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The main purpose of this article is the characterization of T-algebras (4, ) of the
monad L-Fuzz, which is connected with the fuzzification of mathematical objects,
especially automata, applying a brouwerian lattice L [1]. The power set monad is
a submonad of L-Fuzz and, as is well known, its T-algebras are precisely the complete
sup-semi-lattices [2]. In the case of T-algebras of L-Fuzz the set 4 will also have
the complete lattice structure making it possible to construct a Galois correspondence
(h, g) between TA and the dual A? of A. The above mentioned characterization will
be performed by the statement of four independent conditions on g to be the re-
siduated map of the morphism / of a T-algebra for L-Fuzz.

In Section 1, basic facts on the Kleisli and Eilenberg-Moore constructions are
summarized and the monad L-Fuzz is constituted. Notations from the category
theory not defined here may be found in [3]. For lattice theoretical facts see [4].
Section 2 starts with a partial order on the underlying set A4 of the T-algebra (4, h),
which is shown to be a complete lattice order. Having introduced the Galois cor-
respondence (#, g) additional properties of g are established, a suitable selection of
which will be characteristic, as pointed out in the main result 2.13, 2.14. Section 3
studies the independence of the characteristic conditions obtained in the preceding
section, while the last section is supplementary and contains some applications.

1. MONADS, T-ALGEBRAS AND THE MONAD L-FUZZ

1.0. There are several equivalent notions of a monad over a category K [5].
A monad (T, 7, ) in the monoid form consists of an endofunctor T: K — K, and
two natural transformations #: Id — T and p: T> — T, such that — composition
left before right —

Nrabla = lrg = Tiapys Tlgpsa = Bralta

for every object A. The Kleisli category Ky of (T, 7, 1) has the same object class
as K and the morphism classes K-{4, B) = K(4, T B) with the morphism composition

wof = aTBuc
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where o € K{(4, B), e KB, C). There exists a pair of adjoint functors (A, #)
between K and K, given by

AA = A > fA = fﬂB s

A* =TA, o* = Toug
if fe K(A4, B) and o € K{4, B). (A, #) generates the given monad for T4 = A**,
Tf = f**, 5 being the unit of the adjunction and p the natural transformation as-
sociated with the counit ¢ [6], [3]. The Kleisli construction gives rise to the definition

of a monad (T, 7, o) in a clone form: here T is an object map of K, n = (1) €,
a family of object maps 7,: A — TA and . a family (OABC)A,H'CelKl of mapings

o 4sc: K(4, TB) x K(B, TC) — K(A, TC)
such that (object indices in the composition sign will be omitted)
(xoP)oy=ao(foy),
Kollp =10,
(f%eB =18

for all composable morphisms a, 8, 7, f. By the functor properties of A, 4# we have
the identities

(fo)* = f2og, 15 =14,
(o B)* = a*B*, n§ = 154
Replacing o in the clone form by a family # = (% 4g)4 gk Of mappings
4 45 K(A, TB) — K(TA, TB)
satisfying (object indices omitted)
nao* = o,
ny = lrq,
(aﬁ#)# = a*f*

one gets the notion of a monad in the extension form (T, #, %), connected with the
monoid form and the clone form by the relations

(1) o = Tapg = lp 00,

(2) pa=1lpyolp, = 1#4
for o € K(A, TB).

Eilenberg and Moore [7], [3] generated the monad (7, 7, 1) by a pair of adjomnt
functors (FT, UT) between K and the category K” of T-algebras. Such a T-algebra
(A, h) consists of an object 4 in K and a K-morphism h: TA — A satisfying

nah=1,, Th h=ph.
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fe KA, A') is a K"-morphism from (4, h) to (4', k') iff Tf h = h'f. K"-morphisms
are combined by the composition law of K. Evidently (T4, p,) is a T-algebra and
the adjunction is given by

F'4 = (TA, p,), F'f=Tf,

G'(4,h) =4, G'g=g
where fe K(A4, A'), g e K"((4, h), (4, I')).

1.1. In Zadeh’s classical paper on fuzzy sets [8] characteristic functions are

ranging over the interval [0, 1] of real numbers. With respect to inf, sup this is
a special case of a brouwerian lattice [9] (or complete JID-lattice [4]). Precisely,

a lattice Lis called brouwerian iff it is complete and the intersection distributive over
the suprema

X/\V}’i=V(X/\Yi)-

iel iel
We establish a fuzzification making use of a fixed brouwerian lattice L. Let A be
a set and
TA = IA.

p € TA may be interpreted as a fuzzy set on A, (a)p is the grade of membership of a
in p. By a: A > TB to every a € A we attribute a fuzzy set (a) « on B and adopting
notation similar to that of conditional probability we set

abla) := (b)((a) @),

a € A, be B. In particular, n,: A - TA is defined by

, 1, d =a,
niale):={5 5 L0

where 1 denotes the greatest and O the smallest element of the lattice L.
a: A — TB and B: B —» TC are composed to oo f: A —» TC by

(22 ) (efa) =/ (a(bla) n B(e]5),

ae A, ce C, with V the supremum and A the intersection in L. One verifies without
difficulty (see also [1]) that (T, #, o) is a monad in the clone form over the category
Set, which will be denoted L-Fuzz in what follows. Consequently, T'is an endofunctor
Set — Set and n must be the natural transformation Id — T, which can be tested
also immediately. An easy computation using 1.0 (1), (2) gives the essential parts of
L-Fuzz in the other monad forms

a*(b]p) = V(@) p A o(bja)),
beB, peTA, a: A - TB, or
(m ulal®) = V (1)@ A (@) )
DeT?4, ae A. "
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The functor T transforms f: A — B into Tf: TA — TB so that

©) T/(b[p) = V{(a) pla € 4, (a) f = b},
beB, peTA.

2. CHARACTERIZATION OF T-ALGEBRAS OF L-FUZZ

2.0. In the sequel (4, h) always means a T-algebra of L-Fuzz with the additional
assumption A # 0. If no confusion arises 7, and u, often will be written without
subscripts. It will be of advantage to distinguish typographically the elements of
L- small greek letters with the exception of the bounds 0, 1 — from those of 4 —
small Roman characters. '

2.1. Together with (L: A, V, 0, 1) also TA = L*is a brouwerian lattice with respect
to inf, sup, ¢,, ¢; defined by

(x) (inf p;) := ig (%) psi,
(x) (sup p;) := y (x) p: »

eI
(x)co:=0, (x)c;:=1
for every x € A and every family (p;/i e I) of fuzzy sets p; e TA.
2.2. Definition. If (4, h) is a T-Algebra and a, b € 4, set

a<b iff (sup{(a)n, (b)ng})h=">,
where sup denotes the operation from 2.1.

2.3. Lemma. The relational system (A, <) has the following properties:
(1) (4, £) is a partial order;
(2) h is order-preserving;
(3) Vxe 4 YM < T4;
if M = h™'(x) then (sup M) h = x;
(4) VX < 4:
(sup {(x) n/x € X}) h is the supremum of X in the partial order (4, <);
(5) h is o-preserving (that is, h preserves suprema).

Proof. (1): The antisymmetry of < obviously holds. Reflexivity is an immediate
consequence of the identity #,h = 1, for T-algebras. Transitivity will be established
by choosing suitable maps @ € T24 afnd applying the second identity for T-algebras
uh = Th h:

Supposing a < b, b < c letfor pe TA

(po:={) B p=@n e pmmiOn @,
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,._f1if p=(a)y or p =sup {(b)n,(c)n},
(p) @' := {0 else .

By 1.1 (1),
(@) i = sup {(a) n, (b) m, () n} = (¥ m,
while 1.1 (2) yields

Th(z|®) = {1 if z=()ph=c or z=(sup{(a)n, (b)n})h="0,

0 else,
thus (@) Th h = (sup {(c) n, (b)n}) h = c.
A similar computation with @’ shows that
(@) Th h = (sup {(a) n, (c)n}) h,

therefore ¢ = (sup {(a) , (¢) n}) h, which was to be shown.
(2): The lattice ordering in TA is given by components: if p, g € TA,

p<q iff VaeA:(a)p=(a)q.

(We use < for the ordering of L, TA and A, the particular meaning being clear from
the context).
If p,qeTA, p < q, set for an arbitrary re TA

L JLif r=p or r=gq,
‘(r)rb._ {0 else .

Then we obtain for every z € A
Wel2) =A@ v (LAE) = (),
T(z]9) = n(zI(p) ) v n(=l(a) ).
therefore (@) u = g, (®) Th = sup {(p) hn, (q) hn} and finally
(a) h = (@) wh = (&) Th h = (sup {(p) b, (q) b)) .,

that is (p) h < (g) h, in accordance with 2.2.
(3): Since h preserves the order,

x < (p)h < (sup M) h

and because of sup M = sup h“(x) we only have to prove the equality
(sup h™'(x)) h = x. Taking

)1 it pehT(x),
() & := {0 else

we have (@) pu = suph™'(x) and (P) Th = (x)#, and from the both T-algebra
identities we get

x = (x)nh = (@) Thh = (®) ph = (sup h='(x)) h.
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(4): If X = 0 then
sup {(x) nfx e X} = ¢ e I,

¢o being the constant O-map. Since n4h = 1,, h is surjective and therefore (c,) i
must be the smallest element of A. Taking x e X + 0 and

a:=(sup {(x)n/x e X}) h
we have x < a by (2) If b is any upper bound of X in A, then for every x € X

b = (sup {(x) n, (b) n}) h
and taking into account (3), 2.2 we find

b = (sup {sup {(x) n/x e X}, (b) n}) h.
Setting

_ it p=sup{(x)n/xeX} or p=(b)n,
(n) @ = {0 else
one gets

() u = sup {sup {(x) n/x e X}, (b) n} ,

(®) Th = sup {(a) n, (b) n}
and therefore a < b.

(5): If M = T4 and X := {(p) h/p e M}, then (4) implies

(sup {(p) hn[pe M}) h = Sup {(p) hjpe M},
Sup denoting the supremum operation in (4, <). Defining (p)® = 1 if pe M,

0 else, 1.1(1), (2), immediately yield (#) 4 = sup M and Th (z|®) = 1 if M
A h™!(z) # 0, 0 else. Therefore
(@) Th = sup {(p) hn/pe M},
Sup {(p) h/pe M} = (®) Th h = (®) ph = (sup M) h.
2.4. We list the conclusions of 2.3, some of them involving merely the basic facts

of the lattice or set theory:
(1) A is sup-complete.
(2) With respect to Sup and Inf defined by

Inf X := Sup {alae A, VxeX:a < x},

A is a complete lattice.
(3) ker h (the kernel of h) is an equivalence relation in TA, which is sup-compatible

and separates the set {(a) n/a € A}.

(4) Every equivalence class of ker h contains its supremum.
These suprema of equivalence classes are the object of the forthcoming considerations.

2.5. Definition. If (A4, h) is a T-algebra, a € A, then g(a) := sup {p/p € TA,
(p) h £ a}.
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Remark. g maps a to sup h™'(a), because h is surjective and 2.3 (5) has been
proved.

2.6. Lemma. Supposing 2.5, we have
VpeTA VaeA:(p)h<a iff p=(a)p.

The assertion is a direct consequence of 2.5 and, as is well known, it is equivalent to
(h, g) being a Galois connection between TA and the dual 4? of the lattice A. g is
called residuated to h. (This differs from the terminology in [10], where h would be
called residuated. Further properties of the Galois connections are listed in 2.7 below,
see e.g. the article just quoted.)

2.7. Forevery X € A, ae A, pe TA,
(1) (Inf X) g = inf {(x) g/x € X},
(2) 1p4 = hg,
(3) gh £ 1, even gh = 1,
(4) (a)g = sup {p/pe T4, (p) h = a},
(5) (p) h = Inf {alaec A, p < (a)g}.

2.8. As we have seen the underlying set A of a T-algebra (4, h) is a complete
lattice. Simultaneously, the map h must have a residuated map g. Therefore it seems
reasonable to ask for those maps g from a complete lattice A to the brouwerian lattice
TA, for which the map h, being now defined by equation 2.7 (5), produces a T-algebra
(4, h) of the monad L-Fuzz. In other words, our aim is the characterization of a T-
algebra by residuated maps. To this end some further properties of g must be in-
vestigated. We start with an auxiliary notion which will be useful in the sequel.

2.9. Definition. Let @ e T?A.
@ is concentrated iff 3p e TA Joe L Vq € TA:

_Jo if g=p,
(q)(p_{() else .

2.10. Lemma. Suppose h is a o-preserving map TA — A and nsh = 1, Then
(4, h) is a T-algebra iff for every concentrated @,
() wih = (@) Thh.
Proof. The implication from the left to the right is obvious. For the opposite
direction take into account that together with TA also T?4 must be a brouwerian

lattice. Denoting here for simplicity the supremum operation in T24, T4 and A with
the same symbol sup, an arbitrary @ € T?4 can be represented in the form

® = sup {®,/pe TA},
_Jpo if g=p,
(4) @, := {E) )else
by a set of concentrated @,’s.
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Tf is always o-preserving without any other supposition of f than that of f being
a map. For,if f: B— C,ceC, p;e TB for i €I, then

(€) (sup (pii €1} 1) = 7 (cJsup {pifi<1})
= V{(b) (sup {pifi e1})[be B, (b)f = c}
=V{V ®)pfbes, (F =)

=V Vi(b)pbeB, (b)f = ¢}

=V T/ (elp) = () (sup {(p) Ti € 1}) -

Also p4 is o-preserving since (TA, ) is a T-algebra and 2.3 (5) holds.
h is supposed to be g-preserving, therefore for every @ € T?A4,

() uh = (sup @) th = sup ((®,) uh)

I

sup ((®,) Th h) = (sup ®,) Th h
P p

(@) Th h.
2.11. Let — denote the implication operation in the brouwerian lattice L, that is

a—-p:=V{yyeL, a Ay =B},

a, B € L. By components it can be carried over to TA:

(@ -a:=(pr-(9a,

aeA; p,qe TA. For every a.e Llet ¢, be the constant map A — L with value o,
If g: A > TA, the Kleisli composition g - g makes sense.

2.12. Lemma. Suppose (A, h) is a T-algebra and g is defined by 2.5. Then
(1) N4 é g,
(2 g.9=9,
(3) Vae A Vae L:

a < g(Inf {x/x € 4, ¢, > (a) g < (x) g}/a).
Proof. (1): By 2.7(2) and n4h = 1, we have for every a € A4:
(@)n = (a)nhg =(a)g.

(2): Both p, and Ty are o-preserving (see the proof in 2.10), therefore order preserving
and (1) implies for every a € A

(@)g=(a)(nog)=(a)nTgp < (a)g Ty n

=(a)(g-9)-

On the other hand,
(a)(gog)h =(a)g Tg uh = (a)g Tg Th h,
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and with regard to 2.7 (3) the last expression equals

(a)g Tl h = (a)gh = a,
showing (a) (g - g) h < (a) g by definition of g in 2.5.
(3): For pe TA, aeL,
ap := inf {c,, p}
denotes the “a-cut”of p. The concentrated @ € T?4 defined by (q) @ = « if ¢ = p,
0 else, fulfils

(@) Th = o/(p) h)n, (P)p=ap.
Since (ap) h = (o{(p) h) 1) h, for every a € A we have the implications:
if ap <(a)g, then «(p)h)n < (a)g, or equivalently, p < ¢, — (a)g implies
a < g((p) h/a). The assertion is now verified by 2.7 (5).

2.13. Now we are able to find the characteristic conditions on g to be a residuated
map of a T-algebra map h. Their necessity is formulated in the following

Theorem. If (A, ) is a T-algebra of the monad L-Fuzz, then A is a complete
lattice with respect to the partial order defined in 2.2. The map g introduced by
2.5 is injective, 5-preserving and satisfies 2.12 (2), (3).

Proof. 2.4(2), 2.7(3), 2.7 (1), 2.12(2), (3).

The selected properties are also sufficient to get a T-algebra (4, h) defining its
map by means of 2.7 (5). The exact formulation is given in the next point:

2.14. Theorem. Suppose (A, £) is a complete lattice,(T, 1, o) the monad L-Fuzz
and g: A - TA satisfies
(1) g injective,
(2) g 5-preserving, (2.7 (1)),

(3 ge9=9,
(4) Vae A Voe L:

a < g(Inf {x[x € 4, ¢, — (a) g = (x) g}/a).
If h: TA - A is defined by
(p) h = Inf{x/xe A, p £ (x)g},
then (A, h) is a T-algebra and for every a € A
(a)g = sup{p/pe T4, (p) h < a}.

Proof. First of all, (h, g) is shown to be a Galois connection between TA and A4¢,
the dual of A. Evidently h is.monotone and also g is monotone by (2). If a € 4 then,

by (2), .
(a) ghg = (Inf {x[(a) g < (x) g}) 9

= inf{(x)g/(a)g < (x) g} = (a) g,
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and the injectivity of g yields gh =< 1,, For every p e T4,

(p) hg = (Inf {x[p < (x) g}) g = inf {(x) g[p < (x) g} = p,

therefore hg = 17,4, leading to the desired result on (k, g). But then, as is well known

from the theory of Galois connection, also the last statement of the theorem con-
cerning g is true.

The next preparatory step is to demonstrate
(i) (@) n = (a) g,
(ii) a < b iff g(afb) =1
for all a, be A.

The brouwerian implication has the property ¢, — (a) g = (a) g, and (4), (2) imply
1 = g (Inf {xjc, > (a) g = (x) g}/a)
a = Inf {x/(a) g = (x)g}.

Therefore 1 < g(afa) and in virtue of the implication n(a’[a) = 0 if a’ = a, (i) has
been shown.

If a < b, then (2) and, further, (i) imply
(a) g = inf{(a) g, (b) g} ,

A L = g(ala) = g(ala) A g(a[b),
therefore g(a/b) = 1.

Supposing g(a/b) = 1, (3) gives for every ce 4
9(e/b) =V (g(x/b) A g(c/x))

= g(ab) A g(cla) = g(cfa).,

consequently (a) g < (b) g, and as previously shown gh = 1, therefore a < b.
Now we can verify the T-algebra identities. Because of (i), monotony of h and
gh = 1,, for every a € A we have

(a)nh £ (a)gh =a.
From the properties of the Galois connection (h, g) we obtain (a)nhg = (a)n,
which implies g(a/(a) nh) = n{a/a) = 1. By (ii) we conclude that

as (a) nh,
completing the proof of n,h = 1,.
The more complicated second identity

(@) Th h = (D) psh,

@ e T?A4, will be verified only for concentrated &.

This will do, since h is o-preserving because of the Galois properties, and 2.10
completes the proof.
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Defining @ by
()@ =a if g=p, Oelse,

2 € L, pe TA being arbitrary but fixed, we assert the following:
(ili) Ya e Az if (@) Th h < a then (@) ph < a.
Setting z := (p) h we get (?) Th = a{z) n and (P) u = op (see 2.12 for notation).
Supposing now the premise of (iii):
(dz)n) h = Inf{x[xe A, az)n < (x)g} L a,

one concludes by (2)
inf {(x) g/xe A, (z)n < (x) g} < (a)g,

in particular o < g(z/a).
Since (P)uh = (ap) h < a iff ap < (a)g,
it suffices to prove the validity of the relation on the right. This relation is a conse-
quence of p < (z)g and
A (¥)p = ang(yz) = glzla) A g(y[2)
=V (g(xfa) ~ g(v]x)) = 9(v/a),
y € A, again with help of (3) in theE last step. Consequently, (iii) is valid.

Taking a = (®) Th h we get
(®) uh < (®)Th h .

Supposing now the validity of the other relation
(®) ph = (ap) h < a,
we immediately see that «p < (a) g and since for every x € 4
ap < (x)g iff p<c,>(x)yg,
{xfes = (a) g = (x) g} = {x[p = (x) g},
Inf {xfe, > (a) g < (x) g} = Inf {x]p < (x) g} = (p) .
By (ii) and (3), if @, x, y € A and x < y then
9(x/a) = V (g(z]a)  g(x[2)) = g(y]a) n g(x]y)
= g(y[a) A 1 = g(y[a).
This together with the last estimate of Inf and (4) finally yields
g(Inf {x/e, = (a) g < (x) g}/a) = g((p) hja),
o = ¢((p) hla) = ¢(z[a),
«2)n = (a)g,
(@) Thh = («(z) n) h < (a) gh
Therefore (@) Th h < (P) ph.

we have

N

I
Q
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3. INDEPENDENCE OF THE CHARACTERIZING CONDITIONS

3.0. The characterizing conditions (1)—(4) of Theorem 2.14 will be shown to be
independent. The corresponding counterexamples are constructed with L = {0, 1},
A = L x L. The individual maps g will be given in the form of a matrix (g,;), 1 < i,
Jj < 4, where g;; = g{j/i) and the elements of 4 (0, 0), (0, 1), (1, 0), (1, 1) are assigned
to the rows and columns 1, 2, 3, 4, respectively. The Kleisli composition is performed
by the max-min-product of matrices (that is v, A instead of +, *).

3Lg;=1,1=2i,j<4
Obviously g is 8-preserving and idempotent with respect to o. As for condition (4),
it is sufficient to take a = 1:

1 < g(Inf {x/e; = (¥) g = (x) g}])

g(Inf {x[(y) g < (x) g}/y) = g(¥]) .
But evidently, g is not injective.

IIA

3.2. g;; = ¢;; (Kronecker symbol).
g is injective and idempotent. (4) can be shown as in 3.1.
g is not é-preserving.

3.3.

—_0 = O
— - O O

1
1
1
1

«Q
Il
P

g is injective and J-preserving. Computation of g o g results in the matrix from 3.1,
hence (2) is violated. (4) is valid as in the preceding examples.

34. 0000
0100
0010
1111

g is injective, d-preserving and idempotent.
Since g(1/1) # 1, (4) does not hold.
4. SPECIAL LATTICES AS UNDERLYING OBJECTS OF T-ALGEBRAS

4.1. Example. The brouwerian lattice Lis itself the underlying object of a T-algebra
(L, h) with the morphism

(p)h =V (a2 A (2)p).
aeL
p € TL. This can be verified without difficulty by directly testing the monad identities.
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The residuated map g is proved just to be the implication of Linterpreting g: L — TL
as a binary operation L x L — L: for every a, f€ L,

9(Ble) = (B) (sup {p/V{y[yeL, v A () P = o})
= () (sup{p/VreL:(y) p £ 7 > a})
=B (Gup{pp 1L~ c¢}) =Bl >c) =
=f->a.
The validity of conditions (1)—(4) from 2.14 can be restated using the well known
identities concerning implication (see [11]).

1 > o = o, therefore («) g # (B) g if @ + B, and g must be injective. é-preservation
is expressed by

ﬁ‘*/\“i=/\(ﬁ”"°‘i)-

iel iel

The identity o — o = 1 together with #, < g gives g < g - g. On the other hand,

o)A (Boy)sp—a,

(g09) (Ble) = V(7 > @) A (B=7)) = 9(Bf).
YE.
so that o is idempotent. Condition (4) amounts to

(4) = Aflle. > (B g = (&g}~ B

By the series of equivalences

=B g=()g,
VweLia—(y—>p)<(r—9),
VyeLiy—»(a—p) =< (y—¢),
VyeLiy A(a— ) <&,
y\e/L(vA(aﬁﬂ))=(aﬂﬁ)A 1ge,

therefore

(4) is reduced to o < (¢ — B) — B or equivalently, & A (x —> B) = A B < B.
4.2. Application of 2.14

Theorem. Let (A, §) be a complete lattice and 6 a meet-irreducible element of L,
o=+ 1.

If mappings g: A - TA, h: TA — A are defined by’
g(bla)=1 if b<a, elsed; abeA,
(p) h =Inf{alaec A, p < (a)g}; peTA,
then (A, h) is a T-algebra.
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Proof. By 2.14 it is sufficient to prove conditions (1)—(4). If a,ce 4, a £ ¢,
then g(a/c) = 6 + 1 = g(a/a), which yields injectivity of g.
For every X < A, be A

g(b/InfX) = 1 iff b <InfX iff
VxeX:b< x iff Ag(b/x)=1.

xeX

g being two-valued, (2) follows. Having again the codomain of ¢ in mind, (3) follows

from
(9o g)(b/a)— (9(x/a) A g(b/x)) = 1

iff Ixed:x<a, b=x iff g(b/a) =
Evidently, (4) holds for o < 6. If o £ 6 then « — § < §, because

aA(@—>8)=d, (@vI)A(@a—=0)vi)=9

and 9 is supposed to be meet-irreducible.
Now, for every a, ye A

=1 if y=Za
oc-—»g(y/a){sé else .

Consequently Inf {x/c, > (a) g < (x) g} = a and « < 1 = g(a/a).
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