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1. INTRODUCTION

Iterative systems, first defined by Pawlak [1], are very simplified models of digital
computers. Though it is not possible to express some properties of mathematical
machines (e.g. the concept of program), on the other hand the simplicity of the ac-
cepted model enables advanced algebraic studies.

This paper is concerned with the study of the category whose objects are Pawlak
machines and where morphisms are simulations. By a Pawlak machine, we under-
stand a nonempty set with one partial unary operation. The simulation is a mapping
which has the following intuitive interpretation: the machine B simulates the activity
of the machine A if one step in A corresponds to one or more steps in B and halting
of A forces B to halt as well.

Two problems are investigated: 1) find necessary and sufficient conditions for the
existence of simulations for given two Pawlak machines; 2) describe the category
of Pawlak machines.

2. BASIC NOTIONS

We denote by Ord the class of all ordinals and by N the set of all finite ordinals.
If o € Ord then we put W(x) = {fe€Ord; B < a}.

Let o/ be a category. Then we denote by ob & the class of objects of &/ and by
(P, Q)M the set of all morphisms of P into Q for any P, Q € ob «/.

If o/ is a category such that, for any P, Q € ob &/, card (P, Q)d < 1 then & is
called a thin category. Moreover, if (P, Q), + 0, (Q, P), =+ 0 implies P = Q,
then & is called an ordered class. If </ is a thin category (an ordered class respecti-
vely) then we put P[], Q (P <, Q respectively) iff (P, Q) =+ 0.

An ordered class & is called a chain if P <, Q or Q <, P forany P, Q e ob /.

A category o is called an antichain if (P, Q),, = 0 for any different P, Q € ob /.

Let {«/¢; G € %} be a system of mutually disjoint thin categories indexed by ele-

1

ments of an ordered class 4. The lexicographic sum Y &/ of the given system is the
Ge¥
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thin category 7, whose class of objectsis |J ob &/; and morphisms are defined as
Ge¥

follows: Let K € ob &/, L € ob &, Gy, G, € 4. We put (K, L), + 0, if some of the
following conditions is valid: (a) G; < G,, (b) G, = G, and K [ [, L.
If 9 = {1, 2, n} is an antichain or a chain with the natural order resp. then
4

l
we put Y Ag=oA + ALyt ...+ ALy Y A=A DA, D ... D A, respec-
tively. Ge9 Ge¥9

Let o/, # be ordered classes. By a cardinal product we understand the ordered
class ¢ = o/ . % such that ob ¢ = ob &/ x ob % and, for any (P, Q,), (P,, Q,) €
€ob ¥, (P1a Q:) §@(P2, Qz) iff Py =4 Py, Q1 =4 Q,. Compare [5]

Let &/ be a category. Then it is called a category with non-empty homs, if, for
each P, Q € ob &, there holds (P, Q) » + 0. If o is a category, then a thin category
o/(b) such that ob #(b) = ob. and P [[,q Q iff (P, Q) * 0 for each P. Qe
eob « is called a basic category for o/. A basic category o/(b) of < is a thin
category with the same objects and the same existence of moiphisms.

Definition. Let A be a nonempty set, / a partial mapping of A into itself. Then the
ordered pair A = (4, f) is called a Pawlak machine. Let A = (4, f) be a machine.

We put a) DA = A — dom f, b) f° = id,. Let n = 0 be an integer and suppose
that the partial mapping f" of A into itself has been defined. If x € 4 is such that
["(x) is defined and f"(x) € dom £, then we put f/"*'(x) = f(f"(x)), By induction we
define /™ for any nonnegative integer m.

Definition. Let A = (4,f), B = (B, g) be machines, u: 4 —» B a maping. It is
said to be a simulation of A into B if the following conditions are satisfied:

a) For any x € dom f, there exists an integer k(x) = 1 such that p(x)e dom g*®
and p(f(x)) = ¢*(u(x)).

b) u(DA) < DB.

3. SIMULATIONS OF CONNECTED MACHINES

Let A = (4,f) be a machine. We put g4 = {(x, y) € A x A; there exist m = 0,
n 2 0 such that x e dom f™, y e dom f*, f™(x) = f"(»)}-

Clearly, ¢A is an equivalence on A and its blocks are called components of A.
A machine is said to be connected (abbreviation c-machine) if it has exactly one
component.

In this paragraph let A be a c-machine. Then, clearly, DA contains at most one ele-
ment. If DA + 0 we denote by dA its only element. Further we define Z4 = {x € A;
there exists n(x) > 0 such that x e dom f"® and f")(x) = x}, RA = card Z4,

KA = {xe A — ZA; there exists a sequence (x;)iey Such that

xo = x and f(x;+,) = x; for any ie N} .
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We put
A® = {xed; [ (x) =0},
A*={xeA - U 4% f'(x) = U A*} for any ordinal o > 0 ;
A<a A<a

94 = min {A€Ord; A* = 0} .

Let oo, 00, ¢ Ord and suppose that « < o, < o, for each « € Ord. We define
A®' = KA, A = ZA, SA(x) = x if xe A* for some x € W(94) U {00y, 00,}.

Lemma 1. (i) If DA % 0, A”" =+ 0, then SA(dA) = 0.
(i) If DA # 0, A" = 0, then 34 is an isolated ordinal and SA(dA) = 94 — 1.
(iii) If DA = 0, A®* = 0, A®* = O then 34 is a limit ordinal cofinal with .
For the proofsee [3], [4]. O
We put
0' = {A€Ord; 4 > 0, 1 an isolated ordinal} ,

0' = {A€Ord; A a limit ordinal cofinal with w,} .
Let d,, d,, d; ¢ Ord and suppose that « < d; for any a € 0}, § < d, < d; for any
BeO.
Definition. Let A be a c-machine. Then we put

dy, if RA%0,

d, if RA=0, KA+0, DA=0,
d, if RA=0, KA+0, DA+0,
94 if RA=0, KA=90.

Xod =

Definition. Let A, B be c-machines. We put (4, B) € sAD if
(a) card DA = card DB,

(b) XoA = xoB.

Lemma 2. Let A, B be c-machines, u : A — B a simulation.
(i) For any n > 0 and x e dom f" there holds

H(f"(x)) = g- TR (x))
(i) If for x e dom f there exists n > 0 such that x e dom f" and f"(x) = x, then
there holds
RO FRICN UL (1)) = ()
(iii) p(zA) < zB.
(iv) If RA % O then RB # 0.
(v) SA(x) < SB(u(x)) for any xe A.

Theorem 1. Let A, B be c-machines. Then there exists a simulation p:A— B
if and only if (A, B) e s4D.
For the proof of lemma and theorem see [7]. [
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4. SIMULATIONS OF PAWLAK MACHINES

Suppose that A is a Pawlak machine. We denote by ©A the partition 4/¢A4 and
further
0,4 = {Te ©4; DT + 0},

0,4 = {Te ©4; DT = 0} .

Definition. Let A be a Pawlak machine. We put
sup {xoT; Te ©,4} if ©4 %0,
1A = .

0 if @, 4=0;
4 Jsup {xoT; Te @A} if O,A %0,
X2 = 0 if ©,4=0;

x4 = (114, 124) .

Definition. Let A, B be Pawlak machines. Then we put
xA =B iff A= yB, x4 = 1B.

Lemma 3. Let A, B be Pawlak machines. Then there exists a simulation p: A — B
iff for any T, € OA there exists T, € OB such that (T}, T,) € sAD.
The assertion follows from theorem 1 and lemma 2(i). [J

Theorem 2. Let A, B be Pawlak machines. Then there exists a simulationp : A — B
if and only if yA < yB.

Proof. Necessity. Let there exist a simulation u : A — B. Then for any T; € ©4
there exists T, € OB such that (T, T,)e sAD. If ©;4 = 0, then ;4 = 0 < y,B.
Let ©,4 + 0. Let T, € @A be arbitrary. Then there exists T, € @B such that
(Ty, T,) e sAD. Thus DT, + 0, T, e ©,B and y,T; < xoT,. Then 1,4 < y;B
follows from definition.

Analogously we obtain y,4 < y,B. Hence, together y4A < xB.

Sufficiency. Let yA4 < yB. Then y;A < yB, y,4 < x,B. Let T, € @A be
arbitrary.

If T, € ®,4, then according to the premise there holds y,T; < x4 < yB.
Hence, by definition of x,;B there exists T, € ©;B such that y,Ty < y,T,; i.e.
(Ty, T,) e sAD. Analogously if T; € ©,A4. Thus, to arbitrary T; € @A there exists
T, € OB such that (T;, T,) € sAD. Thus there exists a simulation u: A - B. [J

5. THE CATEGORY OF PAWLAK MACHINES

Lemma 4. Let A = (4, f), B = (B, g), C = (C, h) be Pawlak machines, j : A - B,
v:B — C simulations. Thenv.pu:A— C is also a simulation.
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Proof. Let x € dom f. Then according to the definition of u there exists k(x) > 0
such that u(x) = y edom ¢**® and p(f(x)) = ¢g**(y) holds. By definition of v
and lemma 2(i) it follows that v(y)edom KO ¥ +kEOTI0N and y(gkt)(y)) =
= PFOIE RSO TION(y( ). Hence v(u(x)) € dom RO HkEOTI0) apgd v(u(f(x))) =
= W(gO(y)) = HOIFTHRETION () = RO KGO Oy (x))). Thus v p
is a simulation of Ainto C. []

Further on we want to study the category of all Pawlak machines where morphisms
are simulations. This category is denoted by the symbol & . &° means the category
of all c-machines.

We can describe categories & and & by means of %(b) and &(b).

Definition. Let &° be the category of c-machines. We put
f— 9= {Ac g DA +0};
f—9={Ae7; DA =10}.
We denote 0y a thin category such that ob 0; = 0’ u {d,} and (a, f)e, + 0 iff
o < f for any «, f € ob 0,.
Further let 0, be a thin category such that ob 0, = 0' U {d,, d5} and (y, 8),, + 0
iff y <6 forany y,0€o0b0,.
Finally we put 0 = 0, + 0,.
Let 2€0' v 0' U {d,, d,, d;} be arbitrary. Then we put

A— 9 ={Ae P yod = A}.

1

Lemma 5. (i) f — &°(b) = Y. « — &°(b);
1 aely

()7~ #0) = 3 1 - 7

(iii) #(b) = f — F(b) + ] — &°(b)

(iv) &<(b) = Zl:l — F(b), where the subcategory ). — ¥(b) is with non-empty
homs forliz@ny A€ 0.

Proof. For A, Bef — &¢ there exists a simulation of A into B iff y,4 < y,B
in 0. Analogously for A, Bef— &°. Thus, (i) and (ii) hold. If Aef — &, Be
€ f — &° there never exists a simulation of A into B since DA + 0, DB = (. Ana-
logously vice versa. Thus, (iii) holds. The assertion (iv) is the consequence of the more

1 1 1

general formula ) ;=) o+ ) o/ The fact that the subcategory
Ge91+9, 6<%, 6%,

% — &¢(b) is with non-empty homs for any 4 € @ is a consequence of theorem 2. []

We denote by " the thin category such that ob " = {(ay, @,); a; € {0} U 0" L
U fdi}; ae{0} U0' U {d,,ds}} — {(0,0)}. For arbitrary a = (o, ), b=
= (B1, B2)eob A", we put (a,b)y + 0 iff o, < f;, o < B,. Clearly, & is an
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ordered class, and y : & — & is an object funktion. It can be proved by induction
that y& = .
Let a € A be arbitrary. Then we put

a— % ={Ae¥; yA=a}.

Theorem 3.

1
() =Y a— 7(b),
aeX
where the subcategory a — &(b) is with non-empty homs for any a € X

Proof. 1. Let a € & be arbitrary, A, Be a — &. Then by theorem 2 there holds
(4, B)¥ # 0. Thus, a — & is the category with non-empty homs.
2. Clearly, ob #(b) = U ob (a — &(b)) with disjoint summands.

Let A, Be &(b) be arbltrary, Aeca — #(b),Bea — y(b) Then by definition of
the lexicographic sum, (4, B); + 0 iff a < a’, and a = a’ implies A [[,- @) B.
This holds iff (4, B)y, + @ by theorem 2. [

6. THE BREADTH OF THE CATEGORY OF PAWLAK MACHINES

Let us define the concept of the breadth b(%) for arbitrary category .

If there exists a proper subclass %’ of ¢ which is an antichain, then we put b(%) =
= oot

If, otherwise, any antichain ¢’ < % is a set, we denote A, = {m; there is an anti-
chain €’ < % such that card ¢’ = m}. If A, is not bounded, then we put b(%) = oo.
If it is bounded, we denote B, = {n; n = m for any m € A,}. Then we put b(%) =

= min By. Compare [8].

1
Theorem 4. Let o/ = ) o/, be a category and &/; a chain for each I € %. Then
Ie%

there holds b(/) = b(%).

1
Proof. Let & = ) /. It means that ob &/ = {J ob &/, where ./, are mutually
Ie% Ie%

disjoint thin categories and for arbitrary I,,I, € ¥ and K € &/;,, Le </,,, the con-
dition (K, L), + 0 holds iff I, <gI, andI; = I, implies K [ [#/,, L. Let (K, L), =
= 0, K + L; this situation will be denoted by writting K |, L. That means either
Iy o1, or Iy =I5, (K, L)y, = 9. The latter part of the condition cannot occur
because b(s/;,) = 1. Thus, it follows K ||, L iff I; |41, and we obtain b(s/) =
=b%). O

Lemma 6.

(&) = 2.
Proof. It follows from lemma 5.(iv) since @ = 0, + 0, where 0,. 0 are chains.

a
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Definition. Let &/ be an ordered class. Then N € ob o is called the least object
of o if N <, M for any M € ob «/.

An ordered class .« is called a well ordered class if any its non-empty subclass has
the least object.

Theorem 5. Let o/, # be well ordered classes which have at least N, objects.
Then b( . B) = N,.

Proof. First we prove that in ¢ = o/ . % all antichains are finite. Let P = (P, P,),
0 = (04, Q,)e % and (P, Q) = 0. Then there holds either P, <, Q, P, >, 0,
or P, >, 0y, P, <4 Q,. Suppose that in ¥ there exists an infinite antichain 4, =
= {(Ky, Ly), (K3, L,) ...}. Then all K; are mutually different and L; as well. Since &/
is a well ordered class without loss of generality we can assume that K, <, K, <,
<. .... Thus, it follows that L, >, L, >,.... But this contradicts the condition
that 2 is well ordered. We have proved that b(%) < N,. In the rest we prove that
for any n > O there exists an antichain 4’ in % such that card 4’ = n. Let n be
arbitrary. Since o/, # have at least ¥, objects, we may choose objects A; <,
<gA;, <gy...<y4A,In o and objects B; >3 B, >4... >4 B, in 4. We put
%' = {(4i B;); 1 £ i < n}. Clearly, ¢’ is an antichain and card ' = n. [J

Corollary.
B() = N, .

Proof. The assertion follows from theorems 3, 4 and 5 because " = ({0} @ 0,).
({0} ® 0,) — {(0,0)} where both factors are clearly well ordered classes. []
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