Czechoslovak Mathematical Journal

Jaroslav Jezek; Tomas Kepka
Torsion groupoids
Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 1, 7-26

Persistent URL: http://dml.cz/dmlcz/101850

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101850
http://dml.cz

Czechoslovak Mathematical Journal, 33 (108) 1983, Praha

TORSION GROUPOIDS

JarosLAV JEZEK and TOMAS KEPKA, Praha

(Received February 13, 1980)

1. PRELIMINARIES

For every groupoid G we define a binary relation t; on G as follows: (x, y) € tg
iff ax = ay and xa = ya for all a € G. It is evident that t; is a congruence of G;
moreover, every equivalence which is contained in t; is a congruence of G.

Let G be a gioupoid. For every ordinal number i we define a binary relation ¢ ;
on G as follows:

(1) 15,0 = idg;

(2) (x,y) €t iff (ax, ay) € tg,; and (xa, ya) € t; ; for all a € G;

(3) if i is a limit ordinal then (x, y) € t ; iff (x, y) € t¢,; for some ordinal j < i.

It is easy to see that t; ; is a congruence of G for any i and if i < j then t5; S t¢ ;.
Evidently, t; =t ¢; for any i, t ;. is the only congruence of G with t5 ;. 2 t5;
and fg4q/te: = IGpte..» We could define the congruences t;; equivalently as
follows: 16 o = idg; if i # 0 then (x, y) € t¢ ; iff there exists an ordinal j < i such that
(ax, ay) e tg,, and (xa, ya) e 15 ; for all a € G.

For every groupoid G we denote by 7; the union of the chain formed by the con-
gruences f ; (where i runs over all ordinals). Thus 7 is a congruence of G.

G is said to be a torsion groupoid if i; = G x G.

For every groupoid G, the least ordinal i such that t; ; = ¢, is called the length
of G; it is just the least ordinal such that t; ; = 7;. The length of G will be denoted
by I(G).

A groupoid G is said to be semifaithful if ¢; = idg; evidently, G is semifaithful
iff i; = idg; also, G is semifaithful iff [(G) = 0.

For every groupoid G, the groupoid G/i; is semifaithful.

For every ordinal number i we denote by J; the class of torsion groupoids of length
at most i. Further, let ~ denote the class of all torsion groupoids.

1.1. Lemma. The following assertions are true:
(1) If H is a subgroupoid of G then tG.i l H < ty ; for any ordinal i.
(2) If G,H are groupoids and f:G — H is a surjective homomorphism then
S(t6,)) S tu,; for any ordinal i.



(3) Let G, (peP) be a family of groupoids and G be its cartesian product; let
a,be G and let i be an ordinal. Let either P or i be finite. Then (a, b)e ¢ ;

iff (a(p), b(p)) € t6,,: for all pe P.

Proof is easy.
1.2. ‘Proposition. The classes 7 ; (for any ordinal number i) and 7 are closed
under subgroupoids, homomorphic images and finite cartesian products.

Proof follows from 1.1.

A groupoid G is said to be

— trivial if it contains only one element,
— a semigroup with zero multiplication if it satisfies the identity xy = uv,

— medial if it satisfies the identity xy . uv = xu . yv,
a left unar if it satisfies the identity xy = xz,

— a right unar if it satisfies the identity yx = zx,
— regular if the following is true for all a, b, c € G: if ca = ¢b then xa = xb for ail

x € G; if ac = be then ax = bx for all x € G.
For every groupoid G we define two equivalences p; and g; on G as follows:
(. y) € pg iff xa = ya for all ae G; (x, y) € q¢ iff ax = ay for all a e G. We have

Ig = P N 4g-
1.3. Lemma. Let G be a regular groupoid such that Card (GG) = n for some
finite ordinal n. Then Card (G/pg) < n, Card (G/q¢) £ n and Card (G[t,) < n?.

Proof is easy.

2. THE VARIETIES 7,

Let G be a groupoid, ay, ..., a; (where k=0is an integer) elements of G and
ey, -.-» ¢ elements of {1,2}. Then we define an element [ao, ey, ay, ..., €, a;] of

G as follows:
if k=0 then [ao, e, ay, .., &, a] = ao;
if k + 0 and ¢, = 1 then [aq, ey, ay, ..., &, a;] = [ao, €1, ay,

e @ gy Ag—1] - A
if k + 0 and ¢, = 2 then [aq, €, ay, ..., e, @] = a, . [ao, ey, ay, ..oy v, a—y]-

2.1. Proposition. Let n be a non-negative integer. Then 7, is a variety; it is de-
termined by the identities
[x, €1, X1, s €0 X, ] = [y €15 X155 €0 X,

where ey, ..., e, is an arbitrary n-termed sequence whose all members belong

1o {1,2}.

Proof is easy.



If Wis an absolutely free groupoid over a set X, then for every a € W we define
the length A(a) of a in this way: A(x) = 1 for all x € X; if ¢ = bc then A(a) = A(b) +
+ Ac).

2.2. Lemma. Let Wbe an absolutely free groupoid over a set X and let n be a finite
ordinal. Then for every a € W there exists an element b € W such that the identity
a = b is satisfied in 7, and A(b) < 2".

Proof. Let ae W and let b € W be an element of minimal length such that the
identity a = b is satisfied in J,. Suppose )(b) > 2" Define elements by, ..., b, e W
such that A(b;) > 2""" as fo]lows. by =b; if 0 =i < n and b; is already defined,
then b, ¢X, b; = ¢;d; for some ¢;, d;e W and either A(c;) > 2"~ or A(d;) >
> 2" put by = ¢; if Ae;) >2""""1 and by, = d, otherwise. We have
b = [b,. ey, b,_q,.... e, by] for some ey,....e,e{1,2} and i(b,) >2° = 1. If x
is an arbitrary element of X and ¢ = [x, e;, b,—q, .., e,, by, then A(c) < A(b) and
the identity b = c¢ is satisfied in 7, by 2.1, a contradiction with the minimality
of A(b).

2.3. Propostion. Let n be a finite ordinal. Then the variety I, is locally finite

(1 e. every finitely generated groupoid from 7, is finite).

Proof. It follows from 2.2 that for any finite set X the free groupoid in 7, over X
is finite. Consequently, 7, is locally finite.

2.4. Proposition. Let n be a finite ordinal. Then 7, has only a finite number sub-
varieties.

Proof. It follows from 2.2 that there exists a finite set I of identites such that any
identity is equivalent in 7, to some identity from I.

2.5. Example. 7, is the trivial variety.
2.6. Example. 7, is the variety of semigroups with zero multiplication.
2.7. Example. J , is the variety determined by the identities
Xy.Z=UV.Z, Z.Xy=2Z.Ul.
Especially, every groupoid from Z, is medial.

2.8. Example. It is easy to describe the lattice of subvarieties of 7 ,. The lattice
has exactly 24 elements and its picture is given in Fig. 1. The subvarieties V7, ..., V,4
of 7, are determined by the identities of 7, together with the following identities
(where 0 stands for xx.xx):

Vii x=x
Vor x0 = 0x
Vi: xx =0
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: x0=0

: 0x=0

: x0 = xx

: Ox = xx
DXy = yx

: xx =0, x0 = 0Ox
:x0=0x=0

txx=x0=0
txx=0x=0

: x0 = 0x = xx
:x0 =0, Ox = xx
:0x =0, x0 = xx
rxx =0, xy = yx
:x0=0, xy = yx
:x0 = xx, xy = yx
tx0=0x=xx=0
:yx = 0x
:xy = x0



Vot xx = x0 =0, Xy = yx
Vas: xy =0
Vag: x =y

3. BASIC PROPERTIES OF TORSION GROUPOIDS

3.1. Lemma. Let G be a finitely generated groupoid and R a congruence of G
such that G/R is finite. Then R is a finitely generated congruence of G.

Proof. There exist a finite subset M of G generating G and a finite subset N of G
such that for every a € G there exists a b € N with (a, b) € R. Denote by K the set of
all elements of G that either belong to M U N or can be expressed as ab for some
elements a, be M U N. Evidently, K is a finite subset of G. Denote by S the congruen-
ce of G generated by the pairs (a, b) such that a, be K and (a, b) € R. Hence S is
a finitely generated congruence and S < R. It is enough to prove R < S. Denote
by H the set of all elements a € G such that whenever be N and (a, b) € R then
(a,b)eSs.

Let us prove that H is a subgroupoid of G. Let a,, a, € H; let be N and (a,a,, b) €
€ R. There exist elements by, b, € N with (a,, b,) € R and (a,, b,) € R. Since a,, a, €
€ H, we have (a;, b;)eS and (a,, b,)e S. Hence (aya,, b;b,)eS = R and so
(byby, b) € R; since b;b, and b belong to K, we have (b,b,, b) € S by the definition
of 5. We get (a,a,, b)e S and so a,a, € H.

Let us prove M < H. Let ae M; let be N and (a, b) € R. Since a, b belong both
to K, we have (a, b) € S by the definition of S. Hence a € H.

We have proved that H is a subgroupoid of G containing the generating subset M.
Consequently, H = G.

Let (a, b) € R. There is an element c € N with (a, c)e R. Since ae H and be H,
we have (a, ¢)e S and (b, ¢) € S by the definition of H. Hence (a, b) € S. This proves
Rc S

3.2. Lemma. Let i,j be two ordinal numbers and let G be a torsion groupoid
of length i + j. Then G/tG,,- is a torsion groupoid of length j.

Proof is easy.

3.3. Proposition. Every finitely generated torsion groupoid is finite.

Proof. Suppose that there exists an infinite finitely generated torsion groupoid G.
By 2.3, I(G) is an infinite ordinal and so /(G) = i + n for some limit ordinal i % 0
and some finite ordinal n. By 3.2, G[t; ; is a torsion groupoid of length n; moreover,
it is finitely generated and so it is finite by 2.3. By 3.1, the congruence f; ; is finitely
generated. Howevet, £ ; is the union of the chain formed by the paiiwise different
congruences #g,, (< i); we get a contradiction.
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3.4. Lemma. Let G be a groupoid with zero 0; let H be a subgroupoid of G such
thatxy = yx = Oforallxe Hand y e GNH. Then t; ; I H =ty ;forany ordinal i.

Proof. It is easy.

3.5. Proposition. For every ordinal number i there exists a commutative torsion
groupoid G with zero such that I(G) =

Proof. We shall proceed by induction on i. For i = 0, every trivial groupoid has
the desired properties. Let i = j + 1 for some ordinal j and let H be a commutative
torsion groupoid with zero 0 such that I(H) = j. For each ordinal k < j there are
elements a,, bye H such that (a, by) ¢y, Put G=Hu{a b} u{c; k<j}
wheie a, b, ¢, are pairwise different elements not belonging to H, and define a multi-
plication on G as follows: H is a subgroupoid of G; ac, = ¢,a = a, and be, = ¢,b =
= b, for all k < j; xy = 0 in the remaining cases. Evidently, G is a commutative
groupoid and 0 is the zero of G. Moreover, GG = H and thus (xz, yz) and (zx, zy)
belong to ty  for all x, y, z € G. It follows from 3.4 that (xz, yz) and (zx, zy) belong
to t; , for all x, y, z € G. Consequently, (x, y) €t forall x, ye G and G is a torsion
groupoid of length <i. Now it suffices to show that (a, b) ¢ 1 ;. Suppose (a, b) € 15 .
Then j = 0, since a #+ b; there exists a k < j such that (ax, bx) € tg, for all xe G;
for x = ¢, we get (@, by) € tg 4 s0 that (ay, b,) € 1y ;. a contradiction.

Now let i # 0 be a limit ordinal; for every ordinal k < ilet G, be a commutative
torsion groupoid with zero 0 such that [(G,) = k. We can assume that G,, N G, =
= {0} tor all ky, k, < i such that k; = k,. Denote by G the union of the sets G,
(k < i) and define a multiplication on G so that G, be subgroupoids of G for all k < i
and xy = 0 in the remaining cases. Evidently, G is a commutative groupoid with
zero 0. Let a, b e G; we shall show that (a, b)e t; ;- If a, be G, for some k < i
then (a, b) € 16, and so (a,b) €t S tg; by 3.4. Let ae G, and b e G; where
k,j < iand k # j. If c € G, then ac € G,, bc = 0 e G, and so (ac, bc) € tg, 1 S tg e
If c € G, then (ac, bc) € tg ; similarly. If c e G\ (G, L G;) then ac = be = 0. Thus
(ac, be) € tg max,y for all ¢ € G; hence (a, b) € tG maxk, jy+1 S tg,i- We have proved
t;= G x G and so G is a torsion groupoid of length <i. If k < i, then there
are elements a, b€ Gy, such that (a, b)éts, , .5 we have (a,b)¢ 1, and so
I(G) > k.

3.6. ‘Lemma. Let G be a groupoid and i an ordinal number. Suppose that
a block H of t,; is a subgroupoid of G. Then H is a torsion groupoid and I(H) < i.

Proof follows from 1.1(1).
3.7. Lemma. Let G be a torsion groupoid and I(G) = i + 1 for some ordinal i.
Then Glts ; is a non-trivial semigroup with zero multiplication. There exists exactly

one block H of t ; such that H is a subgroupoid of G; H is a torsion groupoid of
length <i and we have GG < H.

12



Proofis easy.

3.8. Proposition. Every torsion groupoid contains exactly one idempotent.

Proof. Let G be a torsion groupoid. First we shall show that G contains at least
one idempotent. Denote by i the least ordinal such that (a, aa) € t; ; for some a € G.
Clearly, i < I(G). Suppose i =+ 0. Then i is not a limit ordinal, i = j + 1 for some j,
(a,aa)ets;, (aa,a.aa)etg ,, (a.aa,aa.aa)et; j, (aa, aa . aa)€ tg ;, a contra-
diction with the minimality of i. Hence i = 0 and a = aa for some a € G. Now we
are going to prove that G contains at most one idempotent. We shall proceed by
induction on /(G). If /(G) = 0, there is nothing to prove. Let I(G) = 1 and let a, b
be two idempotents of G. Denote by i the least ordinal with (a, b) € 1 ;. Obviously,
i £ I(G). If i = I(G) then i is not a limit ordinal, (a, b) ¢ t; ;—; and two different
blocks of 1 ;_, are subgroupoids of G, a contradiction with 3.7. Thus i < I(G).
Let H be the block of #; ; containing a. Then H is a subgroupoid of G; by 3.6, H is
a torsion groupoid of length <i < I(G); since a, b € H, we get a = b by the induction
assumption.

3.9. Proposition. Let G be a torsion groupoid such that GG = G. Then l(G) is
a limit ordinal.

Proof follows from 3.7.

3.10. Example. Let G(+) = C(2”) be the quasicyclic Priiffer 2-group. Define
a multiplication on G by xy = 2x + 2y for all x, y € G. It is easy to verify that G
is a commutative torsion division groupoid and I(G) = w,.

3.11. Lemma. Let G be a groupoid; let A, (x € G) be pairwise disjoint non-empty
sets; let f be a mapping of G x G into the set H = (J{A; x € G} such that f(x, y) €
€ Ay, for all x, y € G. Define a multiplication on H as follows: if x,ye G, a e A,
and b e A, then ab = f(x, y). Hence H is a groupoid. The following assertions are
true:

(1) There is a congruence r of H such that r < ty and G is isomorphic to H/r.
(2) If G is a torsion groupoid then H is a torsion groupoid, too.
(3) Suppose that x = y whenever x,ye G are such that f(x,z) = f(y,z) and
f(z,x) = f(z, y) for all ze G. Then G is isomorphic to H|ty.
(4) The groupoid H is regular iff the following two conditions are satisfied:
(i) if x, y, z€ G are such that f(x. z) = f(y, z) then f(x, u) = f(y, u) for every
ueG; '
(i) if x, y, z € G are such that f(z, x) = f(z, y) then f(u, x) = f(u, y) for every
ueG.
(5) 1f f is injective then H is regular and G is isomorphic to H|ty.

Proof is evident.
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3.12. Proposition. For every torsion groupoid G there exists a regular torsion
groupoid H such that G ~ H/t,, and H is finite if G is finite. Moreover, for every
non-trivial torsion groupoid G there exists a non-regular torsion groupoid K such
that G ~ K|ty and K is finite if G is finite.

Proof follows from 3.11.

3.13. Corollary. Let n be a positive integer and let f be a mapping of {0, ..., n}
into {0, 1} such that f(n — 1) = f(n) = 1. Then there exists a finite torsion groupoid
G of length n such that for every i€ {0, ..., n}, the groupoid Gt ; is reqular iff
/i) =1

A groupoid G is said to be strongly regular if G/tG,,, is regular for any finite or-
dinal n. Evidently, every strongly regular groupoid is regular.

3.14. Proposition. Let G be a strongly regular torsion groupoid. Then I(G) £ w,.

Proof. Let (a, b) € tG 4, +1; it is enough to prove (a, b) € 15 ,,,. Take an arbitrary
element ¢ € G. We have (ca, cb) € 15, and (ac, bc) € 16, and so (ca, cb) € 15, and
(ac, be) e tg, for some finite n. Since G/t , is regular, (xa, xb) € 1, and (ax, bx) €
€ tg,, for all x € G. Hence (a, b) € tg 11 S 16,00

3.15. Lemma. Let H be a subgroupoid of a strongly regular torsion groupoid G.
Then ty, = tg, | H for every finite n. Consequently, every subgroupoid of a strongly
regular torsion groupoid is strongly regular.

Proof is easy.

3.16. Lemma. Let G be a non-trivial strongly regular torsion groupoid such that
I(GG) = n is finite. Then I(G) = n + 1.

Proof. Proceeding by induction on n, we shall show that I(G) = n + 1.1f n = 0
then GG is trivial, G is a non-trivial semigroup with zero multiplication and I(G) = 1.
Let n = 1. Denote by f the natural homomorphism of G onto the non-trivial strongly
regular torsion groupoid H = G/ts. Then f(GG) = HH. By 3.15, tg = tg l GG and
so HH is isomorphic to GG[tge. We get I(HH) = I(GG/tss) = n — 1. By the induc-
tion hypothesis, I(H) = n and so I(G) = n + 1.

3.17. Proposition. Let G be a strongly regular torsion groupoid. Denote by 0 the
only idempotent of G; for every ordinal i < I(G) denote by A; the block of t; ;
containing 0. Then {0} = Ay < A; c A, = ... < Ayg = G are subgroupoids
of G; for every i < I(G) we have I(A;) = i; for every i < I(G) we have A, A;,, <
< A; if (G) = wy then G = ) A;.

i=0

Proof. By 3.14, we have I(G) < w,. Conside1 first the case [(G) = n < w,. It is

clear that {0} = A4y S 4, S 4, <..< A,=G are subgroupoids of G and
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A;1Ais, S A; for all i < n; it remains to prove I(4;) = i for all i £ n. Suppose
I(A4;) # i for some i, so that I(4;) < i and i < n. By 3.16 we have I(4,,,) < i + 1,
I(Ais2) < i+ 2,...,1(4,) < n, a contradiction. In the case /(G) = w, the assertion
is an easy consequence of 3.15 and the case already proved.

4. BASIC PROPERTIES OF SUBDIRECTLY IRREDUCIBLE
TORSION GROUPOIDS

4.1. Lemma. Let G be a groupoid and r a congruence of G such that r 0 t; =
= idg. Then r N i; = idg.

Proof. It is easy to show by induction on i that r n 14 ; = idg for any ordinal i.

4.2. Proposition. Let G be a non-trivial torsion groupoid. Then G is subdirectly ir-
reducible iff there exist elements a, b € G such that a b and t; = {(a, b), (b, a)} L
v idg.

Proof. Since G is a torsion groupoid, t; =+ idg. Since every equivalence contained
in tg is a congruence, if G is subdirectly irreducible then #; has only one block of
cardinality =2 and this block contains exactly two elements. On the other hand, if
t¢ = {(a, b), (b, a)} U id; where a =+ b, then for any congruence r such that r $ 15
we have r N t; = idg and so r = idg by 4.1; consequently, G is subdirectly irreducible.

4.3. Proposition. Let G be a subdirectly irreducible torsion groupoid and a, b
the elements such that a b and tg = {(a, b), (b,a)} Uidg. Then either G is
the two-element semigroup with zero multiplication or a, b € GG.

Proof. Suppose a ¢ G. Then the congruence r = (GG x GG) v idg of G has the
property r N t; = idg. Hence r = idg and Card (GG) = 1. We see that G is a semi-
group with zero multiplication and the rest is clear.

4.4. Proposition. Let G be a regular subdirectly irreducible torsion groupoid;
let a, b be the elements such that a % b and t; = {(a, b), (b, a)} U idg. Then:

(1) Every subgroupoid of G containing a, b is subdirectly irreducible.
(2) Either a or b is the idempotent of G.

Proof. (1) is clear. Let us prove (2). By 3.8, G contains exactly one idempotent e.
We shall proceed by induction on I(G). The statement is clear for [(G) < 1. Let
i = I(G) = 2 and assume first that i is not a limit ordinal. Then GG < H for a block H
of tg ;—;. By 4.3, a, be H. On the other hand, ee H and H is a regular subdirectly
irreducible torsion groupoid and I(H) < i — 1. We get either a = e or b = e by
the induction assumption. Now, let i be a limit ordinal. There is an ordinal j < i
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with (a, e)etG’j; we have a, b, ee K where K is the block of t; ; containing e.
Evidently, K is a regular subdirectly irreducible torsion groupoid of length <Xj;
by the induction assumption we get either a = eor b = e.

5. REGULAR SUBDIRECTLY IRREDUCIBLE GROUPOIDS
OF LENGTH AT MOST TWO

Consider the groupoids A(0), A(1), ..., A(7) defined by the following multiplication
tables:

AO)|ab A(t) abc AQ2)|abc  A(3)|

abec
alaa alaakb alaaa alaab
b|aua b!aab b|aaa blaab
c|bba c;bbb claab
A4) | abcd ABS) [abec d A6) | a b cd
alaaab alaabhb alaaab
blaaab blaabb blaaakb
cl! bbba claabhb ¢c | bbba
d|  bbba dl‘bbaa dl aaab

A7) |abecde

alaaabb

blaaabhbd

c|bbbaa

d‘aaabb

ejbbbaa

5.1. Proposition. The groupoids A(0), A(1), A(2), A(3), A(4), A(5), A(6), A(7) are
pairwise non-isomorphic regular subdirectly irreducible torsion groupoids of
length <2. Moreover, every regular subdirectly irreducible torsion groupoid of
length <2 is isomorphic to one of these eight groupoids.

Proof. The proof of the first assertion is an easy routine verification. Let G
be a regular subdirectly irreducible torsion groupoid of length <2. Let a, b be the
elements such that 75 = {(a, b), (b, a)} U id¢. By 4.4, we can assume that a is the
only idempotent of G. Let G be not isomorphic to A(0). Then it follows from 4.3
that GG = {a, b}. By 1.3, Card (G/t) < 4 and so Card (G) < 5. We shall consider
only the case Card (G) = 5 (the other cases are similar). Let G = {a, b, ¢, d, e}.
If pg < g then p; = t; and p; has four blocks, a contradiction with 1.3. Thus
Pe € q¢; similarly g¢ & p; and consequently both p; and g have exactly two
blocks. We have {a, b} = A n C for a block A4 of pg and a block C of ¢g; put B =
= G\A and D = G\C. Each of the sets 4 n D, Bn C, Bn D contains at
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most one element. From this we get Card (4) = Card (C) = 3. We can assume
without loss of generality that A = {a, b, d} and C = {a, b, c}. Now it is clear that G
has the same multiplication table as A(7).

5.2. Example. There exists a proper class of non-isomorphic subdirectly irreducible
torsion groupoids of length 2. This follows from the fact that for every semigroup H
with zero multiplication there exists a subdirectly irreducible torsion groupoid G
with G/t ~ H. Indeed, the groupoid G can be constructed in the following way.
Denote by 0 the only idempotent of H and let a be an element not belonging to H.
PutG=Hu{a};putxox =aforallxeGandO0ca =a.0=a;putxoy =0
for all the remaining pairs x, y. Evidently, the groupoid G(o) has the desired properties.

6. SUBDIRECTLY IRREDUCIBLE TORSION UNARS

6.1. Proposition. Let G be either a left or a right unar. Put f(x) = xx for all
x € G. Then G is a torsion groupoid iff G contains an idempotent 0 and for every
x € G there exists a positive integer n such that f"(x) = 0.

Proof is easy.

6.2. Corollary. Let G be a torsion groupoid which is either a left or a right unar.
Then I(G) < w,.

Define two infinite countable groupoids B(c0) and C(o0) as follows:
B(w) = {ay,a,,...} ; aa,=a;_; foralli,jsuchthat i=+1;
aja; = a; forallj.
C(w) = {ay, a;5,...}; aa, =a;_, foralli,jsuchthat j# 1;
aa, = a; foralli.
Moreover, for every integer n = 2 denote by B(n) the subgroupoid of B(oo) formed

by the elements ay, ..., a, and denote by C(n) the subgroupoid of C(co) formed by the
elements a, ..., a,.

6.3. Proposition. The groupoids B(o) and B(n) (where n = 2 is an integer) are
subdirectly irreducible torsion left unars; every subdirectly irreducible torsion left
unar is isomorphic either to B(oo) or to B(n)for some integer n = 2. The groupoids
C() and C(n) (where n = 2 is an integer) are subdirectly irreducible torsion
right unars; every subdirectly irreducible torsion right unar is isomophic either
to C(0) or to C(n) for some n = 2. We have B(2) ~ C(2) ~ A(0), B(3) ~ A(2) and
C(3) ~ A(3).

Proof is easy.
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7. THE FIRST AUXILIARY RESULT

The aim of this section is to prove the following lemma.

7.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid,letn =2
be an integer and H a subgroupoid of G such that GG = H and H =~ B(n).
Further, assume that Card (G/qg) = 2. Then Gt is a semigroup with zero multi-
plication.

In order to prove this lemma, it is enough to assume that H = B(n). Since G is
regular and H is a left unar, H is contained in a block A4 of g;. Taking into account
that G is tegular and subdirectly irreducible, we see that t; = {(a;, a,), (a,, a,)} L
vidg and ty = {(a;, a,), (a2, a;)} U idy.

7.2. Lemma. Let x € AN H. Then xa = a, for every a € A.

Proof. We have xa, = xa for every a € A. Suppose xa, = a; for some i < n.
Then xa, = a; = a;;,a;, (%, a;41)€pg (X, a;41) €t x€H, a contradiction.
Hence xa, ¢ {ay, ..., a,—,} and so xa; = a,.

7.3. Lemma. Either A = H or Card (ANH) = 1.

Proof. Let x, ye ANH. By 7.2, (x, y) € tg. Hence x = y.

According to 7.2 and 7.3, the subgroupoid 4 of G is a left unar and A is isomorphic
either to B(n) or to B(n + 1). Hence there is no loss of generality in assuming 4 = H.
In the following, g, has exactly two blocks, namely H and G\ H. For every b e
e GNH put K, = {b} U H. Evidently, K, is a subgroupoid of G. Evidently, it is
enough to prove that for any b € G\ H, the groupoid K, [, is a semigroup with zero
multiplication. On the other hand, K, is a regular subdirectly irreducible torsion
groupoid and Card (K,/qx,) = 2. Hence it is enough to continue in the proof under
the assumption Card (G\ H) = 1. Denote by b the only element of G\ H. Define
a transformation f of {1,...,n} by a;b = as forallie {1,..., n}.

7.4. Lemma. The following assertions are true:
(1) f(l) =f(2) * 1.
(2) 17 f(i) = f(j) then either i = j or {i,j} = {1,2}.
(3) f(i) %= 1 for all i.
Proof. It follows from t; = {(ay, a3), (ay, a;)} vidg and qg = (H x H) U
O {(6.b)}-
7.5. Lemma. We have f(1) = f(2) = 2. Moreover, if n 2 3 then f(3) = 1.
Proof. Since Card (G/qG) = 2, G is not a semigroup with zero multiplication,

I(G) = 2 and there exists a pair (c, d) € t¢ , \ tg. Hence (c, d) ¢ 1 and (ce, de) € tg
and (ec, ed) € t; for all e € G. We shall distinguish the following two cases.
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Case 1: (¢, d) ¢ q¢. Then either ¢ = b or d = b. It is enough to assume that d = b;
then ¢ € H. We have ec =+ eb for every e € G, since (¢, b) ¢ . But (ec, eb) € 1; and
s0 eb € {ay, a,}. This implies Im(f) < {1, 2} and the assertion follows from 7.4.

Case 2: (¢, d) € . Then (c, d)¢pG. We have ¢, d e H; for every ee G, ce % de
and so ce, de € {a;, a,}. From this it follows that ¢, d € {ay, a,, a3}. Since (¢, d) ¢ pg,
we can assume that d = a;. Then ce {ay, a,}, apq, = cbe{a,.a,} and a ;) =
= db e {a,, a,}. According to 7.4, f(1) = 2 and /(3) = 1.

7.6. Lemma. n < 3.

Proof. Suppose n = 4. Using 7.5, it is easy to see that the equivalence r =
= ({ay, az, a3} x {ay, as, a3}) U id; is a congruence of G. The factor G/r is a non-
trivial torsion groupoid and hence there are elements ¢, d € G with (c, d) ¢ r and
(ce, de) e r and (ec, ed) e r for all ee G. We shall distinguish the following cases:

Case 1: ce H and d = b. Then ec # eb and ec, eb € {ay, a,, a;} for all eeG.
In particular, a b € {a, a,, as}, f(4) € {1, 2, 3}, a contradiction with 7.4 and 7.5.

Case 2: ce H, d = a;, i 2 5. Then (cay, a,a\)er, (cay,a;_y)er, ca; = a;_; =
= a;ay, (¢, a;) € pg, ¢ = a; = d, a contradiction.

Case 3: ce{ay, a,, a3}, d = a,. We have (cb, azb)er, (cb, ayu)er. But chbe
€ {ay, a,}; hence f(4) € {1, 2, 3}, a contradiction with 7.4 and 7.5.

It is evident that at least one of these three or the three symmetric cases must take
place. However, we got a contradiction in every one of these cases.

Denote by k, I the elements of {1, 2, 3} such that ba = a, for every a € H and
bb = a,.

7.7. Lemma. We have k, 1 € {1, 2}.

Proof. We can assume that n = 3. Since G is regular and (a, b) ¢ g for each
a€H, k + | and we have either k € {1, 2} or € {1, 2}. First, let k = 1. Then ba, =
= a; = ajay, (b, a,) € pg, bb = a;b = a,, | = 2. Similarly, if k = 2, then ba; =
= a, = aas, (b, as) e pg, bb = azb = a;, | = 1. Now, let | = 1. Then bb = a, =
= asb, (b, as) € pg, ba = aza = a, for all ae H and k = 2. Similarly, if [ = 2,
then bb = a, = a;b, (b, a;) € pg, ba = aja = ay, k = 1.

This completes the proof of 7.1.

8. THE SECOND AUXILIARY RESULT

The aim of this section is to prove the following lemma.

8.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid,letn = 2
be an integer and H a subgroupoid of G such that GG < H and H ~ B(n)
Further, assume that Card (G|pg) = 2. Then Gt is a semigroup with zero multi-
plication.
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In order to prove this lemma, it is enough to assume H = B(n). Since Card (G/p;) =
= 2 and G is regular, py = pg l H, Card (H/pH) < 2 and n £ 3. On the other hand,
if n £ 2, then G/tG is obviously a semigroup with zero multiplication. Let n = 3.
Denote by A the block of p with ay, a, € 4; let B be the remaining block of pg.

8.2. Lemma. Let a € A. Then Ga < {a,, a,}.

Proof. We have Aa = {a,a} and Ba = {aja}. Hence it suffices to show that
aja € {ay, a,} and aza € {a;, a,}. Put K = H U {a}. Then K is a subgroupoid of G.
It 1s enough to consider the case a ¢ H. First, let a;a = a,. If aya = a, then asa =
= asay, (a,a,) €4qq, (a,a;)€tg, ae H, a contradiction. If asa = a, then asa =
= a,a, (as, a,) € pg, a contradiction. Thus a;a = a; and K has the following
multiplication table:

|a1a2a3a

a; | a; a; a; as
a, | a, a; a; az
as | a, a, a, a,
a | a; a; a; as

However, this groupoid is not torsion, a contradiction. We have proved that a,a €
€{ay, ay}. If aja = a, then a,a = ajay, (a, a,) € tg, a € H, a contradiction. There-
fore a,a = a,. If aza = a5 then K has the following multiplication table:
| a, a, az a

a; | ay a; a; a,

az | ay ay a; a

as | a, a, a, a;

a |aya; a; a,
Again, this groupoid is not torsion, a contradiction. Thus aza € {ay, a,}. (In fact,
we have aza = a,.)

8.3. Lemma. Let b € B. Then Gb < {ay, a,}.

Proof is similar to that of 8.2.
It follows from 8.2 and 8.3 that GG < {ay, a,}. This completes the proof of 8.1.

9. THE THIRD AUXILIARY RESULT

The aim of this section is to prove the following lemma.

9.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid such that
I(G) < 3; let H be a subgroupoid of G such that GG = H and H ~ A(4). Further,
assume that Card (G/pg) = 2. Then G|t is a semigroup with zero multiplication.
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The proof of this lemma will be divided into the following four lemmas. Let
H = A(4) = {a, b, ¢, d}.

9.2. Lemma. Let e € G. Then either (a, e) € p; or (¢, ) € p.
Proof. It follows from (a, ¢) ¢ ps and Card (G/pg) = 2.
9.3. Lemma. Let ec G\ H. Then eec {a, b}.

Proof. Suppose, on the contrary, that either ee = c or ee = d. Put K = H U {e},
so that K is a regular subdirectly irreducible torsion groupoid of length <3. Let us
distinguish the following four cases.

Case 1: (a, €) € pg and ee = c. Taking into account the regularity of K, we see
that K has the following multiplication table:

iabc

d e
alaaabc
blaaabc
clbbbad
d’bbbaa’
elaaabc

However, the length of this groupoid is equal to 4, a contradiction.
Case 2: (a, e) € pg and ee = d. Then we can derive a contradiction similarly.

Case 3: (c,e)e p; and ee = c¢. Then K has the following multiplication table:

'abcde
alaaabd
blaaabd
cibbbac
d|bbbac
e|bbbac

Again, I(K) = 4, a contradiction.
Case 4: (c, e)e pg and ee = d. Then we can derive a contradiction similarly.

9.4. Lemma. Let ec G\ H. Then ee = b and (e, a) € pg.

Proof. By 9.2 and 9.3, it is enough to derive a contradiction in each of the fol-
lowing three cases:

Case 1: ee = a and (a, e) € pg. Then ee = a = aa = ea, (a, e) € qq, (a, ) € tg,
e € H, a contradiction.

Case 2: ee = a and (c, e) € pg. Then (d, e) € p;, ee
(d, e) e tg, d = e, a contradiction.

Case 3: ee = b and (c, e)epc. Then ee = b = cc
a contradiction.

a=cd=ed (de)eqg,

ec, (c,e)eqq, (c,e)etg,
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9.5. Lemma. G/tG is a semigroup with zero multiplication.

Proof. By 9.4, (a, e)e pg and ee = b for every element e G\ H. Hence ee =
=b=ad =ed, (e,d)eq;. We have ae = be = ee = b, ce =de=dd = a. If
e,f€ GNH then ef = af = ff = b. We have proved that GG < {a, b}.

10. THE FOURTH AUXILIARY RESULT
The aim of this section is to prove the following lemma.

10.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid such
that I(G) < 3; let H be a subgroupoid of G such that GG = H and H ~ A(4).
Further, assume that Card (G/qs) = 2. Then G|t is a semigroup with zero multi-
plication.

The proof of this lemma will be divided into the following four lemmas. Let
H = A(4) = {a, b, c, d}.

10.2. Lemma. Let e € G. Then either (a, e) € q¢ or (d, €) € q¢.
Proof. It follows from (a, d) ¢ g and Card (G/qg) = 2.

10.3. Lemma. Let e G\ H. Then ee€ {a, b}.

Proof. Suppose, on the contrary, that either ee = ¢ or ee = d. Put K =
= {a, b, ¢, d, e}, so that K is a subgroupoid of G. Let us distinguish the following
four cases.

Case 1: (a, e) € g and ee = ¢. Then K has the following multiplication table:
labcde

aaaba

aaaba

bbbabd

bbbabd

cccdc

o Qo o

However, this groupoid is not a torsion groupoid, a contradiction.
Case 2: (a, e) € g and ee = d. Then we can derive a contradiction similarly.
Case 3: (d, €) € g and ee = c. Then K has the following multiplication table:

{ abcde

aaabb

aaabbd

bbbaa

bbbaa

dddcc

However, this groupoid is not a torsion groupoid, a contradiction.

® Q6 o .
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Case 4: (d, e) € g and ee = d. Then we can derive a contradiction similarly.

10.4. Lemma. Let e GNH. Then ee = b and either (a, e) € qg, (c, €) € pg or
(d, e) e qq, (a, €) € pg.
Proof. By 10.2 and 10.3 it is enough to consider the following cases.

ae, (a, e) € pg, (a, e)€ tg,

Case 1: (a,e)e q; and ee = a. Then ee = a = aa
e € H, a contradiction.

Case 2: (a,e)e q; and ee = b. Then ee

Case 3: (d, e)e g and ee = a. Then ee =
e = d, a contradiction.

Case 4: (d, e)e g and ee = b. Then ee = b = ad = ae, (a, e) € p.

ce, (c, e) € pg.
de, (d, e) € pg, (d, €) € tg,

Il

b = ca
a=dd

10.5. Lemma. G/tG is a semigroup with zero multiplication.

Proof. Let ee G\ H. By 10.4, ee = b. Futthet, either (a, e) € g, (c, €) € p; or
(d, €) € g, (4, e) € pg- Then either ae = be = aa = a, ce = de = ca = b or ae =
=be=uad=0b, ce=de=cd=a. Similarly, either ea = eb = ec = cc = b,
ed =cd=a or ea =¢eb=ec=aa =a, ed =ad =b. Finally, let e,fe G\H.
Then either ¢f = ¢f € {a, b} or ef = af € {a, b}. We have proved GG < {a, b}.

11. REGULAR SUBDIRECTLY IRREDUCIBLE TORSION GROUPOIDS

11.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid. Then
either Card (G/pg) < 2 or Card (G/q¢) < 2.

Proof. If Gt is trivial then G is a semigroup with zero multiplication and G
contains only two elements. Let G/t be non-trivial. Let a, b € G be such that a + b
and (a, b)e t;. There are elements ¢, d e G with (c,d) ¢t; and (ce, de) e t; and
(ec, ed) € 1 for all e e G. Assume (c, d) ¢ pg (the other case is similar). Then ce + de
and ce € {a, b} for all e € G. Since G is regular, Card (G/q;) < 2.

11.2. Proposition. Let G be a regular subdirectly irreducible torsion groupoid of
finite length. Then G is finite.

Proof. We shall proceed by induction on /(G). If /(G) < 1 then the situation is
clear. Let I(G) = 2. Let a, b e G be such that a + b and a, b e 1. By 4.3, a, b € GG.
Hence GG is a regular subdirectly irreducible torsion groupoid. However, I(GG) <
< I(G) and so GG is finite by the induction assumptlon Put m = Card (GG).
According to 1.3, Card (G) < m* + 1.

11.3. Proposition. Let G be a regular subdirectly irreducible torsion groupoid.
Then every non-trivial subgroupoid of G is a regular subdirectly irreducible torsion
groupoid.

Proof is easy.
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11.4. Proposition. Let G be a regular subdirectly irreducible torsion groupoid
such that GG is either a left or a right unar. Then G is isomorphic to one of the
groupoids A(0), ..., A(7), B(4), B(5), ..., B(«0), C(4), C(5), ..., C(o0).

Proof. We shall assume that GG is a left unar and that G is not asemigroup with
zero multiplication. Then GG is a subdirectly irreducible torsion groupoid. First,
suppose that GG is finite. By 6.3, GG ~ B(n) for some n = 2. If Card (G/q;) = 1
then G is a left unar and 6.3 can be applied. If Card (G/p;) = 1 then G is a right unar
and again 6.3 can be applied. Hence we can assume that Card (G/pg) = 2 and
Card (G/q¢) = 2. By 11.1, either Card (G/pg) = 2 or Card (G/gs) = 2. By 7.1 and
8.1 we see that G/tG is a semigroup with zero multiplication. Consequently, I(G) =2
and 5.1 yields the result. Now, let GG be infinite. Then GG ~ B(w0) by 6.3. Since
G/pg is infinite, Card (G/q¢) < 2. If Card (G/q;) = 1 then G is a left unar and 6.3
can be applied. If Card (G/qG) = 2 then, proceeding similarly as in the proof of 7.1,
we obtain a contradiction.

11.5. Proposition. The groupoids A(0), A(L), A(2), A(3), A(4), A(5), A(6), A(7),
B(4), C(4) are up to isomorphism the only regular subdirectly irreducible torsion
groupoids of length <3.

Proof. By 5.1 we can restrict ourselves to the case I(G) = 3. Then GG is a regular
subdirectly irreducible torsion groupoid of length 2. If GG is either a left or a right
unar, then 11.4 may be applied. Suppose that GG is neither a left nor a right unar.
By 5.1 and 11.1, GG is isomorphic to one of the groupoids A(1), A(4), A(5), A(6),
A(7) and either Card (G/p;) = 2 or Card (G/qg) = 2. If GG is isomorphic to A(4)
then G/t is a semigroup with zero multiplication, as follows from 9.1 and 10.1,
a contradiction. We can proceed similarly in the remaining cases.

11.6. Proposition. The groupoids A(0), ..., A(7), B(4), B(5), ..., B(0), C(4), C(5), ...
..., C(0) are up to isomorphism the only strongly regular subdirectly irreducible
torsion groupoids.

Proof. Let G be a strongly regular subdirectly irreducible torsion groupoid. The
case I(G) < 3is settled by 11.5. Let [(G) = 4. For i = 0, 1, ... let 4; denote the block
of 5 ; containing the unique idempotent 0 of G. By 3.17, G is the union of the chain
Ay, Ay, As, ... of regular subdirectly irreducible torsion groupoids and I(4;) = 3.
With respect to 11.5 we can assume that A, is a left unar (the other case is similar).
Suppose that G is not a left unar. Then there is an n = 4 which is the least positive
integer such that A4, is not a left unar. However, 4,4, S A,_, is aleft unar. I(4,) > 4,
A, ~ B(n + 1) by 11.4, A4, is a left unar, a contradiction. We have proved that G
is a left unar. The rest is clear.

11.7. Proposition. Let G be a regular subdirectly irreducible torsion groupoid
of length 4. Then 5 < Card (G) < 11.
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Proof. Put H, = Gftg, H, = Gltg,, Hy = Gltg . Then I(H,) = 3, I(H,) = 2
and I(H;) = 1. Hence Card(H;) 2> 2, Card(H,) =3, Card(H,) 2= 4 and
Caid (G) 2 5. Denote by A the block of ¢ 3 containing the unique idempotent of G.
Then /(4) £ 3 and Card (4) £ 5 by 11.5. Since GG = A4, Card (GG) <5 and
Card (G/pg) < 5, Card (G/qg) < 5 by 1.3. On the other hand, either Card (G/p;) < 2
or Card (G/gg) < 2 by 11.1. Thus Card (G/ts) < 10 and Card (G) < 11.

11.8. Example. Consider the groupoid G = {a, b, c,d, e} with the following
multiplication table:
l abcde

aabc
aabc
bbad
bbad
aabc

QN Qo o
ESTES RS S TN

It is easy to check that G is a regular subdirectly irreducible torsion groupoid of
length 4. Moreover, I(GG) = 2 and G is not strongly regular.

11.9. Proposition. A(0) and A(1) are up to isomorphism the only commutative
regular subdirectly irreducible torsion groupoids.

Proof. Let G be a commutative regular subdirectly irreducible torsion groupoid.
By 11.1, Card (G[t;) < 2. Hence I(G) < 2 and 5.1 can be applied.

Problem. Find all regular subdirectly irreducible torsion groupoids of length <5.

12. COMMUTATIVE TORSION GROUPOIDS WHOSE EVERY
FACTOR IS REGULAR

Let 4, B be two non-empty disjoint sets and a, b two different elements of A.
Then we define a groupoid U, p,, as follows: U, 5,, = AU B; if x, ye A and
u,veBthen xy = uv = a and xu = ux = b.

12.1. Proposition. Let A, B be two non-empty disjoint sets and a,be A, a + b.
Then U, g .5 is a commutative torsion groupoid of length 2 and every factor of
U, pap is regular.

Proof. Put G = Uy, Evidently, 1, = (4 x A) u (B x B) and G[ts ~ A(0).
Hence G is a torsion groupoid of length 2; evidently, G is commutative. It remains
to prove that G/r is a regular groupoid for any congruence r or G. Let r be a con-
gruence of G. If (a, b) € r then G/r is a semigroup with zero multiplication, hence
regular. Let (a,b)¢r and let x, y, ze€ G be such that (xz, yz)er. Since xz, yze
€ {a, b}, either xz = yz = a or xz = yz = b. In the first case, either x, y, ze€ 4 or
X, y, z € B. In the second case, either x, ye A, ze B or x, ye B, z€ A. In both
cases, (x, y) € tg, so that xu = yu and thus (xu, yu)er for all u € G.
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12.2. Proposition. The following two conditions are equivalent for any
groupoid G:

(1) G is a commutative torsion groupoid and every factor of G is regular;

(2) either G is a semigroup with zero multiplication or there exist two non-empty
disjoint sets A, B and elements a, be A (a + b) with G = U, p .,

Proof. By 12.1 it is enough to prove that (1) implies (2). Let G be a commutative
torsion groupoid such that every factor of G is regular; assume that G is not a semi-
group with zero multiplication. Then Card (GG) = 2. By 11.9, every subdirectly
irreducible factor of G is isomorphic to one of the groupoids A(0), A(1). Since every
groupoid is isomorphic to a subdirect product of its subdirectly irreducible factors,
we get [(G) = 2 and xx = 0 for all x € G, where 0 is the unique idempotent of G.
Denote by A the block of ¢, containing 0, so that GG < A. Define a binary relation r
on G as follows: (x, y) e r iff either x = y or x, ye A\ {0} or (x, y)e ts\ (A4 x A).
Evidently, r is a congruence of G and r < 5. We are going to show that G/r is sub-
directly irreducible. Let (C, D) €ty and C # D. There are elements ce C, d € D;
we have (c, d)¢r and (cx, dx)er for all xe G. Then (cd, dd)er, ie. (cd,0)er,
cd = 0, cc = cd. Since G is regular, (¢, d)e g and we get either C = {0}, D =
= AN{0} or C = A\{0}, D = {0}. On the other hand, we have ({0}, A\ {0})e
€ tg and G/r is subdirectly irreducible by 4.2. By 11.9, G/r contains at most three
elements. From this it follows that G/t contains at most two elements. Since I(G) =
= 2, Card (G/tg) = 2. Denote by B the block of 7, different from A. There are ele-
ments a, be GG < A such that xu = b and uv = a for all x e A and u, v e B. Then
a=uu =0 and b + 0, since G is regular. Finally, xy = x0 = 00 = 0 for all
x,y € A.

12.3. Corollary. Let G be a commutative torsion groupoid such that every factor
of G is regular. Then:

(1) Either I(G) £ 1 and GG, G[t; are both trivial or I(G) = 2 and GG, Glt; are
isomorphic to A(0).
(2) Every factor of any subgroupoid of G is regular.

(3) If I(G) = 2 then there exists a congruence r of G x G such that (G x G)[r is
not regular.

Problem. Describe all torsion groupoids G such that every factor of G is regular.
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