t) = f(x).

Proof. The case n = 1 is trivial. If 1 = pq, then by 1.2(i) f(¢) € K(G) implies
either f(p) = f(1), or f(q) = f(¢). Using induction, we get the lemma from 1.2(iii)
and (iv).

4.2. Lemma. Let teW, g(t) =x;...%,, n 22, 124, j<n, j=i+1 (or
j=1i—=1) such that f(x;)f(x;) = f(x;) (f(x;)f(x;) = f(x;), respectively). Then
f(1) = £(d(t, j))-

Proof. Assume j = i + 1, the other case is similar. We shall proceed by induction
on n = [(t); there is nothing to prove for n = 2. If t = pq and I(p) = i, the induction
hypothesis can be used for p or g. Suppose g(p) = x; ... x;, g(q) = X;4q ... X,
Then eitheri > lori 4+ 1 < n.

(i) i>1 and p=wv. Put a=f(d(q,1)). If f(u)f(v).f(q) = f(u).f(v)1(q),
then f(vq) = f(d(vq, I(v) + 1)) = f(v) a (which holds by the induction hypothesis)
implies that f(1) = f(u).f(v)a = f(u) f(v) . a = f(d(t,j)) whenever aeL/G) or
a = f(q) or f(v) + a. However, if f(q) + a = f(v) € K(G), then (f(x,), a) e r(G)
by 4.1 and f(x,) f(x;) = f(x;) yields (f(x;), a) € r(G), hence a = f(q) by 4.1, a con-
tradiction. On the other hand, if f(u)f(v).f(q) * f(u).f(v) f(q), then f(u) =
= f(v) = f(q) = deK(G) and (f(x;),d)er(G), (f(x;),d)er(G) by 4.1. Since
F(x) f(x;) = f(x;), we get f(x;) + d, and therefore f(q) = a by 4.1.

(i) n > i + 1 and g = uv. The proof can be done in a similar way as in (i).

4.3. Lemma. Let p,qe W, g(p) = x,...x, = g(q). Then either f(p) = f(q),
or there is 1 £ k < n such that (f(x;), f(x)) € /(G) for any 1 £i < n and
card {1 < i < n; f(x;) = f(x)} €{3,4}. Moreover, if f(p)=* f(q), then f(p) =
= f(d(p, M)) and f(q) = f(d(q, M)) for M = {1 < i < n; f(x;) * f(x,)}.

Proof. There is nothing to prove for n = 1, 2; we shall use induction for n > 2.
(i) Suppose there are 1 < i, j < n satisfying the hypothesis of 4.2. Then the induction
hypothesis can be used for d(p,j), d(q,j) and since (f(x.), f(x.)) € (G) implies
(f(x)), f(x)) € (G, f(x;) * f(x;) for any 1 < k < n, j + k, we get our lemma in
this case from the induction hypothesis and 4.2.

(i) We can now assume that f(x;) + f(x;) f(x;) * f(x;) for any 1 < i, j'<n,
li —j| = 1. If f(x;) = f(x;) for every 1 < i, j < n, then 2.11(ii) may be used. Sup-
pose there is f(x;) =& f(x,) for some 1 < i < n and let 1, = x,(x5... (x,_1X,)-..)s
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ty = xit,. If p = p;p, . ps, then by 4.1 our assumption yields f(p) = f(py . p2P3)s
and hence there is u € Wwith f(p) = f(x, . u), g(u) = x, ... x,. If there is x, + x; for
some 2 < j < n, then f(u) = f(t,) by the induction hypothesis and hence f(p) =
= f(t,). Let x; = x, for any 2 < j < n and denote a = f(x,), b = f(x,). Since
a + ab + b, we have ab e L(G) by 1.2(i) and the subgroupoid of G generated by
a, b is therefore regular by 1.4(ii). Using 2.5(i) and 2.2 we get f(p) = f(1,) for n = 5.
For 3 < n £ 4 we have either u = t,, or u = bb.b. In the latter case we have
f(p) = a(bb . b) = (a.bb).b = (ab.b) b = ab.bb = a(b. bb) = f(t,). There-
fore we get f(p) = /(1) in all cases and since f(q) = f(t,) holds as well, we have
1(2) = 1(a).

5. ALMOST FREE GROUPOIDS

5.1. Propesition. Let X be a non-empty set partially ordered by s and let E =
= E(X, s) (see Section 3). Then Ee ¥, K(E) = X and for x,yeX, xy =y iff
x # y and (x, y)es. Hence s = r(E) | X.

Proof is easy.

Let (4, u) and (B, v) be two partially ordered sets. A homomorphism f of A
into B is said to be an immersion, if f induces an isomorphism of (4, u) onto

(/(4), v [ 7(4))-

5.2. Proposition. Let G, H e & and let f be a homomorphism of G into H, A =
= f"YK(H)), u = r(G) | A and v = #(H) | K(H). If A is not empty, then A < K(G)
and f | A is an immersion of (A4, u) into (K(H), v).

Proof. Obviously f(L{G)) < L(H), therefore A = K(G). Suppose that 4 is non-
empty, then f | A is injective by 1.10. If a, b e A and ab = b, then f(a) f(b) = f(b),
and hence f | A is a homomorphism of (4, u) into (K(H), v). If a, b € 4, (a, b) ¢ 1(G),
then ab e L{G), f(a) f(b) € L(H), (f(a), f{b)) ¢ (H), and hence f | 4 is an immersion.

- 5.3. Corollary. Let G, H € & and let f be a surjective homomorphism of G onto H,
u = r{G) | K(G) and v = r(H)|K(H). Then there exists an immersion of the
partially ordered set (K(H),v) into (K(G), u).

5.4. Corollary. Let Ge & be generated by K(G), let u = r(G) | K(G), let X be
a non-empty set partially ordered by s and let f: E(X, s) > G be a homomorphism
with f(X) = K(G). Then f is surjective and (K(G), u) is isomorphic to (X, s).

5.5. Proposition. Let X be a non-empty set partially ordered by s and let h be
a mapping of X into Ge &. Then h can be extended into a (unique) homomorphism
frE(X, s) > G if and only if the following conditions are satisfied:
(a) whenever (x, y)es, x % y, then h(x) h(y) = h(y) = h(y) h(x),
(b) whenever (x, y) € s and h(y) € K(G), then h{x) h(y) # h(y) % h(x).

Proof. In virtue of 5.1, 1.10 and 1.2(i) only the converse implication requires
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a proof. Denote by W the absolutely free groupoid over the set X, by S the free semi-
group over X and let k: W — E X, 5), j: W— G, g: W— S be such that k(x) = g(x) =
= x and j(x) = h(x).

(i) If p, g € W and (p, q) € o (see Section 3 for definition), then p = d(q, i), g(q) =
=X;...X%, 1 Si<nand (x,y)es, where y = x;.,, i <nory=x;,_qi>1
By (a) h(x;) h(y) = h(y) = h(y) h(x;) and hence j(p) = j(q) by 4.2. Therefore j(p) =
= j(q) for any p, g € W,(p, q) € B.

(i) Let p, g€ F(X,s), (p, q) ey and j(p) * j(q). Then g(p) = g(q) = X, ... x, and
we put V= {x,...,x,}. If x = y for all x, y e V, then j(p) = j(g) by 2.11. Thus
there is x, y € V'such that (x, y) e s and by 4.3 we can assume that j(y) = h(y) e K(G)
and (j(x), j(»)) € r(G). However, this contradicts (b). Therefore j(p) = j(q) for any
p,qeF(X,s), (p,q) €.

(iii) Combining (i) and (ii) we conclude that Ker (k) < Ker (j) and hence we can
put f(k(p)) = j(p) for any p e W. ‘

5.6. Corollary. Let G € & be a groupoid generated by a non-empty set A and let
s = 1(G) | A. Then there exists a unique surjective homomorphism f of E(A, s)
onto G such that f| A = id,.

5.7. Proposition. Let X be a non-empty set partially ordered by s, Ge & and
let f: G — E(X, s) be such that f(K(G)) = X. Then f is an isomorphism iff G is
generated by K(G).

Proof. Suppose that G is generated by K(G); the other implication is obvious.
By 5.2 f | K(G) bijects onto X and by 5.5 there is a homomorphism h: E(X, s) - G
such that h(f(a)) = a for any a € K(G). Then f(h(x)) = x for any x € X and fh is
the identity mapping of E(X, s) by 5.6. Since h(X) = K(G) generates G, h is surjective
and therefore f = h™ 1.

6. EQUATIONS

Let X = {y, ¥2,...} be a countable infinite set of variables and let W be the
absolutely free groupoid over X. Define an endomorphism e of W by e(y;) = y; for
every i = 1.

Now, let te W and g(f) = xyx;...%,, n =1, xy,...,x,€X. Then var(f) =
= {xy, ..., x,} and for any proper subset V of var (f) we put (V) = {i; I'S i < n,
x; € V}. Moreover, put ey(f) = e(d(t, o(V)).

Define sets & and & of identities as follows: The identities ¢ = #, (xx.x) x =
= xx . xX, X(x.xx) = xx.xx and (x. xx) x = x(xx . x), where x = y, and te W,
belong to &. If p, g e W, I(p) = 5 and g(p) = g(q), then the identity p = g belongs
to &. Finally, if u, w e W, then u = w belongs to & iff g(u) = g(w) and ey(u) = e,(w)
belongs to & for any proper subset V of var (u).
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6.1. Lemma. Let G € & and let p, q € W be such that p = q belongs to &. Then G
satisfies the identity p = q.

Proof. Let f: W— G be a homomorphism and assume f(p) # f(¢g). We have
9(p) = g(q) and by 4.3 there is V = var (p) = var (g) such that f(p) = f(d(p, v(V))),
f(q) = f(d(q, v(V))) and f(x) = f(y) for any x, y € var (p) — V. Since ey{p) = ey(q),
we get f(p) = f(q) from 2.11, a contradiction.

6.2. Lemma. Let Y = {q, b} be a two-elelement set partially ordered by s,
(a, b)es. Let h be a homomorphism of W into E(Y,s), h(X) = Y, h(y,) = b. Then
for teW, V= {xevar(t); h(x) = a} either V = var (), or V & var () and h(t) =
= h(ey(1))-

Proof. If xe V, yevar(f) — V, then h(x) h(y) = ab = b = h(y). Therefoere we
can (repeatedly) use 4.2.

6.3. Lemma. Let p, g € W be such that every groupoid from & satisfies p = q.
Then the identity p = q belongs to &.

Proof. Suppose, on the contrary, that p = g is not contained in &#. We may
assume y, ¢ var (p). However, every semigroup satisfies p = g, hence g(p) = g{q)
and therefore the identity e,(p) = e,(q) does not belong to & for some proper subset ¥V
of var (p) = var(q). Now, let Y= {a, b} be a two-element set partially ordered
by s, (a, b) €5, and let h be the homomorphism from W onto E(Y, s) such that h(x) =
= afor x € Vand h(x) = b for xe X — V. Then h(p) + h(q) by 6.2, a contradiction.

6.5. Corollary. The variety J generated by & is just the variety of groupoids
satisfying all the identities from & .

6.5. Corollary. Let Y = {a, b} be a two-element set partially ordered by s,

(a, b) € s. Then the variety J is generated by the groupoid E(Y, s).
It seems to be an open problem whether the variety J is finitely based.

7. FURTHER RESULTS

7.1. Lemma. Let Ge & be such that a* = b* for all a,beK = K(G). Then
ab # ca for all a,b,ceK, b + a * c.

Proof. Assume the contrary. Then a.aa = a.bb=ab.b=ca.b=c.ab =
=c¢.ca=cc.a=aa.a, a contradiction.

7.2. Lemma. Let G € & be such that a* = b? for all a, be K. Then cd € L = L(G)
for all ¢,deK. ‘

Proof. If cd ¢ L then, by 1.2(i), we can assume that ¢ = ¢d € K. By 1.2(iii), ¢ = de,
a contradiction with 7.1.

7.3. Lemma. Let G € & be a finite groupoid such that a®> = b® for alla, beK =
= K(G). Put J(G) = {ab; a,beK, a + b} and suppose that J(G) is non-empty.
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Then there exists a subgroupoid H of G such that 2 card (K(H)) 2 card (K) and
card (J(G)) = card (J(H)) + 1.

Proof. Let xe J(G), A = {aeK; ab = x for some a + be K} and B = {beK;
ab = x for some b & aeK}. By 7.1, An B = () and we can assume without loss
of generality that card (B) < card (K)/2. Now, denote by H the subgroupoid
generated by K — B. Then K(H) = K — B and x ¢ J{H).

7.4. Lemma. Let G € & be a finite groupoid such that a®> = b* for alla,beK =
= K(G). Suppose that card (K) = 2" for some m 2 0. Then card (J(G)) = m.

Proof. The result follows from 7.2 and 7.3 by induction on m.

7.5. Lemma. Let G € & be a finite non-associative groupoid. Define an equiva-
lence s on K = K(G) by (a, b) € s iff a*> = b* and denote by n the number of blocks
of s. Let m be an integer such that card (K) = n . 2". Then card (L(G)) = max (n, m).

Proof. Let 4 be a block of s with the maximum card (4) and let H be the sub-
groupoid of G generated by A. Then K(H) = A, card(A4) = card (K)/n and
card (L(H)) = m by 7.4. On the other hand, card (L{G)) = n by 1.2(ii)

7.6. Corollary. For every positive integer n there exists an integer m such that
card (L{G)) = n whenever G € & and card (G) = m. '

7.7. Example. Let n be a positive integer and let G = {ay, ..., a,, by, ..., by, ¢, d}
be a set containing 2n + 2 elements. Define a multiplication on G by a;. a; = b;,
ba; = ¢ and xy = d in all the remaining cases. Then G € & and card (K(G)) = n,
card (L(G)) = n + 2.

7.8. Remark. For a positive integer n, let «(n) = min (card (L(G)); G € &,
card (K(G)) = n). By 7.7, o(n) < n + 2 and we have o(1) = 3 (see 2.8). On the other
hand, by 7.6, the values ofn) are not bounded.
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