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CYCLICALLY ORDERED SETS
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It is well known that it is impossible to define an orientation of a circle by means
of a binary relation, but it is sufficient to use a ternary relation. Such a relation, the
so called cyclic order relation, must be asymmetric, transitive, cyclic and compiete
(definition of these concepts are below). The aim of this paper is to derive properties
of those relations which are not necessarily complete — an analogue of order relations
in connection with linear order relations.

1. TERNARY RELATIONS

1.1. Definition. Let G be a set. A ternary relation T on the set G is any subset
of the 3™ cartesian power G3 : T < G>.

1.2. Definition. Let G be a set, T a ternary relation on G. This relation is called:
asymmetric, iff (x, y,z)e T=(z,y,x)€T
transitive, iff (x,y,z)eT, (x,z,u)e T=(x,y,u)eT
cyclic, iff (x,y,2)eT=(y,z, x)eT
complete, iff x,y,z€G, x # y + z % x = there exists a permutation (u, v, w)
of the sequence (x, y, z) such that (u, v, w)e T

1.3. Lemma. Let G be a set, T a ternary relation on the set G which is asymmetric
and cyclic. Let x, y,z€ G, (x, y, z) € T. Then (y, z,x)e T, (z,x, ) e T, (z, y, ) E T,
(r,x,2)ET, (x,z, p)ET.

Proof. (y,z,x)e T, (z,x, y)eT follows from the assumption that T is cyclic,
(z,y,x) ET follows from the asymmetry of T. If (y,x,z)eT, then (z, y,x)eT
because T is cyclic and this is a contradiction. Analogously (x, z, y) e T implies
(z, y, x) e T, a contradiction.

1.4. Lemma. Let G be a set, T a ternary relation on G which is asymmetric and
cyclic. Let x, y,2€ G, (x,y,z)€T. Then x * y + z + x.

Proof. If x = z, then (x, y,x)€ T which contradicts the asymmetry of T. If
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x =y, then (x, x, z), thus (x, z, x) € T because T is cyclic and this contradicts the
asymmetry. Analogously y = z implies (x, y, y)e T, thus (y, x, y) e T, a contradic-
tion.

1.5. Lemma. Let G be a set, T a ternary relation on G which is asymmetric,
cyclic and complete. Let x,y,z€ G, x £ y + z = x. Then just one from the
possibilities (x, y, z) € T, (z, y, x) e T holds.

Proof. At most one of the possibilities (x, y, z) € T, (z, y, x) € T holds, because T
is asymmetric. As T is complete, there exists a permutation (u, v, w) of the sequence
(x, y, z) such that (u, v, w)e T. If this permutation is even, then (x, y, z) e T be-
cause Tis cyclic; if this permutation is odd, then (z, y, x) e T.

1.6. Theorem. Let G be a set, T a cyclic ternary relation on G. T is transitive if
and only if one of the following equivalent conditions holds:
(1) (x,y,2)eT, (x,u,y)e T=(x,u,z)eT,

(2 (x,y,2)eT. (x,u,y)e T=(u,y,z)e T,
(3) (x,y,2)eT. (y,u,z)eT=(x,y,u)eT,
(4) (x,y,2)eT. (y,u.z)eT=(x,u,z)eT.

Proof. The transitivity of Tis equivalent to (1) according to the definition.

(1) = (2): Let (1) hold and let x,y,z,ueG, (x,y,z)€T, (x,u,y)eT. As T is
cyclic, (y,x,u)eT, (y,2 x)eT hold and thus (y, z, u) e T according to (1). The
cyclicity of T then implies (u, y, z) € T and (2) holds.

(2) = (3): Let (2) hold and let x,y,z,ueG, (x,y,z)eT, (y,u,z)e T. Then
(z, y,u)e T, (z, x, y) € T and according to (2), (x, y, u) € T. Hence (3) holds.

(3) = (4): Let (3) hold and let x,y,z,ueG, (x,y,z)eT, (y,u,z)e T. Then
(u, z, y) € T, (z, x, y) € Tand according to(3), (u, z, x) € T. As Tis cyclic, (x, u, z) e T
and, therefore, (4) holds.

(4) = (1): Let (4) hold and let x,y,z,ueG, (x,y,z)e T, (x,u,y)e T. Then
(u, y,x)e T, (y, z, x) € T and accordingto (4), (u, z, x) € T. Hence (x, u, z) e T and
(1) holds.

1.7. Definition. Let G be a set, T a ternary relation on G. The ternary relation T*
on G defined by
(x,y,2)eT*<(z,y,x)e T

is called the dual relation to T.

1.8. Lemma. Let G be a set, T a ternary relation on G. Then:
(1) If T is asymmetric, then T* is asymmetric,
(2) if Tis cyclic, then T* is cyclic,
(3) if Tis complete, then T* is complete,
(4) if Tis transitive and cyclic, then T* is transitive.
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Proof. (1) and (3) are trivial.

(2): Let Tbecyclicand x, y, ze G, (x, y, z) € T*. Then (z, y, x) € T, thus (x, z, y) €
e Tand (y, z, x) € T*, i.e. T* is cyclic.

(4): Let Tbe transitive and cyclicand let x, y, z, u € G, (x, y, z) € T*, (x, z, u) e T*.
Then (u, z, x)€ T, (z, y, x) € Tand by 1.6. (4) (u, y, x) & T. Hence (x, y, u) € T* and
T* is transitive.

1.9. Denotation. Let G be a set, let T be a ternary relation on G and let x, € G.
We denote by 0r ., the binary relation on G defined as follows:

(xs }’) € QT,xo e (x()’ X, y) eT.

The following theorem shows why we call a ternary relation T “asymmetric” and
“transitive”. :

1.10. Theorem. Let G be a set, let T be a ternary relation on G. Then:

(1) or.x, is a transitive binary relation on G for each x, € G if and only if the
ternary relation T is transitive.

(2) If T is cyclic then orx, is an asymmetric binary relation on G for each
Xo € G if and only if T is asymmetric.

Proof. (1) Let oy , bea transitive binary relation for each x, € G and let (x, y, z) e
€T, (x.z,u)e T. Then (y, z) € 01 s (2, ) € 01 5, thus (y, u) € 07, and (x, y,u)e T.
Hence T'is transitive. Conversely, let T be transitive and x, € G, (x, ) € 07 ,, (v, 2) €
€ 075, Then (o, x, y)€ T (%o, ¥, 2z) € T, thus (xo, x, z) € T and (x, z) € ¢ ,- This
implies that oy ., is transitive.

(2) Let Tbe cyclic and let ¢ , be an asymmetric binary relation for each x, € G. Let
(x,y,z)e T. Then (z,x,y)e T, thus (x,y)eor. and (y, x)Eor.. This implies
(z . x) € T and T is asymmetric. Conversely let T be cyclic and asymmetric and let
Xo € G, (X, y) € 07,%, Then (%o, x, y) € T, thus (x, y, x,) € T and (x,, y, x) & T. This
means (), X) € @7, and gy x, IS asymmetric.

2. CYCLIC ORDER

2.1. Definition. Let G be a set, C a ternary relation on G which is asymmetric,
transitive and cyclic. Then C is called a cyclic order on the set G and the pair (G, C)
is called a cyclically ordered set.If, moreover, card G = 3 and C is complete then C
is called a complete cyclic order on G and (G, C)is called complete cyclically ordered
set or a cycle. If C = 0 then C is called a discrete cyclic order and (G, C) is called
a discrete cyclically ordered set.

2.2. Remark. If C is a cyclic order on a set G then C* is also a cyclic order on G.
If (G. C) is a cycle then (G, C*) is a cycle.

Proof follows from 1.8.
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2.3. Remark. Let C be a cyclic order on a set G, let H = G. Then the restriction
Cu=Cn H?3 is a cyclic order on H.

Proof is trivial.

With respect to this fact, any subset H of a cyclically ordered set (G, C) will be
mentioned as a cyclically ordered set with the induced ternary relation Cj; = C n
n H?. Especially, if Cjy is a complete cyclic order on H, then H is called a cycle
in (G, C). For instance, if x, v, z € G, (x, , z) € C, then {x, y, z} is a cycle in (G, C).

2.4. Definition. Let (G, C) be a cyclically ordered set and let H be a cycle in (G, C).
H is called a maximal cycle in (G, C), iff it is not contained in any cycle in (G, C)
as a proper subset.

2.5. Theorem. Let (G, C) be a cyclically ordered set. Then any cycle in (G, C)
is contained in a maximal cycle in (G, C).

Proof. Let H be a cycle in (G, C). Denote by & the set of all cycles in (G, C)
containing H; & is ordered by the set inclusion. Let &; < & be a chain in &.
Put K = J&,; we show that K is a cycle in (G, C). Letx, y,zeK,x+ y + z + x.
Then xe H;, ye Hj, ze H, where H;, H;, H, € &;. As &, is a chain with respect
to set inclusion, one of the sets H;. H;, H, contains both others, i.e. there exists H,, €
e ¥, suchthatH, = H,,H; < H,,H, = H,. Thenx, y, z€ H, and as H,, is a cycle,
either (x, y, z)e C or (z, y, x) € C holds. This implies that K is a cycle in (G, C).
Thus each chain in % has an upper bound in % and & contains a maximal element
according to Zorn’s lemma.

2.6. Definition. Let (G, C). (H, D) be cyclically ordered sets, let ¢ : G » H be
a bijection. ¢ is called an isomorphism, iff x, y,z€ G, (x, y, z) € C < (¢(x), o(y),
o(z))e D. ¢ is called an antiisomorphism, iff x,y,zeG, (x,y,z)e C < (¢p(z),
o(y), p(x)) € D. Cyclically ordered sets (G, C), (H, D) are called isomorphic (anti-
isomorphic), iff there exists an isomorphism (antiisomorphism) ¢ : (G, C) - (H, D).

2.7. Definition. Let I be a set and let (G;, C;) be a cyclically ordered set for any
iel. Let the sets G; (i eI) be pairwise disjoint. Put G = U G;, C = U C;. Then

iel iel
(G, C) is called the direct sum of cyclically ordered sets (G, C;) (i eI); we write
(6.C)=3(G, Cy). If I ={1....n} we write Y (G, C;) = (G, Cy) + ...

iel iel

... + (G, C,).

2.8. Lemma. Let I be a set and let (G;, C;) be a cyclically ordered set for any i €l.
Let the sets G, (i € I) be pairwise disjoint. Then Y (G;, C;) is a cyclically ordered
set. el

Proof. Trivial.

2.9. Definition. Let (G, C) be a cyclically ordered set, let x, € G. (G, C) is called
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X, — connected, iff the following condition holds: xe G — {x,} = there exists
y € G such that (xo, x, y) € C or (xo, y, x) € C. (G, C) is called strongly x, — con-
nected, iff the following condition holds: x, ye G — {xo}, x # y = (x. X, y)e C
or (xo, y,x) e C.

The concept of the strong x, — connectedness is, however, superfluous, because of:

2.10. Theorem. Let (G, C) be a cyclically ordered set such that card G = 3.
If (G, C) is strongly x, — connected for some x, € G, then (G, C) is a cycle.

Proof. Let x,y,z€G, x + y + z + x. If xoe{x, y,z} then (x,y,z)eC or
(z, y.x)e C by definition of strong x, — connectedness. Thus let x, € {x, y, z}.
Itis (xo, x, y) € C or (xo, ¥, x) € C, and (xo, x, z) € C or (x. z, x) € C, and (X, y, z) €
€ C or (X, z, y) € C. Suppose first (xo, x, y) € C.If (x,, z, x) € C, then (z,x, y)e C
by 1.6 (2). If (xo, x, z) € C, then in the case (x,, y, z) € C we have (x0, ¥, 2) € C,
(x> x, y)€ C = (x, y, z) € C by 1.6 and in the case (X, z, y) € C we have (x,, z, y) €
€ C, (xg, %, z) € C = (x, z, y) € C by 1.6. Suppose now (xo, y, x) € C. If (x,, x, z) € C,
then (y,x,z)e C by 1.6. If (xo, z, x) € C then in the case (xo, y,z)e C we have
(7, z, x) € C and in the case (x,, z, y) € C the assumption (xo, y, x) € C, (x,, z, ¥) € C
implies (z, y, x) € C. Thus the relation C is complete and (G, C) is a cycle.

3. ORDER AND CYCLIC ORDER

3.1. Theorem. Let (G, C) be a cyclically ordered set, let X, € G. For any x,ye G
put X <c oV < (%0, X, )€ C or xo = x + y. Then <c ., is an order on G with
the least element x,.

Proof. By 1.10 and 1.4 <, is an asymmetric and transitive binary relation on
G — {x,}, i.e. it is an order on G — {xo}. But xo <c .,y forany ye G — {xo}
by definition of the relation < ., i.e. x, is the least element in (G, <. ) and<c ,
is an order on G. '

3.2. Remark. Dually we can define x <“™ y < (X, ¥, %)eC or x + y = x,;

then <€*° is an order on G with the greatest element x,.

3.3. Lemma. Let C, D be cyclic orders on the set G, let xo€ G. If C < D, then
<C.xo S <D,xo‘

Proof. Trivial.
3.4. Lemma. Let C be a complete cyclic order on the set G, let Xo € G. Then <.,
is a linear order on G.

Proof. If x, ye G — {x,}, x # y, then (x,, X, y) € C or (x,, y, x) € C. In the first
case we have x <c ,, y, in the second y <c,y, X. Further, x, <¢ ., y holds for any
y€G — {xo}. Thus <, is a linear order on G.
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3.5. Theorem. Let G be a set, let < be an order on G. Define a ternary relation
C. on G by (x,y,z)eC<©x <y<zory<z<xorz<x<y. Then C.
is a cyclic order on G.

Proof. Let x, y, z€ G, (x, ¥, Z)EC<. Thenx < y<zory<z<xorz<x<
< y. Thusneither z < y < xnory < x < znorx < z < y holds, i.e. (z, y, x) e C«
does not hold. The relation C. is thus asymmetric.

Let x,y,z,ueG, (x,y,2z)eC., (x,z,u)e C.. Then either x < y <z or y <
<z<xorz<x<y, andeither x <z<wuorz<wu<xoru<x < z holds.
It is easy to see that only the following possibilities do not lead to a contradiction:

x<y<z, xX<z<u,
u

x<y<z, <x<z,
y<z<x, z<u<x,
z<x<y, z<u<x.

In the first case we have x < y < u, in the second u < x < y, in the third y <
< u# < x and in the fourth u < x < y. Thus in all cases (x, Vv, u)e C.and C. is
transitive. Let x, y, z € G, (x, ¥, z) € C.. Then from the definition of the relation C .
it follows that (y, z, x) e C, and C is cyclic. Thus the relation C. on G is asymmetric,
transitive and cyclic, i.e. it is a cyclic order on G.

3.6. Lemma. Let G be a set, let <,, <, be orders on G. If <; S <,, then
C., cC,,.

Proof. Trivial.

3.7. Lemma. Let G be a set, let < be a linear order on G. If card G = 3, then C.
is a, complete cyclic order on G.

Proof. Let (G, <) be a linearly ordered set and let x, y,z€ G, x + y # z % X.
Then just one of the following possibilities holds:

x<y<z, y<z<x, z<x<y,
z<y<x, y<x<z, x<z<y.

In the first three cases we obtain (x, y, z)e C, in the last three cases we have
(z, y, x) € C. Hence C. is a complete cyclic order on G.

3.8. Theorem. Let (G, <) be an ordered set with the least element x,. Then
<= <C<,xo'

Proof. Let x,y€G — {xo}. Then x < y<x, <x < y<(x,X,y)eCc <
<> X <(_ .y, y- Further, the element x, € G is the least element with respect to both <
and <c_ .. Thus < = <¢_ -

3.9. Theorem. Let G be a set, x, € G, C a cyclic order on G. Then C < C.

<cC,xo

Proof. Let x,y,zeG, (x,y, Z)e C Then x <¢ .V <cxZ OF Y <(Coxo

<c,x0'
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<y Z <caoX OF Z <cyy X <cy, - Suppose first x,€{x, y,z}. Then in the
first case we have (x,, X, y) € C, (X, y, z) € C. By 1.6. (2), (x, y, z) € C holds. In the
second case, we obtain (x,, y, z) € C, (xo, z, x) € C, thus, by 1.6, we have (y, z, x)e C
and (x,y,z)eC. In the third case, we obtain (x, z, x)€ C, (xo, x, y) € C, thus
(z,x,y)e C and (x, y, z) € C. Now let x, € {x, y, z}. By an even permutation of the
sequence (x, y, z) we can get that x, is in this sequence at the first place, i.e. it suffices
to consider the case (xo, X, y) € C<.. . Then Xy <¢ ., X <c,x, ¥ and hence (x, X, y) €
€eC.ThusC.. < C.

<c,xo0

3.10. Remark. In general the equality does not hold in 3.9.
Example. G = {x,, y, z, u, v, w}, C = {(xo, ¥, 2), (> 2. Xo), (2, X0, ¥), (u, v, W),
(v, w, u), (w, u, v)}. Then
<cmo = {(X0 ¥)s (%0 2)s (¥0, 1), (%05 ©): (Xo» W), (v, 2)} »
Cecro = (%05 75 2), (5 2. %0): (2 %0 ¥)} -
The fact that C = Cevira is not valid in general leads to the question under which

assumptions this equality holds.

3.11. Lemma. Let (G, C) be a complete cyclically ordered set, let x,e€ G. Then
C=C

Proof. It suffices to show that C . _ is a complete cyclic order on G. By 3.4, <. .,
is a linear order on G and by 3.7. C is a complete cyclic order on G.

<c,xo"

<c,xo

3.12. Definition. Let (G, C) be a cyclically ordered set, let x, € G. (G, C) is called
xo — stable iff the following condition holds:
x,y€G — {x,}, (z,x,y)e C for some z€ G = (xo,x,y)e C or (xg, y,x)eC.

3.13. Remark. Let (G, C) be a cyclically ordered set. If C is a complete cyclic order
or a discrete cyclic order then (G, C) is x, — stable for each x, € G.

3.14. Theorem. Let (G, C) be a cyclically ordered set, let x, € G. (G, C) is xo —
stable if and only if each maximal cycle in (G, C) contains the element x.

Proof. 1. Let (G, C) be x, — stable and let H be a maximal cycle in (G, C). Then
card H = 3 and assume x, € H. For any x, y e H, x + y there exists an element
z € H such that (z,x, y)e C or (z,y,x)e C. As (G, C) is x, — stable, the above
mentioned implies (xo, X, y) € C or (X, y, x) € C. This means that the cyclically
ordered set (H U {x,}, Cimoxpy) I8 strongly x, — connected. By 2.10 (H U {x,},
C Hoixey) 1S @ cycle. But this contradicts the maximality of H.

2. Let each maximal cycle in (G, C) contain the element x, and let x, y € G — {x,},
z € G be such elements that (z,x, y)e C. As {x, y, z} is a cycle in (G, C), by 2.5
there exists a maximal cycle H in (G, C) such that {x, y, z} < H. According to the
assumption x, € H holds. As H is a cycle, we have (xo, X, y) e C or (xo, y,x)eC.
Thus (G, C) is x, — stable.
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3.15. Theorem. Let (G, C) be a cyclically ordered set, let x,€ G. Then the
following statements are equivalent:
(A) C = C<C,xo’
(B) (G, C) is xo — stable.

Proof. 1. Let (A) hold. Suppose that (B) does not hold, i.e. there exist elements
x,,z€ G — {xo} such that (z,x,y)eC, (xo,x, y)EC, (xo, »,x)€C. Then the
elements x, y are incomparable in the order <. . and thus (z, x, y) € C. . Hence
C # C..,, contradicting (A). Therefore (B) holds.

2. Let (B) hold and let x, y,z€ G, (x,y,z)eC. Suppose first x,€{x, ), z}.
Then (xo, x, y) € C or (xq, y,x) € C, and (xo, x, z) € C or (xq, z, x) € C, and
(X0, ¥, z) € C or (%o, z, y) € C. This implies that ({x,, x, y, z}, Clixorc.y,) 1S @ strongly
xo — connected cyclically ordered set, thus, by 2.10, {xo, x, y, z} is a cycle in (G, C).
By 3.11, we have

Cl(xo,X.)'.z} = (CI(Xo,x,y.Z))<

€| xo,x,y,z} %0

so that
(X, ¥, Z) € (C'(xo’x‘y':))<(Cl{xo,x,y,z})s"o 5

ie. (x,y,z)eC

Now suppose xg € {x,y,z}, for instance x, = x. Then (xo,y,z)eC, thus
Y <cuxo 2o Hence Xo <cV <cuoz and (xq,,z)€ C... Analogously we
consider the cases xo = y and x, = z. Hence C € C.. _ and by 3.9, C = C
This means that (A) holds.

By means of this theorem we prove further the following statement:

<cC.xo"

<c,xo"

3.16. Lemma. Let (G, C) be a cyclically ordered set, let xo € G. Then

Cecn = (C<C,xn)<(c<c’xn),xu .

Proof. By 3.15 it suffices to show that (G, C<C,n) is x, — stable. Let x, ye G —
— {xo}, z€G and let (z,x,y)eC._ . Suppose (xo,%,y)ECc. ., (%o, ¥,X)E
€ C, As xq is the least element in (G, < ), this means that the elements x, y
are incomparable with respect to <. But then (z, x, y) € C a contradiction.

<C,xo’

4. CONNECTEDNESS

4.1. Definition. Let (G, C) be a cyclically ordered set, let A = G, 4 & 0. The
subset A is called connected, iff the following condition holds: x, y € A, x % y = there
exist a natural number n and elements x;, y;, z; € A (1 < i < n)such that (x;, y;, z;) €
eC for all i=1,...,n, x€{xy, ¥1. 21}, V€ {Xp yp z,} and {x;, yi z;} 0 {x;41,
Viv Zigqy FQfori=1,..,n— 1L

4.2. Remark. Let (G, C) be a cyclically ordered set, let A = G, A + 0.If (4, C|,)
is xo — connected for some x, € A then A is connected.
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Proof. Let x,ye 4, x £ y. If x + x, + y, then there exist z, u € A such that
(x> x,2) € C or (xg, 2, x) € C, and (x,, y, u) € C or (X, u, y)eC. As {x0,x,z} n
N {Xo, ¥, 4} 2 {x,}, the condition in 4.1 is satisfied by n = 2. If x = x, then there
exists z € A such that (xo, y, z) € C or (xo, z, y) € C so that the condition of 4.1 is
satisfied by n = 1.

4.3. Remark. Let (G, C), (H, D) be cyclically ordered sets, let ¢ : G — H be an
isomorphism (antiisomorphism). If A is a connected subset of (G, C) then ¢(A)
is a connected subset of (H, D).

Proof. Trivial.

4.4. Theorem. Let (G, C) be a cyclically ordered set and let {A;; i eI} be a system

of connected subsets of(G, C)IfA; 0 A; + O foralli,j el, then J A, is connected.
iel
Proof. Let x, yeU A;, x # y. Then there exist i,j el such that xe 4;, y e 4;.
iel
According to the assumption 4; N A; # 0; choose an element x, € A4; N A;. Suppose
first x & xq + y. As X, x,€ 4; and A, is connected, there exist a natural number n
and elements X, y;, Zx€ A; (1 £ k < n) such that (x,, y, z,) € C for each k =
=1,..,n,x€ {xp V1> 21}, Xo € {xm Yns Zn} and {xk9 Vies Zk} ) {xk+1a Y+ 15 Zk+1} *
+0fork=1,...n— 1. As x4, ye 4, and A; is connected, there exist a natural
number m and elements u,, v, w, e 4; (1 <1< m) such that (u,, v, w,)e C for
each I =1,...,m, xo€{u, v, W}, y€{ty, vy wy}, and {ug, v, w/} O {15y, 04y,
wipq) F=0forl=1,..,m— 1. Put X,y =y, Yoo =10y Zys; = w, for I =1,...
woom. Thenx;, yo €U A, (1 £k £ n+ m), (% yoz)eCfork = 1,...,n + m,
iel

xXe {xl’ Vi 21}’ S {xn+m> Yn+m> Zn+m} and {xk’ Vi Zk} 8 {Xk+1’ Yi+1s Zk+1} + 0 for
k=1,....,n+ m— 1. If, for instance, x = x, # y, then x, ye 4; and thus the
condition of 4.1 is satisfied, 4; being connected.

4.5. Corollary. Let (G, C) be a cyclically ordered set, let {A;; iel} be a system
of connected subsets of (G, C). If (\ A; + 0 then U A; is connected.
iel iel
4.6. Corollary. Let (G, C) be a cyclically ordered set and let {A;; i €I} be a mono-
tone system of connected subsets of (G, C). Then U A; is connected.
iel
4.7. Lemma. Let (G, C) be a cyclically ordered set and let (A,) be a finite or
countable (of type w) sequence of connected subsets of (G, C). If A, " A,y +0
for all n for which A, ., is defined, then \JA, is connected.

Proof. A4, is connected according to the assumption. If 4, U ... U 4, is connected
and if A4, is defined then (4; U ... U A4,) N 4,4,y 2 4,0 Ayyy £0,and 4, U ...
...U A4, U A,,, is connected by 4.4. Thus the assertion is proved by induction in
the case when the sequence (4,) is finite. If (4,) is a sequence of type « then put
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o

B, = A; U ... U A, for all natural n. Then (B,) is a monotone sequence, U 4, =
o0 n=1

= U B, and, according to the first part of the proof, each B, is connected. Hence

n=1 0

4.6 implies that J 4, = U B, is connected.
n=1

= n=1
4.8. Theorem. Let (G, C) be a cyclically ordered set. Then, for each x € G, there

exists a maximal connected subset A of (G, C) containing x.
Proof follows from 4.6 and from Zorn’s lemma.

4.9. Definition. A maximal connected subset of a cyclically ordered set (G, C) is
called a component of (G, C).

4.10. Remark. Each element of a cyclically ordered set (G, C) is contained in
a component of (G, C).

4.11. Lemma. Let (G, C) be a cyclically ordered set, let {A;; iel} be the set of
all its components. Then {A;; i e} is a decomposition of the set G.
Proof. From 4.10it follows that U A; = G. Assume A; N A; # 0 for some i,j €],
iel
i & j. Then 4; U A;is connected according to 4.4 and this contradicts the maximality
of components. Hence 4; n A; = O for i + jand {4;; i eI} is a decomposition of G.

5. CHARACTERIZATIONS OF COMPONENTS

5.1. Theorem. A subset A of a cyclically ordered set (G, C) is a component of
(G, C) if and only if:
(i) A is connected.
(ii) For any xe A, ye G, ze G — A the conditions (x, y, z) € C, (z, y, x) € C hold.

Proof. 1. Let A be a component of (G, C). Then A is connected, i.e. (i) holds.
Assume that there exist elements x € A, ye G, ze G — A such that, for instance,
(x,y.z)e C. As A is connected, {x, y, z} is connected and 4 n {x, y, z} 2 {x},
4.4 implies that 4 U {x, y, z} is connected. But 4 U {x, y,z} 2 4, A U {x, y, z} *
=+ A and this contradicts the maximality of 4. Hence (ii) holds.

2. Let A be a subset of (G, C) satisfying (i), (ii). Then A is connected; if A is not
a component of (G, C) then there exists a connected subset B of (G, C) such that
A < B, A+ B. Choose elements xe A, ze B — A. As x,z€ B, x + z and B is
connected, there exist a natural number n and elements x;, y;, z;€ B (1 <i< n)
such that (x;, y,,z;)e C for all i =1,....n, xe{xy, yy, z;}, z€{x,, ¥ 2,} and
{xi yis zi} O {Xi41s Vivr> Ziga) + 0 for i = 1,...,n — 1. Assume that there does
not exist any i€ {l,...,n} such that {x;, y,, z;} n A + 0 % {x;, y;, z;} n (B — A).
Then {x;, y;, z;} S Aor{x;, y;, z;} € B— Aforanyi = 1,...,n. Asxe{x, y;, z,},
z € {X,, Yy Z,}» We have {x;, 91, 2,} S 4, {X,, V»2,} S B — A. Let me{l,...,n} be
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the greatest number such that {x,. v,. z,} € A. Thus 1 £ m < nand {X,s, Yy s
Zm+1) S B — A. But this implies {X,, Vs Zp} O {Xms 15 Yms 15 Zma1} = O which is
a contradiction. Thus there exists a number i€ {1,...,n} such that {x;, v, z;} n
N A+ 0% {x;,y,z} n(B— A) If, for instance, x;€ 4, z;€ B — A then x,< 4,
vi€G, z;€ G — A4 and (x,, y;, z;) € C which contradicts (ii). Hence 4 is a component

of (G, C).

5.2. Theorem. A nonempty subset A of a cyclically ordered set (G, C) is a com-
ponent of (G, C) if and only if A is a minimal subset of G with the property (ii)
from 5.1.

Proof. 1. Let 4 be a component of (G, C). Then A has the property (ii) according
to 5.1. Let B € A4, B + A be any nonempty subset of 4. Choose xe B, ze A — B.
Then x,z€ A, x #+ z and as A4 is connected, there exist a natural number n and
elements x;, y;, z;€ A (1 £ i < n) with the properties from 4.1. When repeating the
considerations of the second part of the proof of 5.1 we find an index ie {1, ..., n}
such that {x;, y,z,} "B # 0 * {x;, y, z;} n (4 — B). Thus there exist elements
ueB, ve G, we G — B such that (u,v,w)e C or (w,v,u)e C, and the set B has
not the property (ii). Hence A is a minimal subset of G with the property (ii).

2. Let A be a minimal nonempty subset of G with the property (ii). Assume that A is
not connected and choose any element xe 4. By 4.10 there exists a component B of the
cyclically ordered set (4, C,) containing x. As A is not connected, B < A, B + A
hold. We prove that B has the property (ii). Suppose that there exist elements x € B,
y€G, ze G — B such that, for instance, (x,y,z)eC. If yEA then xe 4, z=G,
veG — 4 and (x,y, z)e C which contradicts the property (ii). Analogously, if
z€AthenxeAd, yeG,ze G — A and (x, y, z) € C which is a contradiction. Thus
v,zeAd,ie.xeB,yed, ze A — Band (x, y, z) € C, thus also (x, y, z) € C| . As B
is a connected subset of (4, C\4), {x, y, z} is a connected subset of (4, C;,) and
B {x,y,z} 2 {x}, 4.4 implies that B U {x, y, z} is a connected subset of (4, C|,).
But Bu {x, y,z} 2 B, BuU {x, y, z} & B and this contradicts the maximality of the
component B. Hence there exist no elements xe B, ye G, ze G — B such that
(x,y,2z)eC or (z,y,x)e C, and B has the property (ii). But this contradicts the
minimality of the set 4. We have proved that A4 is a connected subset of (G, C) and
by 5.1 it is a component of (G, C).

6. CANONICAL REPRESENTATION OF A CYCLICALLY ORDERED SET

6.1. Theorem. Let (G, C) be a cyclically ordered set, let {A;; iel} be the set of
all its components. Then (G, C) = Y (4;, C)4,)-
iel
Proof. In 4.11 we have proved G = ) A; where the sets 4; (i 1) are pairwise
iel
disjoint. This implies that also C), (i 1) are pairwise disjoint and U C 4, = C.

iel
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Let (x. y,z) € C. Then there exists an element i €l such that x € 4;. Assume z e
€G — A;; then xe A;, ye G, ze G — A, (x, y, z) e C which contradicts 5.1. As-
sume ¥y € G — A;; then ye A; where jel, j #+ i so that ye 4;, ze G, xe G — A4,
(y.z.x)e C. This contradicts also 5.1. Thus ye A, zeA; and (x,y,z)e C4,
Hence C = U Cy, and therefore C = U Cp,, Hence (G, C) =Y (4, C4).
iel iel iet

6.2. Definition. Let (G, C) be a cyclically ordered set, {G;; iel} the set of all

its components. Put C; = Cjg, for iel. Then the expression (G, C) =Y (G.. C;)
it

will be called the canonical representation of (G, C).

6.3. Remark. Let (G, C) be a cyclically ordered set, let (G,C) =Y (G, C))
iel

where (G,-, C;) are cyclically ordered sets. If all sets G; (i €I) are connected then
they are components of (G, C), i.e. (G, C) = Y (G, C;) is the canonical representa-
tion of (G, C). el

Proof. Let iel and xe G, ye G, ze G — G.. Then (x, y, ) €C;, (z, y, x) EC,,
thus also (x, y, z) €C, (z, y, x) € C. The set G; satisfies the conditions (i), (ii) in 5.1
and hence it is a component of (G, C).

6.4. Theorem. Let (G, C), (H, D) be cyclically ordered sets, let (G,C) =
=3 (G.C,), (H.D)=Y (H;, D;) be their canonical representations. Then
iel iel
(G. C) = (H, D) if and only if there exists a bijection \y : I — J such that (G;, C;) =
= (Hyip Dyqy) for all iel.

Proof. 1. Let there exist a bijection ¢ : I — J such that (G,. C;) = (Hywuy» Dyw)
for all iel. Let ¢;: G; > H,; be an isomorphism. Define a mapping ¢ : G - H
by x€ G, xe G; = ¢(x) = ¢,(x). Obviously ¢ is an isomorphism of (G, C) onto
(H. D).

2. Let (G, C) = (H, D), let ¢ : G > H be an isomorphism. Let i € I be an element
and choose x € G;. Then there exists j € J such that ¢(x) € H;. We show ¢(G,) < H;.
By 4.3, ¢(G;) is a connected subset of (H, D). Assume ¢(G;) £ H;; then ¢(G;) U H;
is a connected subset of (H, D) by 4.4 and ¢(G;) u H; + H;. This contradicts the
maximality of H;. Thus ¢(G;) € H; and as ¢~ ! : H — G is an isomorphism, for the
same reason we have ¢~ '(H;) = G, Therefore ¢(G,;) = H;. Define a mapping
Y o1 — J by y(i) = j where ¢(G;) = H;. ¢ is obviously a bijection and from its
definition it follows that G; = H,,;).

6.5. Lemma. A cyclically ordered set (G, C) is connected if and only if the
equality (G, C) = (G4, Cy) + (G,, G,) implies G, = 0 or G, = 0.

Proof. If (G, C) = (G4, Cy) + (G,, C,) where G, # 0 and G, = 0, then (G, C)
is obviously not connected, for if x € G,, y € G,, then there do not exist natural num-
ber n and elements x;, y;, z;€ G (1 £ i < n) with the properties from 4.1. Assume
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that (G, C) is not connected and let (G, C) =) (G, C;) be its canonical repre-
iel

sentation. Then cardl = 2; put I =1, ul, where I, 0 +1,, I,nI, =0,
(Gy, Cy) = Y. (G, C), (Ga, C,) =Y. (G;, C;). Obviously (G, C) = (G, C)) +

iely iel,

+ (G5, Cy) and G, + 0, G, 0.
Now we give a certain characterization of x, — stable cyclically ordered sets.

6.6. Theorem. Let (G, C) be a cyclically ordered set, let xo€ G. (G, C) is xo —
stable if and only if (G, C) = (Go, Co) + (H, D) where (G, C,) is x, — connected
and x, — stable and (H, D) is discrete.

Proof. 1. Let (G, C) = (Gy, Co) + (H, D) where (G,, C,) is x, — connected
and x, — stable and (H, D) is discrete. Let x, y€ G — {xo}, (z,x, y)e C. Then
(z,x, y) € Co and thus x, y, z € G,. As (Go, Co) is x, — stable, either (x,, X, y) € C,
or (xo, y, x) € C, holds, thus also (xo, x, y)€ C or (xo, y, x) e C. Hence (G, C) is
X, — stable.

2. Let(G, C)bex, — stable. Let(G,C) = Y (G;, C;)be the canonical representation

iel

of (G, C). There exists igel such that x, € G,. Assume C; + 0 for some iel,
i % iy; then there exist z,x, ye G; such that (z, X, y)e C; < C and obviously
(o> X, ¥) EC, (xg, y, x) € C. This contradicts the x, — stability of (G, C). Hence
C;=0forall iel, i iy so that if we put (Gy, Co) = (G, C;,), H= U G,
iel - {io}
D = 0, we have (G, C) = (G,, Co) + (H, D)and (H, D)is discrete. Let x € G, — {x,}
be any element. As (G, C,) is connected and x = X,, there exist a natural number n
and elements x,, y;, z; € G, (1 < i < n) such that (x;, y;, z;)€ Co foralli = 1,...,n,
X e {xl’ Yo 21}: X0 € {Xus Vs Zn} and {x; y; Zi} A AXig1s Vie oo Zigg) # 0 for i =
= 1,...,n — 1. Particularly (x,, y,, z;) € Co = C and x € {x,, y,, z,}, for instance
x = x;. Then (z;,x, y;)e C. If y; = x, then (z;,x, %) e C = Cy and thus
(x05 21, x) € Co. If y; * xo then the x, — stability of (G, C) implies (xo, X, y,) €
eC=C,or (xo, Vi x)e C = C,. Thus (GO, Co) is x, — connected and obviously
it is x, — stable for C, = C.
From this theorem we derive further the following assertion (see 3.13):

6.7. Theorem. Let (G, C) be a cyclically ordered set. Then the following statements
are equivalent:
(A) (G, C) is x — stable for any x € G.
(B) C is a complete cyclic order or a discrete cyclic order.

Proof. (B) = (A) holds by 3.13. '

(A) = (B): Let (A) hold. If C is discrete then (B) holds. Suppose therefore that C
is not discrete. Choose any x, € G; by 6.6 there is (G, C) = (G,, C,) + (H, D)
where (G, Co) is x, — connected and x, — stable and (H, D) is discrete. Then
H = 0 for if there exists x, € H then for any z, x, y € G, with (z,x,y)e Co = C
we have (x,, x, y) € C, (x,, y, x) € C and this contradicts the x, — stability of (G, C).
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Thus (G, C) = (Go, Cy), ie. (G, C) is x, — connected. We show that (G, C) is
strongly x, — connected. Let x,y€ G — {x,}, x # y and assume (x,, x, y)€C,
(x0» ¥, x)EC. As ye G — {x,} and (G, C) is x, — connected, there exists ze G
such that (xo, y, z) € C or (x, z, y) e C. Thus (z,x,, y)€ C or (z, y,%,) € C, but
(x, x0, ¥) EC, (x, y, %) € C. This is a contradiction because (G, C) is x — stable.
Thus it must be (xo, x, y) € C or (%o, y, x) € C for any x, ye G — {xo}, x # y and
(G, C) is strongly x, — connected. Then it follows from 2.10 that (G, C) is a cycle.

6.8. Corollary. Let (G, C) be a cyclically ordered set. Then the following state-
ments are equivalent:
(A) € =C.__ forany xeG.
(B) C is a complete cyclic order or a discrete cyclic order.

Proof follows from 6.7 and 3.15.
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