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TORSION GROUPOIDS 

JAROSLAV JEZEK and TOMAS KEPKA, Praha 
(Received February 13, 1980) 

1. PRELIMINARIES 
For every groupoid G we define a binary relation ÎQ on G as follows: {x, y) e ÎQ 

iff ax = ay and xa = ya for all a eG. It is evident that ÎQ is a congruence of G; 
moreover, every equivalence which is contained in ÎQ is a congruence of G. 

Let G be a gioupoid. For every ordinal number / we define a binary relation ÎQI 
on G as follows: 

(1) tco = idc; 
(2) (x, y) e ?G,t+i iff (^^5 ^y) ^ h,i ^^^ {^^^ У^) ^ h,i for all ae G; 
(3) if / is a limit ordinal then (x, y) e IQJ iff (x, y) e ÎQJ for some ordinal j < i. 
It is easy to see that t^i is a congruence of G for any i and if г ^ j then ^с,̂  ^ ^GJ-
Evidently, t^ = ÎQy, for any /, ^G,i+i is the only congruence of G with ^G,i+i — ^G,i 
and tQi+ijÎQi = tQjt^.. We could define the congruences f̂ ,/ equivalently as 
follows: tg^o = i<̂G> if Î Ф 0 then (x, j^) e ^ci iff there exists an ordinal y < / such that 
[ax, ay) e ÎQJ and {xa, y a) e ÎQ j foi all a eG. 

For every groupoid G we denote by IQ the union of the chain formed by the con­
gruences ÎQi (where i runs over all ordinals). Thus ÎQ is a congruence of G. 

G is said to be a torsion groupoid if ÎQ = G x G. 
For every groupoid G, the least ordinal i such that Г^^ = ^G,I + I is called the length 

of G; it is just the least ordinal such that tQj = ÏQ. The length of G will be denoted 
by 1(G). 

A groupoid G is said to be semifaithful if tg = {(IQ; evidently, G is semifaithful 
iff ÏQ = IOQ; also, G is semifaithful iff /(G) = 0. 

For every groupoid G, the groupoid GJÏQ is semifaithful. 
For every ordinal number / we denote by ^ ^ the class of torsion groupoids of length 

at most /. Further, let ^ denote the class of all torsion groupoids. 

1.1. Lemma. The following assertions are true: 
(1) If H is a subgroupoid of G then t^^ | H ç t^jfor any ordinal i. 
(2) If G,H are groupoids and f : G-^ H is a surjective homomorphism then 

f(tG,i) ^ tH,ifor any ordinal i. 



(3) Let Gp (peP) be a family of gfoupoids and G be its cartesian product; let 
a,b eG and let i be an ordinal. Let either P or i be finite. Then (a, b) e tQj 
iff{a{p), b{p)) e ta^jfor allpeP. 

Proof is easy. 

1.2. Proposition. The classes ^i {for any ordinal number i) and ^ are closed 
under subgroupoids, homomorphic images and finite cartesian products. 

Proof f oil о ws from 1.1. 

A groupoid G is said to be 
— trivial if it contains only one element, 
— a semigroup with zero multiplication if it satisfies the identity xy = uv, 
— medial if it satisfies the identity xy . uv = xu . yv, 
— a left unar if it sditisucs the idtntity xy = xz, 
— a right unar if it satisfies the identity yx = zx, 
-- regular if the following is true for all a, b, с e G: if ca = cb then xa = xb for all 

X e G; if ac == be then ax = bx for all xe G. 
For every groupoid G we define two equivalences PQ and qQ on G as follows: 

(x, y) e PQ iff xa = ya for all a e G; (x, y) e qç iff ax = ay for all a e G. We have 

1.3. Lemma. Let G be a regular groupoid such that Card (GG) = n for some 
finite ordinal n. Then Card {Gjpo) S n. Card {Gjqo) ^ n and Card {Glt^) ^ n^. 

P r o o f is easy. 

2. THE VARIETIES ^„ 

Let G be a groupoid, aQ,..., Ö/̂  (where /c ^ 0 is an integer) elements of G and 
Ci^,..., ej^ elements of {1, 2}. Then we define an element [ÛQ, e^, a^,..., ej^, f̂c] of 
G as follows: 

if /c = 0 then [«0, ^i, a^, ..., e^, a j = aQi 
if A: Ф 0 and ê  = 1 then [^o, e^, a^, ..., г̂ ., д J = [a^, ^i, a^, . . . , ^;,_i, a^ . i ] . a,,; 
if /c Ф 0 and ej, = 2 then [ÖQ, ^i, «i, •••, ^ъ ^ J = «я • ^o^ ^u ^u •••. ^/.-i^ «fc-i]-

2.1. Proposition. Le^ n be a non-negative integer. Then ^„ is a variety; it is de­
termined by the identities 

[x, ^1, Xi, ..., e„, x j = [y, ei, Xj, ..., e,,, x„] 

where e^,...,e„ is an arbitrary n-termed sequence whose all members belong 
to {h2}. 

P r o o f is easy. 



If Pf is an absolutely free groupoid over a set X, then for every a G PFwe define 
the length À{a) of a in this way: X{x) = 1 for all xeX\iï a = he then л{а) = À(b) + 
+ Я{с). 

2.2. Lemma. Let Wbe an absolutely free groupoid over a setX and let n be a finite 
ordinal Then for every a e W there exists an element b e W such that the identity 
a = b is satisfied in ^ „ and ?.{b) ^ 2". 

Proof. Let a e Ж and let b e W be an element of minimal length such that the 
identity a = b is satisfied in J'^. Suppose À(b) > T. Define elements b^, ...,b,^eW 
such that X[b^ > T~' as follows: bo = b; if 0 ^ / < n and bi is already defined, 
then Ь,фХ, bi = Cid I for some Ci,diE W and either Я(с,) > 2""'"^ or l(di) > 
> T~'~^; put b^+i == Ci if À{ci) > T~'~^ and b^ .̂̂  = d, otherwise. We have 
b = [b„, ^ j , b„_i, ..., e„, bo] for some e^, ..., e,^ e {1, 2} and /i(b„) > 2^ = L If x 
is an arbitrary element oïX and с = j^x, e^, b^j~i, •••5 ^,j, bo], then A(c) < À(b) and 
the identity Z? = с is satisfied in .T,^ by 2.1, a contradiction with the minimality 
of À{b). 

2.3. Propostion. Let n be a finite ordinal. Then the variety ^,j is locally finite 
(i.e. every finitely generated groupoid from 5^„ is finite). 

Proof. It follows from 2.2 that for any finite set X the free groupoid in ^ „ over X 
is finite. Consequently, £^„ is locally finite. 

2.4. Proposition. Let n be a finite ordinal. Then ^„ has only a finite number sub-
varieties. 

Proof. It follows from 2.2 that there exists a finite set / of identités such that any 
identity is equivalent in ^„ to some identity from /. 

2.5. Example, ^Q is the trivial variety. 

2.6. Example. ^^ is the variety of semigroups with zero multiplication. 

2.7. Example. ^2 is the variety determined by the identities 

xy . z = uv . z , z . xy = z . uv . 

Especially, every groupoid from ^2 is medial. 

2.8. Example. It is easy to describe the lattice of subvarieties of ^2- The lattice 
has exactly 24 elements and its picture is given in Fig. .1. The subvarieties F^, ..., F24 
of ^2 ^^^ determined by the identities of ,^2 together with the following identities 
(where 0 stands for xx.xx): 

V^: X = X 

V,: xO = Ox 
F3: XX = 0 



Fig. 1. 
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F22: xx = xO = о, xy = ух 
Угъ' -̂F = О 
^24* У^' = У 

3. BASIC PROPERTIES OF TORSION GROUPOIDS 

3.1. Lemma. Let G be a finitely generated groupoid and R a congruence of G 
such that GJR is finite. Then R is a finitely generated congruence of G. 

Proof. There exist a finite subset M of G generating G and a finite subset N of G 
such that for every a e G there exists SL h e N with (a, b) e R. Denote by К the set of 
all elements of G that either belong to M u iV or can be expressed as ab for some 
elements a, b E M и N. Evidently, К is a finite subset of G. Denote by S the congruen­
ce of G geneiated by the pairs (a, b) such that a, b e К and (a, b)e R. Hence S is 
a finitely generated congruence and S ^ R. It is enough to prove R ^ S. Denote 
by H the set of all elements ae G such that whenever b EN and [a, b) E R then 
{a, b) E S. 

Let us piove that Я is a subgroupoid of G. Let 0^,02^ ^l Ы b E N and (01^2, b) E 
E R. There exist elements b^, /?2 e Â  with (a^, b^) E R and (a2, /̂ 2) ̂  ^- Since a^, ^2 ^ 

we have (ö^, Ь^^Е S and (öf2, /̂ 2) б S. Hence (О?^О25 ^1^2)^*^ — ^ ^i^^ s^ 
(bib2, b) G Я; since 6162 and b belong to K, we have {bib2, Ь)Е S by the definition 
of S. We get («1^2, b) G S and so 0^02 G Я. 

Let us prove M ^ H. Let a G M; let Ь G AT and (a, b) E R . Since a, b belong both 
to K, we have (a, b) E S by the definition of S. Hence a G Я. 

We have proved that Я is a subgroupoid of G containing the generating subset M. 
Consequently, H = G. 

Let (a, b) G jR. There is an element с EN with (a, c) E R . Since a E H and b E H, 
we have (a, c) G 5 and (/?, c) G 5 by the definition of Я. Hence (a, b) E S. This proves 
R^ S. 

3.2. Lemma. Let i,j be two ordinal numbers and let G be a torsion groupoid 
of length i + j . Then GJtQj is a torsion groupoid of length j . 

Proof is easy. 

3.3. Proposition. Every finitely generated torsion groupoid is finite. 

Proof. Suppose that there exists an infinite finitely generated torsion groupoid G. 
By 2.3, / (G) is an infinite ordinal and so /(G) = i + n for some limit ordinal i ф 0 
and some finite ordinal n. By 3.2, Gjtßi is a torsion groupoid of length n; moreover, 
it is finitely generated and so it is finite by 2.3. By 3.1, the congruence tQj is finitely 
generated. Howevei, t^ j is the union of the chain formed by the pairwise different 
congruences t^j {j < i)', we get a contradiction. 
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3.4. Lemma. Let G be a groupoid with zero 0; let H be a subgroupoid of G such 
that xy = yx = Ofor all x e H and y e G\ H. Then tgi | Я = tjjjfor any ordinal i. 

Proof. It is easy. 

3.5. Proposition. For every ordinal number i there exists a commutative torsion 
groupoid G with zero such that /(G) = i. 

Proof. We shall proceed by induction on /. For / = 0, every trivial groupoid has 
the desired properties. Let i = j + 1 for some ordinal j and let Я be a commutative 
torsion groupoid with zero 0 such that l[H) = j . For each ordinal к < j there are 
elements a,„ b,, e Я such that [a^, bj.) ф t^j,. Put G = Я u (a, b] u {cj^; к < j} 
where a, b, c^ are pairwise different elements not belonging to Я, and define a multi­
plication on G as follows: Я is a subgroupoid of G; acj, = c^^a = ay. and bcp. = сф = 
= bj^ for all к < j ; xy = 0 in the remaining cases. Evidently, G is a commutative 
groupoid and 0 is the zero of G. Moreover, GG ^ Я and thus (xz, yz) and (zx, zy) 
belong to tjj ^ for all x, y, z E G. It follows from 3.4 that (xz, yz) and (zx, zy) belong 
to tßj for all X, y, z e G. Consequently, (x, y) e IQJ for all x, j^ e G and G is a torsion 
groupoid of length ^ /. Now it suffices to show that (a, b) ф t^ j . Suppose (a, b) e tQj. 
Then j 4= 0, since a Ф b; there exists a. к < j such that (ax, bx) e tQj^ for all x e G; 
for X = C;t we get {a^, b^) s tQ^j,, so that (a/„ bj^) e /̂̂  ̂ , a contradiction. 

Now let i Ф 0 be a limit ordinal; for every ordinal к < i let Gj. be a commutative 
torsion groupoid with zero 0 such that l(Gj,) = k. We can assume that G^^ ^ G^,^ = 
= {0} for all /cj, /c2 < i such that k^ Ф ^2- Denote by G the union of the sets G^ 
[k < i) and define a multiplication on G so that Gj, be subgroupoids of G for ail к < i 
and xy = 0 in the remaining cases. Evidently, G is a commutative groupoid with 
zero 0. Let a, b e G; we shall show that (a, b) e tQj. ïf a, b e Ĝ  for some к < i 
then (a, b) e tG^,k and so [a, b) e tßj, ^ tQ j by 3.4. Let a e G^. and Ь e Gj where 
/c, J < i and /c Ф J. If с 6 G;̂  then ac E G^, be = 0 e Gj, and so (ac, be) E to^^^, Ç t^^^. 
If с G GJ then (ac, be) G r^j similarly. If с G G \ (Ĝ .̂ u Gj) then ac = be = 0. Thus 
(ac, be) G Ĝ,Max(fc,j) for all с G G; hence (a, b) E Ĝ,Max(/c,j) + i ^ ^G,^ We have proved 
tç. . = G X G and so G is a torsion groupoid of length ^ i. ïf к < i, then there 
are elements a^bEG^+i such that {a,b)фtQ^^^y, we have {a,b)фtQ^k and so 
/(G) > /c. 

3.6. Lemma. Let G be a groupoid and i an ordinal number. Suppose that 
a block H of tßj is a subgroupoid of G. Then H is a torsion groupoid and 1(H) g /. 

P r o o f follows from 1.1(1). 

3.7. Lemma. Let G be a torsion groupoid and 1(G) = г + 1 for some ordinal i. 
Then GJtQ^i is a non-trivial semigroup with zero multiplication. There exists exactly 
one block H of tßj such that H is a subgroupoid of G; H is a torsion groupoid of 
length ^i and we have GG Я H. 
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Proof is easy. 

3.8. Proposition. Every torsion groupoid contains exactly one idempotent. 

Proof. Let G be a torsion groupoid. First we shall show that G contains at least 
one idempotent. Denote by i the least ordinal such that (a, aa) e tQj for some a e G, 
Clearly, i ^ /(G). Suppose i Ф 0. Then / is not a limit ordinal, i = j + 1 for some j , 
(a, aa) e t^j, (aa, a . aa) e tQj, [a . aa, aa . aa) e tQj, {aa, aa . aa) e ÎQJ, a contra­
diction with the minimality of /. Hence i = 0 and a = aa for some as G. Now we 
are going to prove that G contains at most one idempotent. We shall proceed by 
induction on /(G). If /(G) = 0, there is nothing to prove. Let /(G) ^ 1 and let a, b 
be two idempotents of G. Denote by / the least ordinal with (a, b) e tQj, Obviously, 
i ^ / (G) . If / = /(G) then / is not a limit ordinal, (a, b) ф / c f - i ^^<^ two different 
blocks of ^G,/-i ^re subgroupoids of G, a contradiction with 3.7. Thus / < /(G). 
Let H be the block of tQj containing a. Then Я is a subgroupoid of G; by 3.6, Я is 
a torsion groupoid of length ^ i < /(G); since a, b e H, we get a = Ь by the induction 
assumption. 

3.9. Proposition. Let G he a torsion groupoid such that GG — G. Then 1(G) is 
a limit ordinal. 

Proof follows from 3.7. 

3.10. Example. Let G(+) = C(2°°) be the quasicychc Prüffer 2-group. Define 
a multiplication on G by xj; = 2x + 2y for all x, y eG. It is easy to verify that G 
is a commutative torsion division groupoid and /(G) = OJQ. 

3.11. Lemma. Let G be a groupoid; let A^ (x e G) be pairwise disjoint non-empty 
sets; letf be a mapping of G x G into the set H = [j{A^; x e G} such thatf{x, y) e 
G A^y for all X, y e G. Define a multiplication on H as follows: if x, y e G, a e A^ 
and b E Ay then ah = / (x , y). Hence H is a groupoid. The following assertions are 
true: 

(1) There is a congruence r of H such that r с t^ and G is isomorphic to H jr. 
(2) / / G is a torsion groupoid then H is a torsion groupoid, too. 
(3) Suppose that x = y whenever x, v e G are such that f(x, z) = f{y, z) and 

f(z, x) = f{z, y)for all z E G. Then G is isomorphic to Hjt[j. 
(4) The groupoid H is regular iff the following two conditions are satisfied: 

(0 if X, y, z e G are such that f(x, z) = f{y, z) then f{x, u) = f[y, u) for every 
и E G; 

(ii) if X, y, z E G are such that f{z, x) = / (z , v) then f{u, x) = f(u, y) for every 
и E G. 

(5) / / / /5 injective then H is regular and G is isomorphic to Hjtu. 

Proof is evident. 

13 



3.12. Proposition. For every torsion groupoid G there exists a regular torsion 
groupoid H such that G ĉ  Я/^^ and H is finite if G is finite. Moreover, for every 
non-trivial torsion groupoid G there exists a non-regular torsion groupoid К such 
that G ĉ  Kjt^ and К is finite if G is finite. 

Proof follows from 3.11. 

3.13. Corollary. Let n be a positive integer and let f be a mapping of (0 , . . . , n} 
into {0, 1} such thatf{n — 1) = f{n) = 1. Then there exists a finite torsion groupoid 
G of length n such that for every ie {0, ..., n], the groupoid Gjtß i is regular iff 

/(0 = 1-
A groupoid G is said to be strongly regular if GJtQn is regular for any finite or­

dinal n. Evidently, every strongly regular groupoid is regular. 

3.14. Proposition. Let G be a strongly regular torsion groupoid. Then /(G) ^ O)Q. 

Proof. Let (a, b) e Ĝ,WO + I> ^̂  ^̂  enough to prove {a, b) e tç,^^. Take an arbitrary 
element с e G. We have (ca, cb) e tG,coo ^^^ {^^^ ^^) ^ с̂,шо ^^^ ^^ (^^' ^Щ ^ ^G,n ̂ ^^ 
{ac, be) e tQn for some finite n. Since G/̂ ,̂« ŝ regular, (xa, xb) e tQ„ and {ax, bx) e 
e tG,n for all xeG. Hence {a, b) e t^n + i ^ с̂,шо-

3.15. Lemma. Let H be a subgroupoid of a strongly regular torsion groupoid G. 
Then ?я,п — ^G,n I H for every finite n. Consequently, every subgroupoid of a strongly 
regular torsion groupoid is strongly regular. 

Proo f is easy. 

3.16. Lemma. Let G be a non-trivial strongly regular torsion groupoid such that 
1{GG) = n is finite. Then l[G) = n + 1. 

Proof. Proceeding by induction on n, we shall show that /(G) = n + l . l f n = 0 
then GG is trivial, G is a non-trivial semigroup with zero multiplication and /(G) = 1. 
Let n ^ 1. Denote b y / t h e natural homomorphism of G onto the non-trivial strongly 
regular torsion groupoid H = Gjt^. Then/(GG) = HH. By 3.15, f̂ G = Ĝ | ^ ^ and 
so HH is isomorphic to GGJtQQ. We get l{HH) = l{GGltGg) = /t - 1. By the induc­
tion hypothesis, l[H) = n and so /(G) = n + 1. 

3.17. Proposition. Let G be a strongly regular torsion groupoid. Denote by 0 the 
only idempotent of G; for every ordinal i S l{G) denote by A^ the block of tQj 
containing 0. Then {0} = AQ a A^ c: /I2 c. ... c: Ацду = G are subgroupoids 
of G;for every i g /(G) we have l{Af) = i;for every i < /(G) we have ^ f+Hi+i ^ 

00 

Ç Ail if /(G) = Wo then G = [j A^. 
i = 0 

Proof. By 3.14, we have /(G) ^ COQ. Consider first the case /(G) = n < OQ. It is 

clear that {0} = ^0 ~ ^1 — ^2 ^ ••• — A = ^ are subgroupoids of G and 
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^ /+ i^ i+ i — ^/ ^^^ ^̂^̂  ^ < '^' t̂ remains to prove /(Л,) = / for all / ^ /t. Suppose 
и Ai) ф / for some /, so that /(Л,) < / and i < n. By 3.16 we have /(^,+ 1) < / + 1, 
/(^^•+2) < / + 2, ..., /(v4„) < /7, a contradiction. In the case /(G) = OJQ the assertion 
is an easy consequence of 3.15 and the case already proved. 

4. BASIC PROPERTIES OF SUBDIRECTLY IRREDUCIBLE 
TORSION GROUPOIDS 

4.1. Lemma. Let G be a groupoid and r a congruence of G such that r n tg = 
= id^. Then r n IQ = id^. 

Proof. It is easy to show by induction on / that r n t^i = id^ for any ordinal /. 

4.2. Proposition. Let G be a non-trivial torsion groupoid. Then G is subdirectly ir­
reducible iff there exist elements a, b e G such that a ф b and t^ = {{a, b), [b, a)] u 
u i d c . 

Proof. Since G is a torsion groupoid, tg ф id^. Since every equivalence contained 
in tQ is a congruence, if G is subdirectly irreducible then tg has only one block of 
cardinality ^ 2 and this block contains exactly two elements. On the other hand, if 
tg = {(a, b), (b, a)} u id^ where a ф b, then for any congruence r such that r ^ tg 
we have r n tg = id^ and so r = id^ by 4.1; consequently, G is subdirectly irreducible. 

4.3. Proposition. Let G be a subdirectly irreducible torsion groupoid and a, b 
the elements such that a ^ b and tg = {(a, b), (b, a)] u id^. Then either G is 
the two-element semigroup with zero multiplication or a, b e GG. 

Proof. Suppose a Ф G. Then the congruence r — (GG x GG) u id^ of G has the 
property r n tg = idQ. Hence r = id^ and Card {GG) = 1. We see that G is a semi­
group with zero multiphcation and the rest is clear. 

4.4. Proposition. Let G be a regular subdirectly irreducible torsion groupoid; 
let a, b be the elements such that a Ф b and tg = {[a, b), (b, a)] u id^. Then: 

(1) Every subgroupoid of G containing a, b is subdirectly irreducible. 

(2) Either a or b is the idempotent of G. 

Proof. (1) is clear. Let us prove (2). By 3.8, G contains exactly one idempotent e. 
We shall proceed by induction on /(G). The statement is clear for /(G) ^ 1. Let 
/ = /(G) ^ 2 and assume first that / is not a limit ordinal. Then GG ^ H for a block H 
of tgi^^. By 4.3, a, b e H. On the other hand, e e H and Я is a regular subdirectly 
irreducible torsion groupoid and l[H) ^ / — 1. We get either a =^ e or b = e by 
the induction assumption. Now, let / be a limit ordinal. There is an ordinal j < i 
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with {a,e)etQj] we have a,b,eeK where К is the block of ÎQJ containing e-
Evidently, К is a. regular subdirectly irreducible torsion groupoid of length § / ; 
by the induction assumption we get either a = e or b = e. 

5. REGULAR SUBDIRECTLY IRREDUCIBLE GROUPOIDS 
OF LENGTH AT MOST TWO 

Consider the groupoids A(0), A(\), 
tables: 

A(0) 1 a b 

.., A{1) defined by the following multiplication 

a a 
a a 

/1(1) 
a 
b 
с 

abc 
a a b 
a a b 
b b a 

A{2) 
a 
b 
с 

abc 
a a a 
a a a 
b b b 

A(3) 
a 
b 
с 

abc 
a a b 
a a b 
a a b 

A{4) 
a 
b 
с 
d 

abed 
a a a b 
a a a b 
b b b a 
b b b a 

A{5) 
a 
b 
с 
d 

abed 
a a b b 
a a b b 
a a b b 
b b a a 

m 
a 
b 
с 
d 

abed 
a a a b 
a a a b 
b b b a 
a a a b 

A{7) 
a 
b 
с 
d 
e 

a b с d e 
a a a b b 
a a a b b 
b b b a a 
a a a b b 
b b b a a 

5.1. Propositioe. The groupoids A{0), A{l), A(2), A{3), A(4), A{5), A{6), A{l) are 
pairwise non-isomorphic regular subdirectly irreducible torsion groupoids of 
length ^ 2 . Moreover, every regular subdirectly irreducible torsion groupoid of 
length ^ 2 /5 isomorphic to one of these eight groupoids. 

Proof. The proof of the first assertion is an easy routine verification. Let G 
be a regular subdirectly irreducible torsion groupoid of length ^ 2 . Let a, b be the 
elements such that tQ = {[a, b), [b, a)] u idQ. By 4.4, we can assume that a is the 
only idempotent of G. Let G be not isomorphic to A(0). Then it follows from 4.3 
that GG = {a, b]. By L3, Card (G/^^) й 4 and so Card (G) ^ 5. We shall consider 
only the case Card (G) = 5 (the other cases are similar). Let G = [a, b, c, d, e}. 
If PQ ^ ÇQ then PG = tQ and PQ has four blocks, a contradiction with 1.3. Thus 
PQ ^ qol similarly ^G Ф PG ^^^ consequently both PQ and qQ have exactly two 
blocks. We have {a, b} = A n С for a block A of PQ and a block С of qol put В = 
== G\A and D = G\C. Each of the sets A n D, В n C, В n D contains at 
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most one element. From this we get Card (Ä) = Card (C) = 3. We can assume 
without loss of generality that A — [a, b, d} and С = {a, b, c). Now it is clear that G 
has the same multiplication table as ^(7). 

5.2. Example. There exists a proper class of non-isomorphic subdirectly irreducible 
torsion groupoids of length 2. This follows from the fact that for every semigroup Я 
with zero multiplication there exists a subdirectly irreducible torsion groupoid G 
with GjtQ ^ H. Indeed, the groupoid G can be constructed in the following way. 
Denote by 0 the only idempotent of H and let a be an element not belonging to Я. 
Put G = H и {a} ; put x о x = a for all x e G and Ooa = aoO = a; put x о y — 0 
for all the remaining pairs x, y. Evidently, the groupoid G(o) has the desired properties. 

6. SUBDIRECTLY IRREDUCIBLE TORSION UNARS 

6.1. Proposition. Let G be either a left or a right unar. Put f(x) = xx for all 
X e G, Then G is a torsion groupoid iff G contains an idempotent 0 and for every 
X E G there exists a positive integer n such that f"(x) = 0. 

P roof is easy. 

6.2. Corollary. Let G be a torsion groupoid which is either a left or a right unar. 
Then /(G) S cOo-

Define two infinite countable groupoids B(co) and C(oo) as follows: 

Б(оо) = (öfi, ^2,. . .} ; aiaj = ai^^ for all i,j such that / Ф 1 ; 

a^aj = ai for ally . 

C(co) = (a^, «2? •••} I ^i^j = ^j-i fc>r all f,y suchthat j Ф 1 ; 

aia^ = a^ for all i. 

Moreover, for every integer n ^ 2 denote by B(n) the subgroupoid of J5(oo) formed 
by the elements a^, ..., a„ and denote by C(n) the subgroupoid of C( со) foi med by the 
elements л^, ,.., a„. 

6.3. Proposition. The groupoids Б(оо) and B[n) (where n ^ 2 is an integer) are 
subdirectly irreducible torsion left unars; every subdirectly irreducible torsion left 
unar is isomorphic either to Б(оо) or to B(n)for some integer n ^ 2. The groupoids 
C(oo) and C(n) (where n ^ 2 is an integer) are subdirectly irreducible torsion 
right unars; every subdirectly irreducible torsion right unar is isomophic either 
to C(oo) or to C{n)for some n ^ 2, We have B{2) c^ C{2) ^ A{0), B{3) ĉ  A{2) and 
C(3) 0. A(3). 

Proof is easy. 
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7. THE FIRST AUXILIARY RESULT 

The aim of this section is to prove the following lemma. 

7.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid, let n ^2 
be an integer and H a subgroupoid of G such that GG Я H and H c^ B{n). 
Further, assume that Card (G/^G) = 2. Then GJtQ is a semigroup with zero multi­
plication. 

In order to prove this lemma, it is enough to assume that H = В[п). Since G is 
regular and Я is a left unar, H is contained in a block A of q^. Taking into account 
that G is legular and subdirectly irreducible, we see that tQ = {{a^, a2), (a2, ci^)} u 
u idc and tg = {{a^, ^2), (^2, «i)} u idjj. 

7.2. Lemma. Let x e Ä\H. Then xa = ci„for every a e A. 

Proof. We have xa^ = xa for every a e A. Suppose xa^ = ai for some i < n. 
Then xa^ = ai = ai+^ai, ("x, ai+i)G PQ, {x,ai+i)EtQ, xeH, a contradiction. 
Hence xai ${ai,..., (^„-1} and so xa^ = a„. 

7.3. Lemma. Either A = H or Card {A\H) = 1. 

Proof. Let X, y e A\H. By 7.2, [x, y) e tç- Hence x = y. 
According to 7.2 and 7.3, the subgroupoid Л of G is a left unar and A is isomorphic 

either to B(n) or to B(n + l) . Hence there is no loss of generality in assuming A = H, 
In the following, qQ has exactly two blocks, namely H and G\H. For every b e 
e G\H put Kjj = {b} u Я . Evidently, Kj, is a subgroupoid of G. Evidently, it is 
enough to prove that for any Ь G G \ Я, the groupoid Кф^ъ î  ^ semigroup with zero 
multiplication. On the other hand, î ,̂ is a regular subdirectly irreducible torsion 
groupoid and Card {K^jq^^ — 2. Hence it is enough to continue in the proof under 
the assumption Card ( G \ Я ) = 1. Denote by b the only element of G \ Я . Define 
a transformation/ of { 1 , . . . , n} by a^b = ОД,) for all z e {l, ..., n], 

7.4. Lemma. The following assertions are true: 

( 1 ) / ( 1 ) = / ( 2 ) ф 1 . 
(2) Iff{i) = f(j) then either i = j or {i,j} = {1, 2}. 
(3) / ( i )4= 1 for all i. 

Proof. It follows from tQ = [{ai,a^, {a2,a^} u idg and ^G = (Я x Я) u 
u{(b,b)}. 

7.5. Lemma. We havef{\) = / ( 2 ) = 2. Moreover, if n ^ 3 then f{3) = 1. 

Proof. Since Card(G/g(^) = 2, G is not a semigroup with zero multiplication, 
/(G) ^ 2 and there exists a pair (c, d) e tG2 ^ ^G- Hence (c, d) ф to and (ce, de) e tß 
and (ее, ed) e tQ for ail ее G, We shall distinguish the following two cases. 
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Case 1 : [с, d) ф q^. Then either с = b or d = b. It is enough to assume that d = b; 
then с e H. We have ec ф eb for every ее G, since (c, Ь)ф q^. But [ec, eb) e t^ and 
so eb e {aI, «2}. This implies Im(f) ^ {1, 2} and the assertion follows from 7.4. 

Case 2: (c, ^) e igr̂ j. Then (c, J) ^ р^- We have c, d e H; for every e e G, ce ф Je 
and so ce, de e [a^, «2}. From this it follows that c, d e {a^, «2, Ö3}. Since (c, (i) ^ j»̂ ;, 
we can assume that d = Ö3. Then с e {a^, a2}, «/(i) == cb e {a^, a2} and «дз^ = 
= dbE{ai,a2]. According to 7.4, / ( l ) = 2 and /(3) = 1. 

7.6. Lemma. ?i ^ 3. 

Proof. Suppose n ^ 4. Using 7.5, it is easy to see that the equivalence r = 
== {{aI, ^2, a^} X {a^, ^2, Ö3}) u id̂ ^ is a congruence of G. The factor Gjr is a non-
trivial torsion groupoid and hence there are elements c, d e G with (c, d)фr and 
(ce, de) e г and (ее, ed) e г for all e e G. We shall distinguish the following cases: 

Case 1: с e H and d = b. Then ec ф eb and ec, eb 6 {a^, ^2, ^3} for all e e G. 
In particular, «4^ e {a^, a2, <^з},/(4) e {1, 2, 3], a contradiction with 7.4 and 7.5. 

Case 2: с e H, d = ÖJ-, i ^ 5. Then {ca^, a^a^) e r, (ca^, öf/_i) e г, са^ = <^h-i — 
= «ifli, (с, a^epfj, с = ai = d, а contradiction. 

Case 3: с G (а^, ^2, «з}? ^ = ^4- We have (сЬ, a4b) e r, (сЬ, af^^.^) e г. But сЬ e 
G {«1, Ö2}; hence / (4) G {1, 2, 3}, a contradiction with 7.4 and 7.5. 

It is evident that at least one of these three or the three symmetric cases must take 
place. However, we got a contradiction in every one of these cases. 

Denote by k, I the elements of {1, 2, 3} such that ba = a^^ for every a e H and 
bb = ai. 

1Л. Lemma. We have k, I e {1,2}. 

Proof. We can assume that n = 3. Since G is regular and (a, Ь)фдс foi each 
ae H, к =^ I and we have either к e {1, 2} or / G {1, 2}. First, let /c = 1. Then ba^ = 
= a^ = a^a^, [b, a^)E PQ, bb = a^b = a2, I = 2. Similarly, if к = 2, then ba^ = 
= «2 — ^3^35 {b, CI2,) G PQ, bb == a^b = a^, I = 1. Now, let / = 1. Then bb = a^ ~ 
= a^b, (b, аз) G PQ, ba = a^a = ^2 for all a e H and к = 2. Similarly, if / = 2, 
then bb = a2 = a^b, (b, a^) G PQ, ba = a^a = a^, к == 1. 

This completes the proof of 7.1. 

8. THE SECOND AUXILIARY RESULT 

The aim of this section is to prove the following lemrna. 

S.l.Lemma. Let G be a regular subdirectly irreducible torsion groupoid, let n ^ 2 
be an integer and H a subgroupoid of G such that GG Ç H and H ^ B(n). 
Further, assume that Card {Gjpc) = 2. Then Gjtß is a semigroup with zero multi­
plication, 
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In order to prove this lemma, it is enough to assume H = B{n). Since Card (GJPQ) = 
= 2 and G is regular, Рн = PG\ ^ . Card (Я/ря) ^ 2 and л ^ 3. On the other hand, 
if и ^ 2, then GjtQ is obviously a semigroup with zero multiplication. Let n = 3. 
Denote by Ä the block of p^ with a^, Ö2 e Ä; let В be the remaining block of p^^ 

8.2. Lemma. Let a e A. Then Ga я {a^, 02}-

Proof. We have Aa = {a^a} and Ba = {a^a}. Hence it suffices to show that 
a^a e {a^, «2} and a^a e {a^, «2}- Put X = Я u {a}. Then X is a subgroupoid of G. 
It IS enough to consider the case афН. First, let a^a == 03. If a^a = «2 then 03« =̂  
= 03^1, (of, «i) e q^, {a, a^) etc, ae H, a contradiction. If a^a = a^ then ^3^ = 
= a2a, («3, ^2) G PG, a contradiction. Thus ^за = a^ and iC has the following 
multiplication table: 

üi a-, a^ a 

«1 

a 

ал ûi öfq 

a, oft ö l ö^ 

^ 2 ^2 ^2 ^1 

ал йл ал a-i 

However, this groupoid is not torsion, a contradiction. We have proved that a^ae 
e [a^, ^2}. If a^a = a^ then a^a = a^a^, (a, a^) e tQ, a e H, a. contradiction. There­
fore a^a = 02- If ^3^ = ^3 then К has the following multiplication table: 

«1 02 ^3 a 

ал ал ал a 1 " 1 
Ûfl « 1 « 1 ^ 2 

^ 2 « 2 ^ 2 ^ 3 

«1 a^ a^ Ö2 

Again, this groupoid is not torsion, a contradiction. Thus a^a e {a^, 02}- (In fact, 
weliave a^a = a^.) 

8.3. Lemma. Let b e B. Then Gb Ç {a^, a2}' 

Proof is similar to that of 8.2. 
It follows from 8.2 and 8.3 that GG Ç {a^, 02}. This completes the proof of 8.1. 

9. THE THIRD AUXILIARY RESULT 

The aim of this section is to prove the following lemma. 

9.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid such that 
/ ( G ) ^ 3; let H be a subgroupoid of G such that GG ^ Я and H o^ ^(4). Further, 
assume that Card {GJPQ) = 2. Then Gjtß is a semigroup with zero multiplication. 
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The proof of this lemma will be divided into the following four lemmas. Let 
H = A{4) = {a, b, c, d]. 

9.2. Lemma. Let ее G. Then either (a, e) e p^ or (c, e) e PQ. 

Proof. It follows from (a, c) ф p^ and Card {GJPQ) = 2. 

9.3. Lemma. Let e e G\H, Then ее e {a, b]. 

Proof. Suppose, on the contrary, that either ее = с or ее = d. Put К = H KJ [e], 
so that К is 3. regular subdirectly irreducible torsion groupoid of length ^ 3 . Let us 
distinguish the following four cases. 

Case 1: (a, e)epQ and ее = с. Taking into account the regularity of X, we see 
that К has the following multiplication table: 

a 
b 
с 
d 
e 

a 
a 
a 
b 
b 
a 

b 
a 
a 
b 
b 
a 

с 
a 
a 
b 
b 
a 

d 

T 
b 
a 
a 
b 

e 
с 
с 
d 
d 
с 

However, the length of this groupoid is equal to 4, a contradiction. 
Case 2: (a, e) e PQ and ее = d. Then we can derive a contradiction similarly. 
Case 3: (c,e)epQ and ее = с. Then К has the following multiplication table: 

a 
b 
с 
d 
e 

a 
a 
a 
b 
b 
b 

b 
a 
a 
b 
b 
b 

с 
a 
a 
b 
b 
b 

d 
b 
b 
a 
a 
a 

e 
d 
d 
с 
с 
с 

Again, 1{К) = 4, a contradiction. 
Case 4: (c, e) e PQ and ее = d. Then we can derive a contradiction similarly. 

9.4. Lemma. Let e e G\H, Then ее = b and (e, a) e PQ. 

Proof. By 9.2 and 9.3, it is enough to derive a contradiction in each of the fol­
lowing three cases: 

Case 1: ее = a and (a, e) e PQ. Then ее == a ~ aa = ea, (a, e) e qQ, (a, e) e t^, 
e G Я, a contradiction. 

Case 2: ее = a and (c, e) e PQ, Then [d, e) e PQ, ее = a = cd = ed, (d, e) e q^, 
(J, e) e tQ, d = e, a, contradiction. 

Case 3: ее == b and (c, e) e p^. Then ее = b = cc = ec, (c, e) e q^, (c, e) e tg, 
a. contradiction. 
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9.5. Lemma. GJtQ is a semigroup with zero multiplication. 

Proof. By 9.4, (a, e) ep^ and ее = b for every element e e G\H, Hence ее = 
= b = ad = ed, (e, d) e ÇQ, We have ae = be = ее = b, ce = de = dd = a. If 
e,fEG\H then ef = af = ff = b. We have proved that GG ç {a, b}. 

10, THE FOURTH AUXILIARY RESULT 

The aim of this section is to prove the following lemma. 

10.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid such 
that 1{G) ̂  3; let H be a subgroupoid of G such that GG ^ H and H c^ Л(4). 
Further, assume that Card {GJqo) = 2. Then Gjtß is a semigroup with zero multi-
plication. 

The p r o o f of this lemma will be divided into the following four lemmas. Let 
E = Л(4) = [a, b, c, J } . 

10.2. Lemma. Let e e G. Then either (a, e) e qQ or {d, e) e q^. 

Proof. It follows from (a, d) ф qQ and Card (Gjqo) = 2. 

10.3. Lemma. Let ee G\H. Then ееe {a, b}. 

Proof. Suppose, on the contrary, that either ее = с or ее = d. Put К = 
= [a, b, с, d, e}, so that X is a subgroupoid of G. Let us distinguish the following 
four cases. 

Case 1: (a, e) e qQ and ее = с. Then К has the following multiphcation table: 

a 
b 
с 
d 
e 

a 
a 
a 
b 
b 
с 

b с 
a a 
a a 
b b 
b b 
с с 

d e 
b a 
b a 
a b 
a b 
d с 

However, this groupoid is not a torsion groupoid, a contradiction. 
Case 2: [a, e) e qQ and ее = d. Then we can derive a contradiction similarly. 
Case 3: {d, e) e qQ and ее — с. Then К has the following multiplication table: 

a 
b 
с 
d 
e 

a b с d e 
a a a b b 
a a a b b 
b b b a a 
b b b a a 
d d d с с 

However, this groupoid is not a torsion groupoid, a contradiction. 
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Case 4: (d, e) e QQ and ее = d. Then we can derive a contradiction similarly. 

10.4. Lemma. Let ее G\H, Then ее = b and either (a, e) e qg, {c, e) e PQ or 
{d, e) G Qa, (a, e) e p^. 

Proof. By 10.2 and 10.3 it is enough to consider the following cases. 
Case 1: (a, è) e qQ and ее = a. Then ее = a = aa = ae, (a, e) e PQ, {a, e) e tg, 

e GH, 2i contradiction. 
Case 2: {a, e) e q^ and ее = b. Then ее = b = ca = ce, (с, e) e PQ, 
Case 3: [d, e) e qQ and ее = a. Then ее = a = dd = de, {d, e) e PQ, {d, e) e tß, 

e = d, a, contradiction. 
Case 4: (d, e) e qQ and ее = b. Then ее = b = ad = ae, (a, e) e PQ. 

10.5. Lemma, GJtQ is a semigroup with zero multiplication. 

Proof. Let eeG\H. By 10.4, ее = b. Fuithei, either (a, e)eqQ, [c, e)e PQ or 
(d, e) G qQ, [a, e) e PQ. Then either ae == be = aa = a, ce = de = ca = b or ae = 
= be = ad = b, ce = de = cd = a. Similarly, either ea = eb = ec = cc = b, 
ed = cd = a or ea = eb = ec = aa = a, ed = ad = b. Finally, let е,/е G\H, 
Then either ef = cf G {a, b} or ef = af G {a, b}. We have proved GG ^ {a, b}, 

11. REGULAR SUBDIRECTLY IRREDUCIBLE TORSION GROUPOIDS 

11.1. Lemma. Let G be a regular subdirectly irreducible torsion groupoid. Then 
either Card (GJPQ) ^ 2 or Card {Gjqo) й 2. 

Proof. If GJtQ is trivial then G is a semigroup with zero multiplication and G 
contains only two elements. Let GJtQ be non-trivial. Let a, b G Gbc such that a ^ b 
and [a, b)G tQ. There are elements c, d G G with (с, d) ф tQ and (ce, de) G tg and 
[ec, ed) G tQ for ail eG G. Assume [c, d) ф PQ (the other case is similar). Then ce ф de 
and ce G {a, b} for ail e G G. Since G is regular. Card {Gjqg) ^ 2. 

11.2. Proposition. Let G be a regular subdirectly irreducible torsion groupoid of 
finite length. Then G is finite. 

Proof. We shall proceed by induction on /(G). If /(G) ^ 1 then the situation is 
clear. Let /(G) ^ 2. Let 0, /? e G be such that a ф b and a, b G tQ. By 4.3, a, b G GG. 
Hence GG is a regular subdirectly irreducible torsion groupoid. However, l(GG) < 
< /(G) and so GG is finite by the induction assumption. Put m = Card (GG), 
According to 1.3, Card (G) ^ m^ + 1. 

11.3. Proposition. Let G be a regular subdirectly irreducible torsion groupoid. 
Then every non-trivial subgroupoid of G is a regular subdirectly irreducible torsion 
groupoid. 

Proof is easy. 
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11.4. Proposition. Let G be a regular subdirectiy irreducible torsion groupoid 
such that GG is either a left or a right unar. Then G is isomorphic to one of the 
groupoids Ä{0\ ..., Л(7), Б(4), Б(5), ..., В(оо), С(4), С(5), ..., С(оо). 

Proof. We shall assume that GG is a left unar and that G is not asemigroup with 
zero multiplication. Then GG is a subdirectiy irreducible torsion groupoid. First, 
suppose that GG is finite. By 6.3, GG c^ B(n) for some n ^ 2. If Card {Glq^) = 1 
then G is a left unar and 6.3 can be applied. If Card {GJPQ) = 1 then G is a right unar 
and again 6.3 can be applied. Hence we can assume that Card {Gjpc^ ^ 2 and 
Card (G/^G) ^ 2. By 11.1, either Card (G/pc) = 2 or Card (G/^G) = 2. By 7.1 and 
8.1 we see that Gjtß is a semigroup with zero multiplication. Consequently, /(G) = 2 
and 5.1 yields the result. Now, let GG be infinite. Then GG c^ B{co) by 6.3. Since 
GJPQ is infinite. Card {Gjqo) S 2. If Card {Gjqo) = 1 then G is a left unar and 6.3 
can be applied. If Card {Gjqo) = 2 then, proceeding similarly as in the proof of 7.1. 
we obtain a contradiction. 

11.5. Proposition. The groupoids A{0), A{l), A{2), A{3), A{4), A{5), A{6), A{7), 
B{4), C(4) are up to isomorphism the only regular subdirectiy irreducible torsion 
groupoids of length ^ 3 . 

Proof. By 5.1 we can restrict ourselves to the case /(G) = 3. Then GG is a regular 
subdirectiy irreducible torsion groupoid of length 2. If GG is either a left or a right 
unar, then 11.4 may be applied. Suppose that GG is neither a left nor a right unar. 
By 5.1 and 11.1, GG is isomorphic to one of the groupoids ^ ( l ) , ^(4), A{5), A{6), 
A{7) and either Card (G/p^) = 2 or Card (G/^^) = 2. If GG is isomorphic to A{4) 
then Gjtß is a semigroup with zero multiplication, as follows from 9.1 and 10.1, 
a contradiction. We can proceed similarly in the remaining cases. 

11.6. Proposition. The groupoids A{0),..., A{l), Б(4), Б(5), . . . , В{оо), C(4), C(5), . . . 
..., C(oo) are up to isomorphism the only strongly regular subdirectiy irreducible 
torsion groupoids. 

Proof. Let G be a strongly regular subdirectiy irreducible torsion groupoid. The 
case /(G) ^ 3 is settled by 11.5. Let /(G) ^ 4. For / = 0 , 1 , . . . let A^ denote the block 
of tQi containing the unique idempotent 0 of G. By 3.17, G is the union of the chain 
A^, A2, A^,... of regular subdirectiy irreducible torsion groupoids and /(^3) = 3. 
With respect to 11.5 we can assume that A^ is a left unar (the other case is similar). 
Suppose that G is not a left unar. Then there is an и ^ 4 which is the least positive 
integer such that A„ is not a left unar. However, A„A„ ^ У4„_ ̂  is a left unar, /(Л„) ^ 4, 
A„ c^ B{n + 1) by 11.4, Л„ is a left unar, a contradiction. We have proved that G 
is a left unar. The rest is clear. 

11.7. Proposition. Let G be a regular subdirectiy irreducible torsion groupoid 
of length 4. Then 5 ^ Card (G) ^ 11. 
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Proof. Put H, = GjtG, H2 = G/^G^, Я3 = С/Го,з. Then /(Я^) = 3, /(Я2) = 2 
and /(Я3) = 1. Hence Card (Я3) ^ 2, Card (Я^) ^ 3, Card (Я^) ^ 4 and 
Card (G) ^ 5. Denote by A the block of ^̂^ 3 containing the unique idempotent of G. 
Then 1{A) й 3 and Card (Л) g 5 by 11.5. Since GG ^ A, Card (GG) ^ 5 and 
Card (GIPG) й 5, Card (G/^G) ^ 5 by 1.3. On the other hand, either Card (G/p^) й 2 
or Card (G/^G) ^ 2 by 11.1. Thus Card (G/r^) й Ю and Card (G) g 11. 

11.8. Example. Consider the groupoid G = {a, b, c, d, e} with the following 
multiplication table: 

a 
b 
с 
d 
e 

a 
a 
a 
b 
b 
a 

b 
a 
a 
b 
b 
a 

с 
a 
a 
b 
b 
a 

d 

T 
b 
a 
a 
b 

e 
с 
с 
d 
d 
с 

It is easy to check that G is a regular subdirectly irreducible torsion groupoid of 
length 4. Moreover, 1{GG) = 2 and G is not strongly regular. 

11.9. Proposition. A(0) and A(l) are up to isomorphism the only commutative 
regular subdirectly irreducible torsion groupoids. 

Proof. Let G be a commutative regular subdirectly irreducible torsion groupoid. 
By 11.1, Card (G/^G) S 2. Hence /(G) ^ 2 and 5.1 can be applied. 

Problem. Find all regular subdirectly irreducible torsion groupoids of length ^ 5 . 

12. COMMUTATIVE TORSION GROUPOIDS WHOSE EVERY 
FACTOR IS REGULAR 

Let A, В be two non-empty disjoint sets and a, b two different elements of A, 
Then we define a groupoid (7л,в,а,ь as follows: U^g^f, = A и B; if x, у e A and 
w, V e В then xy = uv = a and xu = их =^ b, 

12.1. Proposition. Let A, В be two non-empty disjoint sets and a, b e A, a =^ b. 
Then U^ ßgjj is a commutative torsion groupoid of length 2 and every factor of 
^А,в,а,ъ is regular. 

Proof. Put G = (7^,ß,«,b. Evidently, t^ = {A x A) KJ {В x B) and G\tG ^ A{0). 
Hence G is a torsion groupoid of length 2; evidently, G is commutative. It remains 
to prove that Gjr is a regular groupoid for any congruence r or G. Let r be a con­
gruence of G. If (0, Ь)Е r then Gjr is a semigroup with zero multiplication, hence 
regular. Let (a, Ь)фг and let x, y, z E G be such that (xz, yz) e r. Since xz, yz e 
G {a, b}, either xz = yz — a ox xz = yz = b. In the first case, either x, y, z e A ot 
X, y, z E B. In the second case, either x, y E A, ZEB or x, y E B, z E A. In both 
cases, (x, y) E ÎQ, so that xu = yu and thus (xu, yu) E r for all и E G. 
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12.2. Proposition, The following two conditions are equivalent for any 
groupoid G: 

(1) G /5 a commutative torsion groupoid and every factor of G is regular; 
(2) either G is a semigroup with zero multiplication or there exist two non-empty 

disjoint sets A, В and elements a, b e A (a Ф b) with G = U^ß^^j^. 

Proof. By 12.1 it is enough to prove that (l) implies (2). Let G be a commutative 
torsion groupoid such that every factor of G is regular; assume that G is not a semi­
group with zero multiplication. Then Card (GG) ^ 2. By 11.9, every subdirectly 
irreducible factor of G is isomorphic to one of the groupoids ^(O), A{i). Since every 
groupoid is isomorphic to a subdirect product of its subdirectly irreducible factors, 
we get /(G) = 2 and xx = 0 for all x e G, where 0 is the unique idempotent of G. 
Denote by A the block of t^ containing 0, so that GG ^ A. Define a binary relation г 
on G as follows: (x, y) e r iff either x = y or x, y e A\{0} or (x, y)e tQ\{A x A). 
Evidently, г is a congruence of G and r ç tß- We are going to show that Gjr is sub­
directly irreducible. Let (C, D)e t^/^ and С Ф D. There are elements ceC, d G D; 
we have (c, d)ф r and (ex, dx) e r for all x e G. Then [cd, dd) e r, i.e. [cd, 0) e r, 
cd = 0, ce = cd. Since G is regular, [с, d)e tQ and we get either С = {0}, D = 
== A\{0} or С = A\ {0}, D == (0}. On the other hand, we have ({0}, A \ {O}) G 
€ tc/r and Gjr is subdirectly irreducible by 4.2. By 11.9, Gjr contains at most three 
elements. From this it follows that GJtQ contains at most two elements. Since /(G) = 
= 2, Card {Gjto) = 2. Denote by В the block of tQ different from A. There are ele­
ments a,b E GG Ç A such that xu = b and uv == a for all x e A and u, v e B. Then 
a = uu = 0 and 6 Ф 0, since G is regular. Finally, xy = xO = 00 = 0 for all 
X, y G A. 

12.3. Corollary. Let G be a commutative torsion groupoid such that every factor 
of G is regular. Then: 

(1) Either l{G) S 1 and GG, GJtQ are both trivial or l[G) = 2 and GG, GJtQ are 
isomorphic to A[0). 

(2) Every factor of any subgroupoid of G is regular. 
(3) / / / (G) = 2 then there exists a congruence r of G x G such that (G x G)lr is 

not regular. 

Problem. Describe all torsion groupoids G such that every factor of G is regular. 
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