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INTRODUCTION

In 1952 M. Biernacki [1] proved that the binomial differential equation of the
fourth order
u® = p(t)u

with a continuously differentiable nonincreasing coefficient p : [0, +o0[—] — o0, 0]
possesses a nonzero solution satisfying the condition

lim u(t) = 0.

t=>+ o
He also suggested that there exists a two-dimensional subspace of such solutions.
Later M. Svec [11] succeeded in proving this hypotheses and it turned out that the
conditions of continuous differentiability and monotonicity of the function can be
omitted. M. Svec proved existence of a two-dimensional subspace of solutions
vanishing at infinity under the only condition that p: [0, 4+ oo[ = ]— o0, 0[ is a con-
tinuous function bounded from above by a negative constant

p(f) < =6 for t20.

The question of validity of the theorem of Biernacki-Svec type for the differential
equation

(0.1) u™ = p(t)u

in the case of n % 4 has remained open and the analogous question for the
nonhomogeneous equations

(0.2) u® = p(t)u + q(1)
and )
(0.3) u® =S () u® + o)

has not been studied even in the case of n = 4.
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In this paper the above questions are answered which has required the study of the
problems of existence of solutions of the above equations under boundary conditions
of the following three forms:

(0.4))
ua)=c; (i=0,...,n5 — 1), J- 0og,‘,(t) [u("’(t)l2 dt <+ (k=0,...,n),

(0.4,)
u(a) = ¢; (i =0,...,no), f g0 [u®()|? dt < +o0 (k =0, ..., ng)

and
(0.45)
+ o0
uMa)=c; (i=1,....,mp — 1), J' glt) [u®(D)|*dt < + o0 (k =0, ..., n,)

where n, is the entire part of the number n.

In § 1 some auxiliary statements are given. In §§ 2 —4 the theorems on existence and
uniqueness of solutions of the problems (0.2), (0.4,) and (0.3), (0.4,,) (m = 1,2, 3)
are proved and the conditions under which the equations (0.2) and (0.3) have families
of solutions vanishing at infinity are established. In § 5 these results are applied to
the equation (0.1). In particular, the theorems proved here imply that if p: [0, + oo[ —
— R is locally integrable and

(0.5) (=1~ p(f) » + 0 for t— 4o,

then the equation (0‘1) has an ny-dimensional subspace of solutions
vanishing at infinity. In the case of n = 4 this statement implies the above
mentioned theorem of M. Svec, but in contrast to his theorem, ours is the best
possible since, as one easily verifies, (0.5) cannot be replaced by the condition

lim inf (= 1)*""" " p(t) > 0.

t—=>+

In this paper we use the following notation.

R is the set of real numbers; R, = [0, +oo[.

dim X is the dimension of the linear space X.

L(R,) is the set of all Lebesgue integrable functions f: R, — R.

Li..(R.) is the set of functions f: R, — R which are Lebesgue integrable on [0, b]
forany beR,.

C*([a, b]) is the set of functions f:[a, b] — R which are absolutely continuous
along with their derivatives up to the order k inclusively.

Cho(R,) is the set of functions f: R, — R whose restrictions to [0, b] belong to
C*([0, b]) for any be R,; C\(R}) = ck,c(R+)

614



r(i=0,1,-..; k = 2i,2i + 1, ...) are positive numbers defined by the recurrent
relations

(0.6) ret'=%, ri'=1, i, =rsi+r?
(i=01,..;k=2i+3,..).
The notation [*® off)dt < + o0 means that [f® a(f)dt < +oo for any suf-
ficiently large a.

In what follows, unless otherwise stated, we assume that n > 2, ae R, ¢;€R,
gr€ Lin(R4), gi(t) 2 0for teR, (k=0,..., ny) and

(07) DE Lloc(R+) > g€ Lloc(R+) > DPo€ Lloc(R+) > Dk € CII‘GCI(R+)
(k=1,...,n—1).

By a solution of the problem (0.3), (0.4,,) we mean a function u € C;"(R, ) which
satisfies the differential equation (0.3) almost everywhere in R, as well as the boud-
ary conditions (0.4,,).

1. AUXILIARY STATEMENTS

1.1. Certain integral identities and inequalities. Let I k (i =0,1,...; k = 2i,
2i +1,. ) be the numbers defined in Introduction and let I';; (i = 0,1,...; j =
=i,i+1,...;k=1i+j+1,...) be numbers satisfying the recurrent relations

(1.1) rte=%, I'gj=1 (k=1,2,..5j=1,...k—1),
Ittt =%, Ioioy=1 (i=1,2,..5k=2i+22i+3,..)
= + 0z, (=120 j=0i+1...;
k=i+j+2,i+j+3..).

Lemma 1.1. Let k be a positive integer, —o0 < a < b < +o0, ue C* ([a, b])
and v e C*~Y([qg, b]). Then

(1.2)
[(k—1)/21 k—1—i

J bv(t)u(t)ufk)(t)dt Z Z (=101 (0% 7 0() u(b) uY(b) —
— ) ) e + 3 (<) [ o)

Wwhere [1(k — 1)] and [1k] are entire parts of ¥(k — 1) and 1k.

Proof. For | = 1 the identity (1.2) is obviously true. Assume that it is true for all
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ke {1, . m} where m is an arbitrary positive integer. Then for any u and v e

e C"([a, b]) we have

19 [Au 0 8= 0 ) o)) ) -
- [euumma- | "o () u (i)

According to our assumption

(1.4)
[(m—1)/2]m—-1-i

J.bl)’(t) u(t) u™(r) dt = ZO j; (= 1)1 IR0 = 9(b) uD(b) u(b) —

i=

[m/2] b
ot 0(a) ) @)+ T (- [0 oo
i=0 a
and \

(1.5)
b [(m—2)/21m—2—i . 1 . .
f,J(,)uf(t)u(m(t)dm I CV e VR O OO
. i=0 j=1

[(m—1)/2]
. u(1+j)(b) _ v(m‘Z—i—j)(a) u(l“‘i)(a) u(1+j)(a)) + " (_l)m—l—i Frin—l .
i=0

[m/2] m—i

b CT Rl S ORCO)
i=1 j=i

- u(b) = v D(a) uD(a) u(a)) +

: f 120 [ O ()] dt =

a

[(m+1)/2] ) b . ;
T S ) R v f o120 [ s

i=1 a

From (1.3)—(L.5) by (0.6) and (1.1) we conclude that (1.2) is valid for k = m + 1.
This completes the proof.

Lemma 1.2. Let k = 2 be a positive integer, 0 < a <b < +w, 620, ¢, =0
and let u : [a, b] — R be a k times continuously differentiable function such that

(1'6) b2i“ﬂ u(l)(b) u(l“l)(b) — (i - g) bZi—J—llu(i—l)(b)‘Z _
= ) + (1= ) @ S o (1= k= 1),
Then for any A > 3(k — 2) (4k* ~ k + 3 + 30?) the following estimates hold
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b
(17) J t2i~a‘lu(i)(t)l2 dr £ 2(1 + 0_(2k2 — 3k — 2))]‘,2 co +

a

+ a4, k)fbt"“lu(t)|2 dt + B, k)Jthk"”lu(k)(t)Iz dt (i=1,....k—1),
where ’ ’

(1.8) oy (4 k) = (k — 1) ((1 - g) (1-o0)+ Z/})

k —
k —

o4, k) =
(19 -

(i=2..k=-1),

}mﬂwﬁi(k—oﬂ1MQLFU+®+GU—IKﬁ+3—aD

B2 k) =’_:ljj (A _ (- 1)(4]'; + 7j + 6) (i = 1) +3 - a))_l

i=1..,k=1).

n=@—9@—w+?

(=D @*+7i+6)
3

Proof. Set

y; = A +o(i-1)2i+3—-0) (i=1..,k-1)

and

b
&=Jﬁ”$@@Pm (i=0,...k—1).

a

Then according to (1.6), for ie {1, ..., k — 1} we have

0; = bzi~au(i)(b) u(i—l)(b) _ <i _ %) b2i—-o’~1|u(i—1)(b)l2 _ azi~au(i)(a) u(i—l)(a) +

+ (i _ g) a2y D(g)|? + (i - g) (2i =0 —~1)0i-y -

_ J"btzz'—a ut “(t) u(i—l)(t) dt <
a

b
<o+ (i - g) Qi—o—=1)0i—, +I 217 lu+ (1) ul= (1) dt .

a

Furthermore, taking into consideration that

2
s

2 lu() u'(t)] < %t""lu(t)lz + it"’_"[u"(t)
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1

tZi-alu(i+l)(t) u(i—l)(t)l é %tZi—Z—aIu(i—l)(t)IZ + = t2i+2_6lu(i+1)(1)12

2y;
and
. O . Vi Yi-1 .
- —|1Ri-0c-1)+=="— (i=2,....,k-1),
(-3)¢ y# =t )
we obtain
1
(1-9) Q1 = ¢o + Y000 + — 02
Y1
Yi-1 1 .
1.10 =< i —0; i=2,...,.k—-1).
( ) e 2 2)’iQ+1 ( )

If k = 2, then the inequality (1.9) coincides with (1.7). So it remains to consider
the case when k > 2. In this case

0<yp;<2—2 (i=2..,k=1)
where 1o = A + o(2k? — 3k — 2). Hence (1.9) and (1.10) imply

(1.11) 0 < A ey + “k(’l k) + o (=1 k=1

i Yi

Now we show that for any i € {1, ok — 1}
(1.12) 0: = 2(1 = 289 257 %co + a4, k) 0o + Bi(As k) 0 -

For i = k — 1 this estimate coincides with (1.11). Assume that (1.12) is valid for
a certain i € {2,..., k — 1}. Then according to (1.11)

(113) Qi_1 S /11 2 + M Qo + _2___(1 — 2i—k) 1’6—260 +
k—i+1 Yi-1

o, k {4, k
( )Qo 'f‘ﬂ( )Qk
Vi-1 Yi-1

But, as follows from (1.8),
;- (A, k) oA, k) _
k—1i+ 1 Yi-1 YVi-1
On the other hand,

ML E? and 14 -2 (1— 20K 5 ol — 201 H.
Yi-1
Therefore (1.13) implies
i1 S 2(1 = 27717 257 %o + 01-4(2) €0 + Bi-1(%) 04 -
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Hence the validity of the estimate (1.12) for any i€ {1,..., k — 1} is proved by
induction. So the estimates (1.7) are also valid. This completes the proof.

Lemma 1.3. Let k = 2 be a positive integer, a > 0, ¢ 2 0, ¢, = 0, and let u :
:[a, + o[ > R be a k times continuously differentiable function such that

(1.14) fmt“"'lu“’(t)]z dt <+ (i=01,...k)

and ’

(1.15) (i = §>a2f'a~l|u<i—v(a)|2 — a7 u(a) u=(a) < ¢
(i=1,...k-1).

Then for any 2 > 4(k — 2)(4k*> — k + 3 + 30?) the following estimates hold

+ oo
(L16) | O a5 20+ o0k~ 3k = 2 e ¢

+ (i, ) f () at + i ) [ Ve dr (= 1,k — 1)

a

where (2, k) and (2, k) are the numbers defined by the identities (1.8).
Proof. By (1.14)

fre .
| e e s
a

o . 1/2 +oo 1/2
é(f tz'_"lu(')(t)lzdt> (J tZi"Z“’lu(""“(t)lzdt) < +oo

(i=1,...k).

Thus there exist sequences (b, )m<y (i = 1,...,k — 1) of points from [a, + oo
which tend to + oo and

(117) B2l (by) u D (by)| € = (i= L.k — Lm=1,2,...).
m

For any positive integer m, according to Lemma 1.2 and to the inequalities (1.15)
and (1.17), we have

bim .
" 2o uO(@)[? dt £ 2(4 + o(2k* — 3k — 2))<2 (co + l) +
. a "

bim bim
+ a4, k).[ t|u(t)|? dt + B2, k) [ @2 de (i=1,..,k—1).
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From these inequalities, by letting m pass to + o, we obtain (1.16). This completes
the proof.

1.2. On some properties of functions satisfying the conditions (1.14).

Lemma 1.4. Let m be a positive integer, and let k be the entire part of m/2. Sup-
pose that a > 0, ¢ = 0 and that u : [a, + [ — R is a m — 1 times differentiable
function satisfying the conditions (1.14). Then for any constants c;; (i = 0, ..., k;
j=1i,...,m;) the function

k mi
w() =X X eyt T u() u(),
i=0 j=i

where my = m — 1 and m; = m — i for i % 0 satisfies the condition

(1.18) lim inf |w(f)] = 0.

t=>+ o

Proof. Admit on the contrary that for certain c;; (i =0,...,k; j=1i,..., mi)
(1.18) is violated. Then, without loss of generality, we may assume that

k m;
Y Yot u(ud() 2
i=0 j=i

~ |

for ¢ g tl

where 0 > 0 is sufficiently small and t; > a is sufficiently large. According to Lemma
1.1, by integrating both sides of this inequalities from ?, to ¢ ,we obtain
[(m—=1)/2] m—1~-i o . . k t . . t
YDty O 4O + Y ¢ 121~a[u(z>(1)|2 dt=c+6ln—
i=0 j=i i=0 t ty
for t=1t

where ¢}, ¢; and ¢ are constants. Thus (1.14) implies

[((m—1)/2] m—1—i . . 1
D+ y O (f) yO(f) = =
i=0 ji=i

for t=1t,
t

with a certain 7, > t;. Now applying Lemma 1.1 it is easy to verify that for any
ve{l,...,m}

[(m=v)/2] m—v—i

s . . 1
P uOuP(t) z - for 121,
i=0 =i t
where ¢{) = const and ¢, > t,_; > ... > t;. Hence
- 1
ot lu(t))? 2 - for t2t,.
t

But in view of (1.14) this is impossible. This completes the proof.
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Lemma 1.5. If u € C},.'(R,) satisfies the condition (1.14) with ¢ € R, then

loc

lim £ =22 yO() =0 (i=0,....k - 1).

t=>+ o

Proof. Let ie{0,...,k — 1}. Set
U(t) — t2i—a+1|u(i)(t)|2 X
According to (1.14) there exists a sequence t, € [a, +o[ (m = 1,2, ...) such that

limt, = +o, limo(t,)=0.

t—>+ oo t—>+ o

On the other hand,

o) = oft) + Jtmlv’(f)| de < oft,) + [2i - “lrwfz"‘”lu“’(f)ll de +

t
to ) 12 f pto ) 1/2
+ 2<j TZ:*U‘u(I)(T)IZ dT) (j. 121+2~aIu(1+l)(.c)[2 d‘C) for 0 <1t § t,.
t t

Thus, by passing to the limit first for m — + oo and then for ¢t — + oo we obtain

limu(f) = 0.
t—>+ o0

This completes the proof.

1.3. A lemma on solvability of problems of (0.3), (0.4;) type. In this section we
establish conditions of existence of a solution of the equation (0.3) satisfying the
boundary conditions

(1.19) L(u(a), ..., u" P(a)=¢; (i=0,...m—1),
J +00gk(t) Iu(")(t)l2 dt < 40 (k=0,...,m),

where m and moe{l,....,.n — 1}, ¢;eR (i =0,....,m — 1), ae R, gy € Li,(R,)
(k=0,...,mg) are nonnegative and I;:R"—> R (i =0,...,m — 1) are linear
homogeneous functions.

In addition to (0.3) we consider the corresponding homogeneous equations

n—1
(1.20) o =Y p(1) v .
k=0

Lemma 1.6. Let g, be distinct from zero on a subset of positive measure of the
interval [a, + oo[, and let there exist a continuous functionr : R, — R, and linear
homogeneous functions 1;:R*—> R (i = m,...,n — 1) such that for any suf-
ficiently large b all solutions u and v of the equations (0.3) and (1.20), respectively,
satisfy the inequalities
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120 ([0 WO de < o) (1 + S @ e, )+
+ r(b):g;]u("’(bﬂ:;:U,-(u(b), et O] (k= 0, my)

and

(122) j 0o o0 41 = @) T 1o )] +
+ r(b):g;{v(“(b)l':;:ll,-(v(b), e 8D (B))]

Then the problem (0.3), (1.19) has at least one solution.
Proof. Choose b, > a such that
(1.23) mes {t € [a, by]: go(t) > 0} > 0

and that for any b = b, the inequalities (1.21) and (1.22) hold.

Set b; = by + j and for any positive integer j consider the equation (0.3) under the
boundary conditions

(1.24) l(u(a), ..., u" @) =c (i=0,...m—1),
L(u(b)), ..., u" V(b)) =0 (k=m,...,n—1).

It is well-known (see e.g. [2]) that the problem (0.3), (1.24) is uniquely solvable if and
only if the equation (1.20) under the homogeneous boundary conditions

(1.240) I,-(v(a), e v("_l)(a)) =0 (i =0,...m— 1) s
L(v(b)), ..., v" (b)) =0 (k=m,...,n—1)

has only the zero solution. Let v be an arbitrary solution of the problem (0.3), (1.24,).
Then according to (1.22)

j " gol0) [o(0 dt = 0.

a

This by (1.23) implies that v(f) = 0. Hence the problem (0.3), (1.24) has a unique
solution. Denote it by u;. As follows from (1.21), for any positive integer j the
inequalities

(1.25) J- bjgk(t) [uf(0)|2 dt < ro(1 + ;) (k =0, ..., mg)

a

hold, where

m—1
ro = r{a) (1 +.Zo|c,~

) o= ).
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Now we show that the sequencc (e,)j<; is bounded. Admit on the contrary that
there exists a subsequence (Q i =1 satisfying the condition

(1.26) 0, >v (v=1,2,..).
Put
v,(1) = u—’@ .

Siv

Obviously
n—-1
(1.27) Ypia)| =1 (v=1,2..)
i=0
and v, is a solution of the equation
n—1 1
o™ =3 p()v® + — b(r).
k=1 0

Jv

On the other hand, from (1.25) and (1.26) we obtain

(1.28) r

By (1.27) without loss of generality we may assume that the sequences (v{"(a));=3
(i =0,...,n — 1) converge. Then according to the theorem on continuous depen-
dence of the solution of the Cauchy problem on the parameter (see [6], Theorem 1)
and to the conditions (1.26) and (1.27) we have

lim v,(f) = o(¢)

v—+ o

dt< ¢ (v=1,2,..).

uniformly on [a, by], where v is a solution of the equation (1.20) satisfying the
condition

'S o) = 1

On the other hand, by (1.23) and (1.28), v(f) = 0. This contradiction proves the
boundedness of the sequence (¢;);=5.

Since (¢;);55 is bounded, without loss of generality we may assume that the
sequences (u$(a));3 (i = 0,...,n — 1) converge. Then we have

limulP(t) = u®(1) (i=0,...,n—1)
)

uniformly on each finite segment of R, where u is a solution of the equation (0.3).
It obviously follows from (1.24) and (1.25), that u satisfies the boundary conditions
(1.19). Therefore, u is a solution of the problem (0.3), (1.19). This completes the proof.
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2. THE PROBLEM (0.3), (0.4;)

Recall that ny is the entire part of 1n.

Theorem 2.1. Let g, differ from ‘zero on a subset of positive measure of the interval
[a, +oo[, and let there exist nonnegative functions he Cjy.'(R,) and o€ L(R.)
such that the inequalities

(2.1) h(1) a(1)* < a(1) go(1) .

(22) ¥ (=0T (R py(0)“T20 + (=17 IO T20(1) 2 gi(1)
k=2i
(i=01,...,n—ny — 1)
hold on [a, + o[ and if n = 2ny, then .

(3) ) 2 an0)-
Then the problem (0.3), (0.4,) has at least one solution.

Proof. According to Lemma 1.6, it will suffice to show that for any b € Ja, + oo[
all solutions u and v of the equations (0.3) and (1.20), respectively, satisfy the ine-
qualities (1.21) and (1.22) where

(2.4) m=my=ng, l(x,..,%)=x;4y (i=0,...,n5—1),
li(xl’ e 'xn) = Xi—no+1 (i =g, ..., n = 1),

and a continuous function r: R, — R, does not depend on u and v.

Due to Lemma 1.1, by multiplying (0.3) by (—1)"~" h(r) u(t) and integrating from a
to b we obtain

(2.5) ii rh,.(t) [u®(®)| dt = I(u) (b) — I(u) (a) + (—1)""" qu(t) h(t) u(t) dt

where

n—no—1n—1-i

C6) 0= 3 X (eI w0 u) +

n—1 [(k=1)/2] k=1—i

L R GV T (0T O CR

n—1
(2‘7) ]’l,~(t) — Z (_l)n—no—l—i—k F';(h(t) pk(t))(k—Zi) + (__1)no—i 1—-".' h(n—Zi)(t)
k=2i
(i=0,...n—ng—1)
and if n = 2n,, then h,(1) = h(r). Put
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n—ng—1 n—1-i

(2.8) o) = % X T +

n—1 [(k=1)/2] k—1—i

+X X X I pe)

It is clear that

29) ) L0 T 1) < 100) (1) <

S T 3, o).

By (2.1)

(2.10) J "la(0) h(o) u(0)] d < % 'f goi) (O dt + % J' () dt.

a

From (2.5), in virtue of (2.2), (2.3) and (2.10), we obtain

%j:go(t) |u()|? dt +i§1 J.:gi(t) O(0)|? dt < 1(u) (b) — 1) (a) + %J+ w(x(t)dt_

a

By (2.4) and (2.9) this implies the estimates (1.21), where

r(t) = 2ro(t) + f+wa(r) dr.

a

Similarly we can show that an arbitrary solution v of the equation (1.20) satisfies the
estimate (1.22). This completes the proof.
Now we consider the case when the boundary conditions (0.4,) are of the form
. + oo
(2.11) ua)=1c¢; (i=0,...,n—1), J\ tz"lu(")(t)]2 dt < +w
(k =0,..., no) .

Theorem 2.2. Let

n—1
(2.12) ho(t) = Y (=1 " '  rg(r" p(t)® > + 0 for t— +o0,
K=o

n—1
(2.13) limsup ¢720 Y (= 1) T I p(1))* 7?0 < 40
t=>+ o k=2i
(i=1...n—1),
+o [ 2
(2.14) f [ a) 4, < 4o
ho(?)
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and, moreover, let in the case of odd n

2
(2.15) lim inf tp,_(f) > — "?

i~ +oo
Then for sufficiently large a the problem (0.3), (2.11) has at least one solution.

Proof. Let h(t) = 1", and let the operator I and the functions r, and h; (i =
=0,...,n — ng — 1) be defined by the equalities (2.6)—(2.8). In the case of n =
= 2ny + 1 we obtain from (2.7)

2
h,,o(t) = F,?.':“t" p,,_l(t) + Iﬂ::oﬂmnfl =pm1 (t pn_l(f) + —n2—> .
In the case of n = 2n, set )
h"o(t) = tn ¢

According to (2.13) and (2.15) there exist constants a, > 0, 7o > 0 and y > 0
such that

(2.16)  h, (1) >y, h{t) > —yot* for t=a, (i=1,...,n,—1).

Let a4, no) and B2, ng) (i = 1, ..., ny — 1) be constants defined by the identities
(1.8) where o = 0, and let A > n® be so large that

no—1

(2.17) 27, -21 Bi(Amg) <y. 1)
Due to (2.12) and (2.14) without loss of generality we may assume that
no—1
(2.18) ho(t) > 2 + 294 3, oA, ng) for 2 a,
i=1
and
+ o |4n 2
(2.19) o =J CaO 4 < 4oo .
ao ho(t)

Our aim is to show that if a = a,, then the problem (0.3), (2.11) is solvable.

Let ag < a < b < +, and let u be an arbitrary solution of the equation (0.3).
Then, as we have already noticed, the identity (2.5) and the inequality (2.9) hold.
From (2.5) by virtue of (2.16) and (2.19) we get

(2-20) rho(t) u(®)|* dt + yrﬂ"o]u("o’(z)lz dt < I(u) (b) — I(u) (a) +

a a

b no—1 b

+ g + %J ho(?) |u(t)|> dt + o Y J 2 1u(1)|? dt .
a i=1 J,

no—1

1) In the case of n, = 1 here and in what follows, by sums of the type Y, we mean zero.
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According to Lemma 1.2 and inequality (2.17),

J-btzilu(n(t)lz dt < ry(a) (n;gol‘l,(i)(a)ly + r4(b) (":golw(n(b)l)z +
+ oy, f:l”(t)lz dt + %f:tzno

ng—1

where 7,(f) = nyed"(1 + £)", v1 = 0 Y. (4, ny)
=1

By (2.9) and (2.18) the inequalities (2.20) and (2.21) imply (1.21) where

no—1

(2:21) y, ‘Zx

u("o)(t)l 2 4¢ ,

w@zt“(k:Q“”@,rm=(&il+g+1ym@+rﬁ)+®
Yo Y
and m, mg and [; (i = 0,...,n — 1) arc the constants defined in (2.4).

It follows from these arguments that an arbitrary solution v of the equation (1.20)
satisfies the inequality (1.22). Thus all the conditions of Lemma 1.6 are fulfilled, which
guarantees the solvability of the problem (0.3), (2.11). This completes the proof.

Remark. As the proof shows, in the case of n e {2, 3} the condition (2.12) may
be somewhat relaxed, namely we may assume that

lim inf ho(2) > 0.

t=+w
If a solution u satisfies the conditions (2.11), then according to Lemma 1.5,

(2:22) lim £ 2u®@)| =0 (i=0,....n0 — 1).
t=>+
Hence, Theorem 2.2 implies the following statemernt.

Corollary. Under the conditions of Theorem 2.2 the equation (0.3) has an ny-
parameter family of solutions vanishing at infinity together with their derivatives
up to the order ny — 1 inclusively (to be precise, satisfying the conditions (2.22)).

In the conclusion consider the boundary value problem

(223) u%@=ﬁ@=ammr4yjmwwg

for the equation (0.2).

2dt < +©

Theorem 2.3. Let the inequalities

(2.24) (=1 ™ p() 2 0, 72|q(1)* < «(2) |p(1)] s

where a € L(R.) hold in [a, + co[. Then the problem (0.2), (2.23) has one and only
one solution.
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Proof. If p(f) = 0, then g(¢) = 0 and the problem (0.2), (2.23) has the unique

solution
no—1

un=3% g(t — a)i"t.

Consider the case when p differs from zero on a subset of positive measure of the
interval [a, +oo[. Put

h(t) = 2o go(t) = ("m0 p(t)l s gi(t) =0 (i =0,...,ny — 1) , g,,o(t) =1,
po(H) =p(t), p(t)=0 (k=1,...n—1).
Then in virtue of (2.24) the conditions of Theorem 2.1 are fulfilled. Therefore the
problem (0.3), (0.4,) has a solution u. It is obvious that u is a solution of the problem
(0.3), (2.23).
Now it remains to show that the problem- we are considering has at most one

solution, i.e. that the differential equation (0.1) under the homogeneous boundary
conditions

(2.23y) uPa@)=0 (i=0,...,n0 — 1), f

a

+ o0

u™(O)>dt < + o0

has only the zero solution. Admit on the contrary that the problem (0.1), (2.23,)
has a nonzero solution u. Clearly,

b +
(2.24) lim b“""f [WP@)Pdt =0 (i=0,...n—ng—1).
b— + o0 a

Let

no—

w(f) = i

in the case of even n and

1
L OPR0

=0

no—1

w(t) = Y (=17 7 () u () + %Iu("")(t)l2
i=0
in the case of odd n. Then w(a) = 0 and
w(t) = (=1)""""" p(1) Iu(t)|2 >0 for t=a,

w’ being distinct from zero on a set of positive measure. So there exist constants
to > a and y > 0 such that

(2.25) w(t) >y for t=t,.

According to Lemma 1.1 and the conditions (2.23,) we have
b n—ng—1 b
J(b — i tw()dr = Y I,f (b= 1)* [u(1)|* dt
a i=0 a
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for any b > a where the constants /; (i =0,....,n —ny — 1) do not depend on b.
If we divide both sides of this identity by b" and let b pass to + oo, then by (2.24)
and (2.25) we obtain the contradiction 0 < y < 0. Therefore, the problem (0.1),
(2.23,) has no nonzero solution. This completes the proof.

Theorems 2.2 and 2.3 imply the following statement.

Theorem 2.4. Let
(1Y~ ' p(f) > +o0 for t— +oo

e q(t)? w
J‘ IP(I)I di< 4.

Then for sufficiently large a the problem (0.2), (2.23) has the unique solution u.
This solution satisfies the conditions

+ o0
.[ tz:'lu(i)(t)lz dt < 40 (i=0,...,n)

a

and

and, consequently, the condition (2.22).

3. THE PROBLEM (0.3), (0.4,)

This section is concerned with the problem (0.3), (0.4,) in the general case as well
as in the case when the boundary conditions (0.4,) are of the form

+ oo
(3.1) u(a) =c; (i=0,..m), j 2= u®()|2 dt < +oo

(k =0,...,np)
with ¢ > 0.

Theorem 3.1. Let n = 2n, + 1 and let g, differ from zero on a subset of positive
measure of the interval [a, +oo[. Suppose that there exist nonnegative functions
heCi.'(R,) and a e L(R,) such that the inequalities

loc
n—1

(32) Y, (=1t IO (R(e) pu(1) 720 A+ (=1t T T2 2 g (1)
k=2i
(i=0,...,n)
hold in [a, + oo[. Then the problem (0.3), (0.4,) has at least one solution.

Proof. Let the operator [ and the functions h; (i = 0, ..., ny) and r, be defined
by the identities (2.6)—(2.8). Then, as we have verified above, for any b € Ja, + o[
and any solution u of the equation (0.3) the identity (2.5) and the inequalities (2.9)
and (2.10) are valid.
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According to (2.7) and (3.2),
—ht) 2 gt) for t=a (i=0,..,n).
Hence, taking into consideration the inequality (2.10), we obtain
1 . no b _ L[+
3 Lot an s 5 [o ool an < 1 @) = i ) + [ et ar
By (2.9) this implies the estimates (1.21) where
(33) m=mno+1, my=ng, L(xg,....x,) =%y (i=0,..,n),
L(xXgs o X)) =Ximyy (i=ng+1,..,n—1)

and r(t) = 2 ro(t) + [ off) dz. Similarly, we show that for any solution v of the
equation (1.20) the estimate (1.22) holds. But according to Lemma 1.6 the estimates
(1.21) and (1.22) gurantee the solvability of the problem (0.3), (0.4,). This completes
the proof.

Theorem 3.2. Let n = 2ny + 1,

n—

(4 o) =

1
(_1)no+1—k rlb'(t-e pk(t))(k) . lim tn+£ go(t) =+,
t—>+ o

=0
n—1

(35) lim sup tn—2i+e Z (_l)no—k—iFl;(t._zpk(t))(k_ﬁ) < 4+
=+ k=2i

(i=1,...n,— 1),

lim sup t p,_(t) < %

t—>+ o
and
+ o —£ 2
(3.6) J 29O 4 < 4o
go(t)

Then for sufficiently large a the problem (0.3), (3.1) has a solution u such that

(3.7) jmgo(t) u(n)|?dt < + 0.

a

Proof. Let h(t) =t7% o = n + ¢, and let the operator / and the functions h;
(i=0,...,n9) and r, be defined by the identities (2.6)—(2.8). By (3.5) there exist
constants ap > 1, yo > 1 and y > 0 such that

(3.8) (1) € 9o (i=1,...m — 1),

h,o(t) = —t“‘s(g - tp,,(t)) < —p*™7° for t = a,.
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Choose 2 > (n + o) satisfying the inequality (2.17) where the constants (4, ng)
(i =1,...,ny — 1) are defined by the identities (1.8). By (3.4) and (3.5) without loss
of generality we may assume that

no—1
(3.9) ho(t) = —go(t) < —4y0 Y, oA, no)t™° for 2 a,
i=1
and
+ w0 —& 2
(3.10) 5:j [P 4, o oo
ao gO(t)

Let ag < a < b < +00, and let u be a solution of the equation (0.3). Then the
identity (2.5) and the inequality (2.9) hold. According to (3.8) and (3.10) the identity
(2.5) yields

(3.11) %Ibgo(t) |u()|? de + y'rtzm,—a

a

u(no)(t)‘z dt <

< )@ = @) () + 0+ 70T [ )2 dr

By Lemma 1.2 and the inequalities (2.17) and (3.9) we have

no—1 b np—1

no—1 o
(312) 3o X | P 4 S (F W@ + (T OO +

+ ijago(t) |u()|? dr + %J 2707 lu(1)|? d

a

with y; = 26(2 + n%0)" y,.
According to (2.9) the inequalities (3.11) and (3.12) imply the estimates (1.21)
where '

r(t) = (4 + f) (ro() + y1 + 0), gu(t) = 27 (k= 1,...,n,)

and the constants m and m, and the functions /; (i =0,...,n — 1) are defined by
the identities (3.3). Similarly we show that for an arbitrary solution v of the equation
(1.20) the estimate (1.22) holds. Therefore, by Lemma 1.6 the problem (0.3), (3.1)
has a solution u satisfying the condition (3.7). This completes the proof.

Corollary. Let n = 2n, + 1, and let the conditions (3.5) and (3.6) hold. Suppose
that there exists a positive constant o such that

n—1
kZO(_l)no+1~k rl&(tf.spk(t))(k) ; 5tn+s—-2
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for sufficiently large t. Then the equation (0.3) has a (ny + 1)-parametric family
of solutions vanishing at infinity.

Proof. Since all the conditions of Theorem 3.2 are fulfilled, there exists a > 0
such that for any ¢;e R (i = 0, ..., ny) the problem (0.3), (3.1) has at least one solu-
tion satisfying the condition (3.7). Let u be such a solution. Then

+ +
j e 2y dt < + o0, J 27w ()| de < + o0

Thus

u(d)* = 2<fwr"“‘2|u(r)|2 dz)m (jt+m12-n—c

for t— +o0.

a

o) o

This completes the proof.

Theorem 3.3. Let n = 2n, + 1, and let the inequalities

(3.13) (=1 p(0) 2 0, [a@)]* < o) [p(2)

where . € L(R ) hold in [a, + oo[. Then the equation (0.2) has at least one solution
satisfying the boundary conditions

+ o0

(3.14) ua)=r¢; (i=0,...,n), '[ [p(1)] [u(®)]? dt < + 0.
0

Moreover, if the conditions

(3.15) lim inf |p(t)] > 0, lim sup |p(!)| < + oo
t—>+ o0 t—+ o

are fulfilled together with (3.13), then such a solution u is unique and

(3.16) limu®f) =0 (i=0,...,n—1).
t=>+ o

Proof. If ¢ differs from zero on a subset of positive measure of the interval
[a, + oo[, then by (3.13) all the conditions of Theorem 3.1 are fulfilled where h(f) = 1,
po(t) = p(1), g0(t) = |p(1)], (1) =0 (k=1,...n — 1), g(t) =0 (i = 1,..., no).
Thus the problem (0.2), (3.14) is solvable. If p() = 0, then the solvability of this
problem is obvious.

Now assume that the conditions (3.15) hold and that u is an arbitrary solution of
the problem (0.2), (3.14). Then

+ o +
j lu(r)|? dt < + o0, J [u™ () dt < + oo .

0 0

Hence, according to the Kolmogorov-Horny inequalities ([3], p. 393), u satisfies the
conditions (3.16). It remains to show that the problem (0.2), (3.14) has at most one
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solution. Let u, and u, be arbitrary solutions of the problem. Then, as we have
already proved, v = u; — u, is a solution of the equation (0.1) satisfying the con-
ditions

v (a)=0(i=0,..,n), limov®(1#)=0(k=0,....,n—1).

t>+ o

On the other hand,

8 (10 00800 + -1 0P = (o) oo g

a

When ¢t tends to + oo in this identity, we get

Jurwp(r) |o(7)|*dr = 0.

a

Thus, v(f) = 0. This completes the proof.
For the problem

(3.17) u” = p(t)u + q(t),
(3.18) ua) = ¢; (i=0,1), Lm;p(t)[ (i dt < +oo0

we get a result on uniqueness which is the best possible in a certain sense.

Theorem 3.3'. Let the inequalities

(5.19) p0)2 0, a0 < o) (o)
where a € L(R,) hold in [a, + co[. Then the condition

r+o

(3.20) | raar= e

is necessary and sufficient for the unique solvability of the problem (3.17), (3.18).
Moreover, if

(3.21) lim inf p(f) > 0,
t—>+ o0
then the solution u of this problem satisfies the conditions
(3-22) lim u(f) =0, lim sup |u'()| < +oo.
t=>+ o0 t—=+ oo

Proof. Under the conditions (3.19) the solvability of the problem (3.17), (3.18)
follows from Theorem 3.3. We show that if (3.20) is fulfilled together with (3.19),
then the solution is unique. Admit on the contrary that the problem has two distinct
solutions u; and u,. Set v(f) = uy(f) — u,(). Then
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voa) =v'(a) =0, v'(a)=5+0, v'(t)o(t) = p(t) [v@)? 20 for tza.

Thus
'v(t)‘ > Hél (t—a)* for t2a.

According to (3.20) this implies
+ o
f PO [o(0)? dt = +0

which contradicts the definition of v. Hence (3.20) is sufficient for the uniqueness of
the solution of the problem (3.17), (3.18). Now we show the necessity. Indeed, if

+ o0
f t* p(t)dt < + 0,

then according to the theorem of Sobol [10] any solution of the equation v” = p(f) v
satisfies the condition

j o) o dt < 4o

a

Therefore, in this case the problem (3.17), (3.18) has an infinite set of solutions.
Finally, consider the case when (3.21) holds. Then the solution u of the problem
(3.17), (3.18) satisfies the condition

(3.23) J' L) dt < +oo.

a

Thus (3.22) will be proved if we show that u’ is a bounded function. When u' is mono-
tone in a certain neighborhood of + oo, the boundedness immediately follows from
(3.23). Let u’ be non-monotone in any neighborhood of +oo. Then there exists
a sequence f € [a, + oo (k= 1,2,...) tending to + oo such that

u'() =0, ]u’(tk)f = max {'u’(t)l: n=t=<t) (k=12.).

Multiplying both sides of (3.17) by —2 u(t) and integrating from ¢, to f,, we obtain

Ju' (1)

where ¢, = |u/(t;)|* + [;* o(f) dt. Therefore, u’ is bounded. This completes the

2 _ fu’(tl)il — 2ftkp(r) lu(r)lz dr — 2ftkq(r) u(t)dt < ¢ (k=1,2,..)

1 ty

proof.

Theorem 3.4. Let n = 2no + 1
(=" " p(f) > +o0 for t— +o
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and
{'+oot~E q([) 2

(3.24) J (0]

Then for sufficiently large a the problem (0.2), (3.1) has one and only one solution u
and

(3.25) ‘[ )] [u() dt < +oo -

a

dt < 4+0.

Proof. For sufficiently large a the existence of a solution of the problem (0.2),
(3.1) satisfying the condition (3.25) follows from Theorem 3.2. It remains to show that
the solution is unique.

Let

n—2i

c=n+e, v,=Ti[[(e—n+j—-1) (i=0,....n).
j=i

Choose A > (n + ¢)* and a, > 0 such that

no—1

(3.26) 2 ViBid o) < Vg s

i=0

n—1

(_I)no+l " p(t) > Z ViOC,-()u, no) + 1 for ¢
i=0

v

Ao »

where ao(4, no) = 1, Po(4, ng) = 0 and the constants o2, n) and B4, n) (i =
=1,...,ny — 1) are defined by the identities (1.8).

Let a = aq, and let u; and u, be arbitrary solutions of the problem (0.2), (3.1).
Then u = u; — u, is a solution of the equation (0.1) under the boundary conditions

u™a) =0 (i =0,...,ng) J‘ 12"'_"|u(")(t)|2 dit < +o0 (k=0,..,n).

Multiplication of both sides of (0.1) by (—1)"*" "~ u(t) and integration from a to ¢
yields
no—1 t
w(t) + Y (=) ! VifTZi_"lu(i)(T)lz dt =
i=0 a

t

_ (_1).,(,“}'1"11,(1) [u(z)|? dt + v,,ofrz”"‘_"

a a

u(no)(T)lz dr

non—1-—1i
where w(t) =Y. Y ¢t u®(1) uY(1), ¢;; = const. According to Lemma 1.4
is0 j=i
lim infw(z) = 0.

t—+ o
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Therefore, the last identitity implies

(3.27)

no—1 + w0 + o0
ZO(_I)no—i—l viJ tzi—alu(i)(t)'z dt = (_1)n0+1‘[ tn—o'p(t) Iu(t)lz dt +

a

+ o0
+ v,,of 2270 [u®(1)|* dt .

a

By Lemma 1.3 and the inequalities (3.26)

np—1

2 Vi T dui(f dr = fw((*l)""“ 7o p(t) — 1) [u(®)[* dt +

a
+ 0
2no—o
+ v,,of t
a

Hence from (3.27) we obtain

u(t)|> dt .

J+w|u(t)]2 dt =0,

a

ie.u(t) = 0.Soifa = a, the problem (0.2), (3.1) is uniquely solvable. This completes
the proof.

Corollary. Let n = 2n, + 1, and let the conditions (3.24) hold. Suppose that there
exists a positive constant o such that for large t

(_ 1)n0+1 p(t) ; 5tn+2£—2 .

Then the equaiion (0.2) has a (ny + 1)-parametric family of solutions vanishing
at infinity.

4. THE PROBLEM (0.3), (0.45)

In contrast to §§ 2 and 3 throughout this section we assume that the conditions

q € Lloc(R+) s DE éloc(R+) > Po € Clac(R+) s D1 € Lloc(R+) > Dk € ’Cvllcx;:z(R+)
(k=2,...,n-1)
hold instead of (0.7).

Theorem 4.1. Let n = 2ny, = 4, and let g, differ from zero on a subset of positive
measure of the interval [a, +oo[. Suppose that there exist nonnegative functions
heCi2(Ry) and a e L(R,) such that the inequalities

loc

n—1

(+1) S (=1 TR IR pU)* 20

k=2i-1
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+ (=1 I R 2 gi(r) (= Ls e o)
(= 1) po(®) 2 0, (=17 (po(t) (1)) Z 90(1)» |(0) a(B) = aft) 9:(1)
are fulfilled on [a, +oo[. Then the problem (0.3), (0.4;) has at least one solution.

Proof. Let b € Ja, + o[, and let u be an arbitrary solution of the equation (0.3).
Due to Lemma 1.1, when multiplying both sides of (0.3) by (—1)" h(f) u'(t) and
integrating from a to b, we obtain

(52 3 [ a0 at = 10 (6) = 100 @) + (-1 "4 1) w0

where

43)

ho(t) = (_21)"0 (po(1) h(D))' s hi(1) =k="gil(— Lye= i P (R() ()T +
4 (=1 I R (=1 no) »

(4.4)

I(u) (1) = (‘21 V% polt) (o) [u()]” + ii njgi(— Lyomd [y e () uP () u(1) +

n—1 [k/2] k—i ) o )
+kZZ Y oX (= 1o I I (h() )7 u®(t) u?() -
=2 i=1 j=i

According to (4.1) and (4.3), from (4.2) and (4.4) we get

no

(4.5) Y jbg,.(z) |u(t)|? dt < 2 1(u) (b) = 21(u) (a) + 9

i=0

(4.6) —ro(t)"g:[uu)(z)["z:|u(i>(t)| <) () £ ro(t):gjum(t)[ingoo]um(z)l,

where

a

. + o0 ng n—1 o
o= [uar, v = dlnole] 1) + 3 T 0]
i=1 j=i
n—110K/2) k=i A
SN = CCRIO R
k=2 i=1 j=i '
Setting m < ny — 1, my = no,
M) = 2ro(f) + 65 L(as oo %) = %pez (= 0,00 = 2),

L(X 15 -0 Xn) = X 20 (k=ny—1,...n— 1,
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from (4.5) and (4.6) we obtain the estimates (1.21). Similarly we show that an arbitrary
solution v of the equation (1.20) satisfies the estimate (1.22). Therefore, by Lemma 1.6
the problem (0.3), (0.45) is solvable. This completes the proof.

Now consider the special case of the problem (0.3), (0.45) when the boundary
conditions (0.4;) are of the form

(4.7)
+ o0
ua)=c; (i=1,..,n0—1), f tz"lu(")(t)[2 dt <+ (k=0,...,n).

Theorem 4.2. Let n = 2n, = 4,

(=0 (@t po(1)) = +00 for t— 4+,

n—1
limsup ™20 Y (=1 O p(0)* 20 < +o0 (i=1,..., 1)
PR k=21-1

and

(4.8) jmt“]q(z)k dt < 4.

Then for sufficiently large a the problem (0.3), (4.7) has at least one solution.

We omit the proof of this theorem since it is quite similar to that of Theorem 2.2.
The only difference is that instead of (2.5)—(2.7) one has to apply the identities
(4.2)— (4.4) with h(1) = "+,

According to Lemma 1.5, Theorem 4.2 implies the following statement.

Corollary. Under the conditions of Theorem 4.2 the equation (0.3) has a (ny — 1)-
parametric family of solutions vanishing at infinity together with its derivatives
up to the order ny — 1 inclusively (to be precise, satisfying the conditions (2.22)).

Theorem 4.3. Let n = 2n, = 4,

(=1 (@t p(t)y » +o0 for t— 4+,

and let the condition (4.8) hold. Then for sufficiently large a the problem (0.2),
(4.7) has one and only one solution.

Proof. For sufficiently large a the solvability of the problem (0.2), (4.7) follows
from Theorem 4.2. It remains to show that the solution is unique, i.e. we have to
prove that if a is sufficiently large, then the differential equation (0.1) with the bound-
ary conditions

(4.9)

+ o0
uP(@) =0 (i=1,...ny—1), J' Pu®@ dt < +0 (k=0,...,n,)
has only the zero solution.
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Choose a, > 0 and A > n® such that

(4.10) (=1)°rp(t) > v, for t=a,,
no—1
(4.11) 2 viBi(A me) < 1,

i=1

no—1
(=1ye (et p(r)y > 2+ Y vad, ny) for t=aq
i=1
where
(n + 1) -
@y
and the constants (2, no) and B(2, ny) are defined by the identities (1.8).

Admit that for a certain a > a, the problem (0.1), (4.9) has a nonzero solution u.
According to Lemmas 1.1 and 1.4 and to the condition (4.10),

=2

w(t) — w(a) + Z( 1y~

A o [l o

where
no—1 n—1-—i 1
w(t) = 1) 1-j n. F, t1+l+] u(l) t u(l) t
=8 %, (I s T a0 )
and
lim inf w(r) = 0.
t=++o
Therefore
+ o
(4.12) [ " u()|>dt < +o0.

va

Due to Lemma 1.1, multiplication of both sides of (0.1) by (—1)"" 2"+ /(1)
and integration from a to ¢ yield

np n—i

(413) Y v U@ uO(t) = a"“ip(a)] [u(a)]> + a"*Hu"(a)|* —

i=1j=i

- t”“]p(t)’ ’u(t)lz + (——1)""".(1"“ p(r)) Iu(r)lz dr + V"OJ g2no

u™(7)|? dr +

ﬂ()—

t .
+ Z( l)no i iJ‘TZi]u(i)(T}yz dr
where

_ -
L= (=1)" JzL -1
VJ ( ) (l+]+l)' 1j-1

639



By Lemma 1.3 and the inequalities (4.11) there exists a, > a, such that
(4.14)

(P [ oo o9 s+ v [

u™(o)> dr > & — vyalu(a)]® +

no—1 t
+ Y v | Pu®)|*de for 12 ay
i=1
where ‘

+ 0
) =f |u(1:)|2 dt>0.

a

According to (4.10) and (4.14) the relation (4.13) implies

n—i

no i
_; 2 Vit u®(t) uP(1) 2 (tj — t"p(0)| [u(1)]* for t2a,.

j=
Due to Lemma 1.1 by integrating this inequality from a, to t we obtain
(4.15)
t no t
wi(t) = wi(a) + d1n L ——J 7|p(r)| dt — Y ciJ‘ ?u®(t)|>dr for 12 a,
a a; i=1 ais

1
where

no—1 n—1-—1i . .
()= T L eyt 00 w0
i=1 j=i
and c;; and c; are constants.

By (4.9) and (4.12) the inequality (4.15) implies

lim wy(t) = + .

t=>+ o

On the other hand, by Lemma 1.4

lim infw,(f) = 0.

t—>+ o0

This contradiction shows that for any a = a, the problem (0.1), (4.9) has only the
zero solution. This completes the proof.

5. ON SOLUTIONS OF THE EQUATION (0.1)

Let n, be an entire part of nf2. We denote by U the set of all solutions of the
equation (0.1) satisfying the condition

+ o0
j [u()|? dt < + o0
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and by V(™ the set of all solutions of the same equation satisfying the condition
+ o . .
'[ tz‘_"lu(’)(t)l2 dt< 400 (i=0,1,...,n).

It is obvious that U and V™ are linear spaces. According to Lemma 1.5 any

solution u € V™ vanishes at infinity together with its derivatives up to the order
ne — 1 inclusively and, moreover,

(5.1) lim #4172 4(f) = 0 (i = 0,...,no — 1).

t> 4+

Theorems 2.3, 2.4, 3.4 and 4.3 imply the following statements.

Theorem 5.1. If the inequality
(=1 p(1) 2 0
holds for sufficiently large t, then
(5-2) dim U = n, .

Furthermore, if

(5.3) (=10t p(f) > +o0 for t— +o0,
then we have
(54) up =ymo

together with (5.2).

Theorem 5.2. If n = 2ny + 1 and

(5-5) (=1 " p(t) > +o0 for t— +o0,
then for any ¢ > n

dim V"= n, + 1.
Furthermore, if

(5.6) lim inf (—1)°*! 27277 p(1) > 0

t—+ oo
for a certain ¢ > n, then every solution u € V,"? vanishes at infinity.
Theorem 5.3. If n = 2ny = 4, pe C,,(R,) and

(=1y°(** p(t)y > +o0 for t— +o0,
then

dim V{» = ny — 1.
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We shall separately consider the case when

(5.7) lim sup |p(f)| < + .
t—=+ o0

It turns out that, if together with (5.7) either the condition (5.3) holdsor n = 2n, + 1
and
(5.8) lim inf (—1)°*" p(t) > 0,

t=>+ow
then each solution of the equation (0.1) is either unbounded or vanishes at infinity
as well as its derivatives up to the order n inclusively.

Theorem 5.4. If the conditions (5.3) and (5.7) are fulfilled, then the set of all
bounded solutions of the equation (0.1) forms a ny-dimensional linear space which
coincides with VIS"’O). Moreover, each bounded solution of the equation (0.1) satisfies
the conditions
(5.9) lim #7172y =0 (i=0,...,n0 — 1),

i~ +oo

lim t[(n—i)(ng+l)]/(n—no+1)+1/2 u(“(t) =0 (,- = Ng, -+, n) .

Proof. According to Theorem 5.1, the conditions (5.2) and (5.4) hold. Thus any
solution u € U satisfies the conditions (5.1). So by (5.7) we have

(5.10) lim 112 u®(r) = 0.

t—>+w
However, according to the Kolmogorov-Horny inequalities ([3], p. 393), (5.1) and
(5.10) imply the conditions (5.9).
Hence it remains to show that the set of all bounded solutions of the equation (0.1)

coincides with US”. Due to Theorem 2.3, it will suffice to prove that for large a the
equation (0.1) with the boundary conditions

(511)  ua)=0 (i=0,...n0—1), sup{lu(r):teR,} <+

has only the zero solution.
Choose ay > 0 such that

(5.12) (=1t p(t)>0 for t=a,
and
(5.13) sup {|p(f)]: t = ao} < + .

Let a = a,, and let u be a solution of the problem (0.1), (5.11). Then by (5.13)
sup {[u™(t)]: t 2 ao} < +o0.

Thus according to the Kolmogorov-Horny inequalities, there exists a positive con-
stant ¢, such that
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(5.14) ,u("’(t)‘ Sc for t2a, (i=0,...,n).
If n = 2n,, then according to (5.11), (5.12) and (5.14) we have

f’umg)(f)ll dr + f!p(‘c)l lu(r)lz dt =':(;iol(— 1o~ w0 u(1) < nocl

for t

%

a.

So u is a solution of the problem (0.1), (2.23,). Therefore, according to Theorem 2.3,

u(t) = 0.
Now we show that u(7) = 0 also in the case of n = 2n, + 1. Admit on the contrary

that u(t) = 0. Then the identity

no—1

Z (_1)ng+iu(n~l*i)(t) u(”(l‘) + %u(no)(t)lz =1
i=0

u™(a)]® + ftlp(r), [u(7)|? dr

implies

(5.15) f mlp(r)] [u(z)]* dT < + o0
and B
(5.16) n;: (= 1yt u=i(r) u™(1) + %,u‘"")(t)lz =6 for t=a,

where & = 4[5 |p(7)| [u(z)]* dr > 0 and the constant a, > a is sufficiently large.

By (5.13) and (5.15)
+ oo
n? =f u""(r)‘z dr < +.

Thus, taking into consideration (5.14), from the identities

J

W™ D@ dr = Y (= 1w 0(1) u(r) — u* (a) u(a) +
i=1

+ (=1~ tu("’(r) u'(7) de

and
1 1
flu“'"’(t)]z dt = u"™(t) u™~ () — f u™* V(7)) y o= V() dr
we derive
t t 1/2 t 1/2
f’u‘""“’(r}"z dr £ nel + <J Iu("’(r)]z dr) (J |u'(7)|? dr) < (ncg + neo) 1112
for t=a
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and

; ¢ 12
(5.17)J [u(7)|]> dt < ¢f + cot'? (J |uo* D(7)|? d7:> S pet¥!* for t=a

a

where 1o = ¢g + co(neg + neco)*?.
On the other hand, by integrating the inequality (5.16) from a, to t and applying
(5.14), we obtain

t
(no + %)J [u(x)|? dr 2 8(t — 1,) — no(ng + 1)c§ for = ay,
which contradicts the inequality (5.17). This contradiction shows that u(7) = 0.
Therefore, for any a = a, the problem (0.1), (5.11) has only zero solution. This
completes the proof. .

In the case of n = 4 Theorems 5.1 and 5.4 imply Theorems 1—6 from the paper
by M. Svec [11]. To verify this fact it suffices to note that under the conditions
imposed on the function p in [11] the set S introduced there coincides with US” \ {0}.

Theorem 5.5. Let n = 2n, + 1, and let the conditions (5.7) and (5.8) hold. Then
the set of all bounded solutions of the equation (0.1) forms a (ny + 1)-dimensional
linear space which coincides with V,f""’) for any ¢ > n. Moreover, each bounded
solution of the equation (O.l) satisfies the conditions

(5.18) lim u®(f) =0 (i=0,1,....,n).

to+o
Proof. Let a > 0 be so large that
(=)' p(t)y=0 for t=a.
Consider the equation (0.1) under the boundary conditions
(5.19) uPa)=c; (i=0,...,n5), sup {Iu(t)| teER,} < +w.

According to Theorem 3.3 for any ¢;e R (i =0, ..., ny) the problem (0.1), (3.14)
has a unique solution which satisfies the conditions (5.18) and, obviously, is also
a solution of both the problems (0.1), (5.19) and (0.1), (3.1) where ¢ = ¢ — n. By
Theorem 3.4 the problem (0.1), (3.1) has a unique solution. Thus

VT = {u(*; Cos o enr o) 1 (Coo ey €pp) € R™F'}

where u(f) = u(t; co, - .-, ¢,,) is a solution of the problem (0.1), (3.14). So it remains
to show that for any ¢;€ R (i = 0, ..., n,) each solution u of the problem (0.1), (5.19)
is also a solution of the problem (0.1), (3.14), i.e. satisfies the condition (5.15).

According to the Kolmogorov-Horny inequalities, (5.16) and (5.19) imply the
boundedness of the functions u” (i = 0, ..., n — 1). Therefore, (5.15) follows from
the identity
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f'lp(r)l lu(e)? de =ni(§01(_1)no+l—i U= 1) (1) — Hu () + 1u(a))? .

This completes the proof.
Let Z\" be the set of all solutions of the equation (0.1) satisfying the condition
lim u(t) = 0.
t—+ o0

Theorems 5.1—5.5 imply the following statements.

If the condition (5.3) holds, then dim Z$” = n,, and if the condition (5.7) is fulfilled
together with (5.3), then dim Z{” = n,.

If n = 2n, + 1 and the condition (5.6) holds, then dim Z{” > n, + 1, and if the
conditions (5.7) and (5.8) are fulfilled instead of (5.6), then dim Z{” = n, + 1.

Under the conditions of Theorem 5.3 dim Z;,") = ng — 1.

These statements together with the theorems of M. Matell on asymptotic repre-
sentation of solutions of high order linear differential equations [7] (see also [4])
and with the theorems of H. Milloux [8], Armellini-Tonelli-Sansone ([9], p. 56— 63)
and J. Kurzweil [5] give ground to formulate the following conjectures.

1. If the condition (5.3) holds, then dim Z{” = n,.

2. If n = 2n, + 1 and the condition (5.5) holds, then dim Z{” = n, + 1.

3.0f n=2n, peCRy), (=1)°p() =0, (—1)°p(t) > +o0 for t > + 0
then dim Z$” = n,.

4. Let n = 2ny, pe C\o(R,), (=1)°p'(t) = 0, (—1)" p(t) > + 0 for t > + 0
and

LdM(z): +oo

for any open set I < R, satisfying the condition mes(I n]t, ¢t + 1[) > 1 for
t - 4. Then dim Z{" = n, + 1.

Note that in the case of n = 2 the statements 3 and 4 are not mere conjectures.
They have been proved by H. Milloux [8] and J. Kurzweil [5] respectively.
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