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0. INTRODUCTION

A set of initial segments (of o-ideals) in a poset P is said to be a generating system
on P if it is closed under arbitrary nonempty intersections and contains P as well
as all principal initial segments in P. The complete lattice Gs(P) of all generating
systems on P, ordered by inclusion, is called a gs-lattice on P. According to Funaya-
ma, [2], the generating systems on P are, up to isomorphisms, exactly all the g-dense
completions of P.

The problem of constructing a g-dense completion of a given poset with prescribed
properties appears in various branches of mathematics. A solution of a problem of
this kind was used by D. Scott and R. Solovay, [3], for a general development of the
method of forcing in the set-theory and by the author, [5], for a description of con-
nections between certain properties of elements of alphabets of formal languages.
Hence it may be useful to get some more information concerning the structure of
Gs(P) on a given poset P and the relations between P and the gs-lattice on P.

In the paper [6] a certain special class & of all the so called simple posets was
studied. For an arbitrary P € 2 an easy construction of Gs(P) was found showing
that the cardinal number |Gs(P)| is proportional to 2!, The class 2. of all posets
with complemented gs-lattices was proved to be a subclass of ¢ and a superclass of
the class 2 of all posets with a one-element gs-lattice.

In this work we denote by A, # ¢, # 1 the classes of all posets P from Zg, 2, P,
respectively, such that every ordinally indecomposable subposet of P satisfies the
Ascending Chain Condition. An internal description of .#g, M, 4 1 is given and
the classes .#g, .# . are also characterized by introducing a finite list of ‘“forbidden”
subposets. The last theorem says that none of these two methods can be used for
a characterization of any of the classes Zg, 2, 2.
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1. PRELIMINARIES

Let P be a poset. We denote
wpa ={beP; b<a}, wpa=wpa—{a}, &a={beP;axf b}

for an arbitrary a € P. If A is a nonempty subset of P then we put ap[A] = {apa;
ae A} for « = w, w7, & and define wpA = UwP[A]. We reserve the symbol O, for
the set of all initial segments in P and N, for the least element of Gs(P). The ge-
nerating system RN, is called a normal or a MacNeille completion of P. Clearly,

N, = {P} U {Nwp[X]; 0 = X = P}.

In the whole paper we fix P for the notation of a poset and write « instead of op
for o = w, 7,5 O, N.

1.1. Lemma. The following assertions (i), (ii) hold for an arbitrary P.

(i) If AeNand ae P — A then there is an upper bound b of A such that a £ b.
(ii) If Ae ™[ P] and a e P — A is not an upper bound of A then there is an u pper
bound b of A satisfying a £ b.

Proof. The assertion (i) is true trivially. If A € w™[P] then there is b € P such that
A = w™b. For an arbitrary a € P — A it holds that a & b. If, moreover, a is not an
upper bound of A then a % b and we have a £ b.

In accordance with Theorems 3.19, 4.3, 4.6 from [6] we define

Pe Pg O c RhuiPluw[P]
PePcy if <O < RNuP]
Pe2, Dcw

For definitions of some further concepts and symbols which we shall use here
without defining them the reader is refered to [6].

If £ is an arbitrary class of posets then we denote by OZ the least superclass of 2
closed under the formation of isomorphic images and ordinal sums. One can easily
see that OZ is exactly the class of all P for which there are a chain I and a set
{P;; i eI} = 2 with the property P~ ) P,.

iel

The least infinite ordinal number will be denoted by w,. Hence w, is the set
{0,1, ...} ordered in the natural way.

If p is an arbitrary ordinal number then we say that (a,),<, is an ascending, non-
descending, descending chain in P whenever {a,;y < u} = Pand a, < a;, a, < a,,
a, > aj, respectively, for all y < 6 < u. An ascending (nondescending, descending)
chain (a,), <, is said to be finite whenever u < ®,. In this case we can write (ao, ay, ...

. a,_;) instead of (a,), <,
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We say that P satisfies the Ascending Chain Condition (the ACC) if every ascending
chain in P is finite. It is well known that if P satisfies the ACC then for each Q € ©
there is an antichain A4 in P such that Q = wA. At the same time, the following is
true. Whenever P is a chain then P satisfies the ACC iff P = {a,;y < u} where
(a,),<, is a descending chain.

A nonmepty poset P is said to be ordinally indecomposable if P = Q + R =
= Q =0 or R = 0. Clearly, if P is ordinally indecomposable and there are at
least two different elements in P then for each a € P we can find b e P fulfilling
a || b (a is incomparable with b).

1.2. Lemma. If P = Q + R and Q = 0 then each minimal element of P is in Q.

1.3. Lemma. Every P can be represented in the form P = Y P; where I is a chain
iel
and P; is an ordinally indecomposable poset for each i €l. This representation is

unique in the following sense: If P =" Q; is another representation of P with the
JjeJ

same properties then there is an isomorphism f of I onto J such that P; = Qg

for every iel.

Proof. This is a consequence of Theorem 2.12, [4].

1.4. Definition. We denote by .# the class of all P such that each ordinally in-
decomposable subposet of P satisfies the ACC. We put My = M N Py for X =
=8SCT

1.5. Lemma. If P = Z P; then the following assertions (i)—(iv) are true.
(i) Pe sl < Pje M fl;:' all jel.
(i) Pe Ps< P;e Ps forall jel.
(iii) Pe Pc <> P;e P forall jel.
(iv) P Pp <> the assertions (a), (b) hold for all jel.

(a) Op, = Np, L {0}.
(b) P; has a least element = there is k € I such that k < j and Py has a greatest
element.

Proof. (1) The statement (i) is true trivially.

(2) Assume Pe 2 and choose jel, A;e Op, arbi'trarily. In the case A; = P;
we have 4;eMNp. If = A; = P; then we put 4 = P, + A;. It is clear that

i<i
AeD = NUEPluw [P] and 4; = P;n A. By this and 2.5[6] we obtain
AjeNp U [Pl wp[P] If A;=0 then A;eNp L& [P]Uwy[P;] ac-
cording to 2.7 [6]. Hence O,, = Np, U & [P;] U 0y [P;] and P; e P for all jel.
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Conversely, P;e Z for all jel = Dp, € Np, U & [P;] U 0, [P;] for all jel =
=90 S NRUP]uw [P] by 25, 27[6]=PeZs.

(3) Pe Pc< Pje P for all jel can be proved by the method from (2).

(4) Suppose P € 2 and take j € I arbitrarily.

Let A;€D,,. If A; = P; then A;e MNp. In the case § = A; = P; denote 4 =
=) P;+ A;. Then 4; = P;n A, Ae O = Nand it follows that A; € N, according
to 2.5 (i) [6]; this proves (a).

If P; has a least element o then w0 e O = N. By this and 2.6 [6] it follows that
o~ o has a greatest element i. Thus there is k < j such that i is a greatest element
in P, and we have proved (b).

Assume that the conditions (a), (b) hold for all j € I and choose 4 € O arbitrarily.

If there is j e[ satisfying < A; <« P; for A; = P; n A then 0 Aje Op, and
we have A;e Np, by (a). This and 2.5 (i) [6] imply 4 € R. In the case P, N A€
€ {0, P;} for all i eI suppose that P; has a least element 0 and 4 = w~ o for some
j€l. Then, by (b), there is keI such that k < j and P, has a greatest element i.
It is obvious that i is a greatest element in A. Hence 4 € N according to 2.6 [6].

1.6. Lemma. If Q is a final segment in P then the following assertions (i), (ii),
(iii) hold.

(i) P satisfies the ACC = Q satisfies the ACC.

(i) Pe P25 = Qe Zs.

(iii) Pe P = Qe 2.

Proof. (1) The statement (i) is true trivially.

(2) Suppose P € 25 and take A € O, arbitrarily. If 4 = 0 then A€ Ny U 5[ Q] U
U wg [Q] by 2.7[6]. In the case A + @ put B = (P — Q) U A. Then, obviously,
BeD c NuUiPluw [P] and we get Ae R,y U g[0] U wy[Q] according to
2.1 [6]. Hence D, = Ny U 8[ Q] U wy[Q], which proves Qe Z and also (ii).

(3) The assertion (iii) can be verified in the same way as (ii).

1.7. Definition. For an arbitrary P and m, 0 < m < w,, we denote by "P the set
of all m-element antichains in P ordered in the following way: If 4, Be™P then
A = B whenever for each a € A4 there is b € B with the property a < b.

If there is m satisfying 0 < m < w, and ™P = () then we put

_the greatest m such that "P + @ in the case P # 0,
0 otherwise .
The number bP is called the breadth of P.

bP = m = P is a union of m chains by Theorem 1.1[1]. It is obvious that,
conversely, if P is a union of m chains then bP < m.

bP =
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1.8. Lemma. If P satisfies the ACC then ™P satisfies the ACC for allm,0 < m <
< Wy

Proof. Let P satisfy the ACC. We prove the assertion “"P satisfies the ACC for
all m, 0 < m < w,” by induction.

(1) Assume that there is an ascending chain (4;)i<e, in 'P. If we denote 4; = {a;}
each i < w, then (a;);<,, is an ascending chain in P.

(2) Let us take n, 1 < n < w,, arbitrarily and let the following implication hold:
P satisfies the ACC = "P satisfies the ACC.

Suppose that (4;);<,, is an ascending chain in "**P. Then we can find a non-
descending chain (a;);<,, in P such that a; € 4; for all i < w,. If for every i < w,
there exists j < wo with i < j, a; < a; then it is possible to select an infinite ascending
chain from (a;);<,,. Otherwise there is i, < w, with thé property a; = a;, for all i,
ip < i < w,. Now it can be easily seen that (B;)i<n, Where B; = A;,; — {a;}
for each i < wy, is an ascending chain in "P.

Each of these two conclusions implies that P does not satisfy the ACC.

2. CHARACTERIZATIONS OF THE CLASS #g
We first consider an important subset of .#.

2.1. Definition. We say that a nondescending chain (ocy)7< u+1 Of ordinal numbers
is a description whenever (i) or (i) or (iii) is true:
Du=10=0,0, =1
(i) 1 < p < o, g =0=0y and a, < &, < w, for all y < p.
(iii) # = wg, %y = 0 = a; and o, is the least ordinal number fulfilling o, < «, <
< w, forall y < pu.

A description (o), <, is said to be finite whenever u < wg and «, < .

2.2. Definition. Let n = (a,),<,+; be a description. We put v =a,, L, =
={/;v<u}, R,=1{4556 <v} and P,m =L, UR, We define an ordering
on P,7 in such a way that (¢,),<, and (/z‘,)kv are descending chains in P,7 and that

{/V %} iff {5<ocy } for all y<;.1, d<v.
15 =L

y Oty+1 < I
If the description 7 is finite then We put P;n = P,n U {4} and define an ordering
on Pym in the following way. P37 is an extension of P,n and s || x for all xe
€{€,—1:4y—1}, o < x for all xe Pyn — {1, ty—1}-

IIA A
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Whenever o, = 1 in a description =, a finite description 7, then one can write
P4, P4 instead of P,n, Pym, respectively.

P, (0,02): Py: Py 4
4 £, A° L2 2,° s A

1

Figure 1

2.3. Definition. We put

I's = {1} U {P,7; 7 is a description} U {P,7; 7 is a finite description} .

2.4. Lemma. Every poset Q from Iy satisfies the ACC and is ordinally in-
decomposable.

Proof. (a) If Q = 1 then both these statements are true obviously.

(b) Let there exist a description n such that Q = P,n and denote n = (ocy)y< w1
v = a,. Using Q = L, U R, and the fact that L, R, satisfy the ACC, we can easily
show the validity of the ACC for Q.

Q is ordinally indecomposable:

(1) For each y < pu there is § < v such that 7, ” 25 It is sufficient to put 6 = a,.

(2) For each 6 < v there is y < p such that 4 || £,: Take § < v arbitrarily and set
G;={r;7 <mp 6 < a). In the case G; = 0 we have «, < 6 for all y < p. If we
suppose 1 < w, then o, ; < <v=oa, and thus s || £,—1. The supposition
it = o implies that v = a, is the least ordinal number 5 with o, < x for all y < p.
Then v < 6 and we have a contradiction. In the case G; + @ denote by y, the least
ordinal number in G, It follows by y, = 0 that 6 = ¢, = 0 and by this we get
25 “ £o. Whenever y, > 0 then a,,_; < J £ a,, and, clearly, 4 ” ro-1-

(3) Let us admit that there are nonempty posets S, T satisfying Q = S + T. By
means of (1), (2) one can easily verify that X n Y + 0 for arbitrary X e {S, T},
Ye{L,, R,}. If £, 25, are greatest elements in S N L,, S N R,, respectively, then
S = wo{lyy 150}s £yo || 26 = 8 S 6 foralld < vand 7, | 25=3 < &, for all § < v,
7 < yo. By these implications and by £,; || %ay, £50-1 || aye (0 < 7o because of T
N L, * 0) it follows that , < a,, on the one hand and o, < &, on the other. We
have a contradiction.

(c) Assume Q = P;n for a finite description 7 = (,),<,+; and put v = o,
Then Q is finite and satisfies the ACC obviously.

Q is ordinally indecomposable: Let Q = S + Tand S # 0. Then {4, 7,_y, 2,_,} <
€ S according to 1.2. This gives S’ = S ~ {4} + 0 and, clearly, P,n = S' + T.
But then T = @ in virtue of (b).
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2.5. Definition. We put A,(y, 8) = wp,,{7,, 2,} for an arbitrary description © =
= (0t,)y<u+1> 7 < 4, and 6 < o, such that o, £ 6 < o, 4.

If, moreover, 7 is a finite description then we put B,(y, 8) = wp,{/,, 25}

2.6. Lemma. Suppose n = (a,),<,+; is a description and put v = o,. If Q = P,n
then

Do = {0} U o[ Q] U {4y, 6); v <, 6 <v and o, 5 < a4y} -
If = is a finite description and Q = P3n then
Og = {0} U wo[@] U {B,(r,6); y <p, 6 <vand o, £ <y} U

Vi{s, il {0 -1}y {0 Cum o t9-1}}

Proof. Let Q = P,m and Re O, — {0}. As Q satisfies the ACC by 2.4, there is
an antichain 4 in Q such that R = woA. If [4] = 1 then R € wy[ Q]. Since bQ = 2,
the remaining possibility is |4| = 2. Then, clearly, 4 = {/,, 23} for some y < p,
& < v. By Definition 2.2, 4 is an antichain iff @, < § < o,,,. Hence R = A(y, 9)
and we have proved O, < {0} U wo[Q] U {A(»,0); vy <m, 6 <v, o, £ =
< a,44}. The converse inclusion is true obviously.

Let 7 be a finite description, Q = P;n and R € O, — {0}. Then by 2.4 there is an
antichain A satisfying R = wpA. If |A| = 1 then R e wy[Q]. In the case |A| =2
eithers¢ Aorse A. If s ¢ A then we can find y < y, 6 < vsuchthata, £6 < a4
and A = {¢,, 1;}. Hence R = B,(y,d). If s€ A then either A = {5,/,_,} = R or

= {9, 2,4} = R because 4 is an antichain, s | x iff xe {/,_;,+,_,} and 4, /,_,
2,y are minimal in Q. In the case [A| = 3 it holds that 4 = {s,/,_;,2,_1} = R.
As bQ = 3, we have proved Dy = {0} U wo[Q] U {B.(1,0); y <m, 6 <v, o, <
S0 = aqyvi{elu-i), {001}, {6641, 2,-1}}. The converse 1nclu51on is
true obviously.

2.7. Definition. We put

wAi;iz...l'k = w4 — {am Aiyy vves Ay

for an arbitrary P, A = {ao, ay, ..., 4p-4} €™P,0 <k <mand 0 < iy <i, < ...
< ik < m.
2.8. Lemma. The following assertions (i), (ii), (iii) are equivalent.

(i) P is ordinally indecomposable and P e M.

(if) P is ordinally indecomposable, P € ./ and none of the posets P,, P, Py, P}, P,
from Fig. 2 can be embedded into P.

(iii) There is Q € I's such that P = Q.
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Proof. (i) = (ii): Suppose that P is an ordinally indecomposable element of .#.
Then P satisfies the ACC and © = Rt U §[P] U 0™ [P].

(a) If bP = 1 then none of the posets P,, P, P3, P, P, can be embedded into P.
(b) Let bP = 2. Then neither P; nor P}, P, can be embedded into P.

4 2
/(2
° ,zwo
P P;:

<

Figure 2

(b1) P, cannot be embedded into P: Let us admit that « : P, —» P is an embedding
and denote a, = /4, a, = 1y, by = 11y, by = 12y. Then (ao, a,), (b, by) are as-
cending chains with aq £ by, by £ a;.

Assume that 1 < k < w, and (a;);<;, (b;);i<, are ascending chains in P satisfying
ai—y £ b, bi_y £a,foralli,0<i<k. Clearly, 4 = {a,_,, b,_,} € *P.

If wA e & P] then there is a € P such that wA = &a. Hence a £ a,_,, a £ b,_,,
a < a;_y, a £ b,y As simultaneously a,_, £ b,_, and b,_, £ a,_,, it holds
that a,_, £ a and b,_, £ a. Thus A U {a} € *P, contrary to bP = 2.

If wAew [P] then wA = w™b for some beP. We immediately obtain
{ax—1, by—, b} € *P which is a contradiction.

In the case w4 e N there is an upper bound b, of wA satisfying a,_, £ b, by
1.1 (i). As b, £ a,, isalso true, we have a,_q || by; this fact, bP = 2and a,_ || by,
give b, £ b,_, or b,_, < b,. Since b, < b,_; implies an invalid assertion a;_, <
< by_,, it holds that b,_; < b,. Similarly we can show that there is a, € P with
the properties b,_; £ a;, a,—; < a;. Hence (a,);<x+1, (b;)i<i+1 are ascending chains
in Psuch thata,_; £ b;, b;_, £ a;foralli,0 <i <k + 1.
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By induction it follows that there are ascending chains (a;)i<wg> (bi)i<a, i P —
a contradiction.

(b2) Pj cannot be embedded into P: Let us admit that there is an embedding
t:Py > P.I{weput Q={aeP;al yanda < u,foralli < wy} then i, € Q
and thus Q # 0. Q is a chain in virtue of bP = 2 and Q satisfies the ACC trivially.
These facts imply that there is a greatest element a in Q. Now let A be the anti-
chain {a, «,}.

If wA e §[P] then there is b € P with w4 = £b. Obviously, b < u; for all i < w,
and b £ a, b £/, If a <b then b | «, and we have a contradiction with the
choice of a. If we suppose a || b then b Jf «/; hence 1/, < b and we obtain i/, < u;
for all i < w, which is also a contradiction.

Suppose that wAe R U 0 [P]. As WoewA and £y £ 1y, v, ¢ wA and u,
is not an upper bound of wA. Hence there is an upper bound b of wA satisfying
wy ¥ b according to 1.1. By this and by «/, < b it follows that «; | b for i = 0, 1,
so that % = {(¢o, b), (¢1, ¢s), (20, t2o), (21, t21)} is an embedding of P, into P, con-
trary to (b1).

(c) Let bP = 3. Clearly, there is no embedding of P, into P. The poset *P is
nonempty and, by 1.8, 3P satisfies the ACC. Hence there is a maximal element
A = {ag, ay, a,} in *P. Let us put P’ = P — wAg,.

(c1) *P" = {A}: If B = {by, by, b,} P then b, < a; for all i <3 and j <3
with respect to the minimality of a,, ay, a, in P'. If there exists i < 3 fulfilling
a; £ b; for j =0,1,2 then B U {a;} € *P which contradicts bP = 3. Thus 4 < B
and we obtain B = A by the maximality of 4 in 3P.

(c2) Py, P3, P4, P5 cannot be embedded into P’ : P and Pj cannot be embedded
into P’ according to (c]) and the minimality of a,, ay, a, in P'. If there is an embed-
ding of P,, P} into P’ then we can find i < 3 and an embedding of P,, P}, respectively,
into P” = P’ — {a;}. It follows by (c1) and a; € A that bP” = 2. Since P” is a final
segment in P, P” satisfies the ACC and P” € #¢ with regard to 1.6. Then neither
P, nor P}, can be embedded into P” by (bl), (b2) — a contradiction.

(c3) P' = P: Let us admit wAy;, *+ wa,.

If wAo; € N then, by 1.1 (i), there is an upper bound b; of wA,, satisfying a; £ b;
fori = 0, 1. In the case ay £ by or a; £ by, {ao, ay, by} or {ay, ay, by} is an element
of 3P greater than A — a contradiction. For this reason a, < b, and a, £ b,.
But then ¢ = {(¢,, bo), (/1, a1), (20, by), (¢4, ao)} is an embedding of P, into
P — wAy,. By this and by P — wA,; < P’ we obtain that P, can be embedded
into P’, contrary to (c2). '

Since aq, a; are two different minimal elements in P — wAy;, we have wAo; ¢
¢ e[ P].

In the case wAy, € @™ [P] there is b e P such that wAy; = w~b. Then a, £ b,
a; £ b, a, < b and we have 4 < {a,, a,, b} € >P, which is a contradiction.

441



Hence the proof of wA,, = wa, is complete. Similarly we can see that wA,, =
= wa,; and wA;, = wa, Now it is clear that wA¢;» = w a; for i = 0,1,2. By
this and by bP = 3 it follows that P = wAq;, + P’. This fact, ) ¢ 4 = P’ and the
ordinal indecomposability of P give P’ = P.

(d) Suppose bP ¢{1,2,3}. Then “P # 0 and *P satisfies the ACC by 1.8. Thus
there is a maximal element 4 = {a,, a;, a,, a;} in *P.

Let us admit wA, € §[P]. Then w4, = &a for some a € P. As a is a least element
and a, a minimal one in P — wA,, a = a, is true. Consider the set wA,,. Because a,
and a, are two different minimal elements in P — wA4,,;, we have wA,, ¢ &[P].
Then wAqy; € WU w [P], a, ¢ wAy, and a, is not an upper bound of wAy; since
a, £ ay, a, € wAy;. Hence, by 1.1, there is an upper bound b of wA,; such that
ag £ b.Since a; < bfori =2,3,itholdsthat be P — wA, = P — éap,and ay = b
which is a contradiction. In the same way we can prove wA; ¢ §[P] for i = 1,2, 3.

Thus the remaining case is w4; e U w [P] for i = 0, 1, 2, 3. Then, according
to the fact that a; € P — wA, is not an upper bound of wA; and to 1.1, we can find
an upper bound b; of wA; with the property a; £ b; for each i < 4. One can easily
see that B = {b,, by, b,, b;} € *P and 4 < B; it is a contradiction.

(ii) = (iii): Suppose that P is ordinally indecomposable, P € .# and P,, Pj, P,
Pj, P, cannot be embedded into P. Then certainly bP e {1, 2, 3}.

(@) If bP =1 then P = 1€y

(b’) Let bP = 2. Then there exist chains A, B with P = A U B. Since A, B satisfy
the ACC and A4 % 0 = B, it is possible to find ordinal numbers u > 0, v > 0 such
that A = {a,; 7 < pu}, B = {bs; 6 < v} and (a,),<, (bs)s<, are descending chains.

As P is ordinally indecomposable, it holds that a, ” bo.Ifp = 1 = vthen P = P}.
Suppose p > 1 or v > 1 and put Q = P — {ay, b}. If neither a, nor by, is an upper
bound of Q then u > 1, v> 1 and ¢ = {(£o, ao), (/1 ay), (20, bo)s (21, by)} is an
embedding of P, into P — a contradiction. If both a, and b, are upper bounds of Q
then P = Q + {aq, by} which is also a contradiction. Hence exactly one of the
elements a,, b, is an upper bound of Q.

Let a, have this property. Then 4 > 1 and for each y < u there is § < v such that
a, £ b, with regard to the ordinal indecomposability of P. Denote by a, the least 6
with a, £ b; and put o, = v.

(b'1) a, £ b, iff 6 < a, for arbitrary y < pu, 6 < v follows immediately by the
definition of a,.

(b'2) bs £ a, iff o, < & for arbitrary y < p, & < v:

If y 4+ 1 = pand b; £ a, for some 6 < v = o, then b; is comparable with all
elements of P, contrary to the ordinal indecomposability of P.

Inthe case y + 1 < pu put b = b,,,,. Obviously, it is sufficient to prove b £ a, and
bs<a, for all §>a,.. If b=a, then P=ofa,,, b} + (P — wfa,,, b})
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according to (b'l) which contradicts the ordinal indecomposability of P. Admit
bs £ a, for some & > a,,;. Then ¢ = {(£o, a,), (/1. ay+1), (20, b), (1, by)} is an
embedding of P, into P with respect to a,.; < a,, b; < b, a,,; £ b — a contra-
diction.

(b'3) (o,)y<,+1 is a description: Let us take y <y’ < p arbitrarily. If 6 < «,
then a, < b;. By this and a,. < a, it follows that a,. < b; and further 6 < «,. so
that o, < a,.. Thus (,),<, is a nondescending chain. «, = 0 obviously, &; = 0 is
a consequence of a; £ by and «, < «, for all y < u follows by «, = v and by the
definition of a,.

(1) 1 £ wo: Admit w, < p and denote b = b, , A = w{a,, b}. In the first
case suppose o, < &,, for all y < w,. If we take y < w, arbitrarily then y + 1 <
< w, and we obtain «,,; < a,,. This gives b < a, by (b'2) so that a, is an upper
bound of A in P. If 6 < a,,, is arbitrary then a,, < b; and thus b, is an upper bound
of Ain P as well. We have proved P = A + (P — A) which contradicts the ordinal
indecomposability of P. In the second case there is y, < w, satisfying o, = a,,
for all 9, 7o <y < wo. But then ¢ = {(£0, b), (twp> dwo)} Y {(, @yo4,); ¥ < @o}
is an embedding of P} into P which is also a contradiction.

(2) If p = o, then a, is the least ordinal number » with the property o, < x for
all y < p: Assume pu = w, and choose § < v = «, arbitrarily. Then there is y < p
such that b; £ a, according to the ordinal indecomposability of P. By this, (b2)
and by y + 1 < p it follows that 6 < o, ;.

(3) «, < w, for all y < p: If y < p then y < w, by (1). Admit a, = w, for some
y < w, and denote by 7y, the least such y. Then, as y, > 0 is obvious, we have
01 < wo. One can easily see that ¢ = {(£o, @), (2wg> b))} U {(ty5 bapy_y49);
7 < w,} is an embedding of P} into P — a contradiction.

The proof of (b'3) is complete. Hence 7 = («,),<,+1 is a description and, with
respect to (b'1), (b'2), ¢ = {(a,, 4,); v < u} U {(bs, 25); 6 < a,} is an isomorphism
of P onto P,mn.

(¢') Let bP = 3. Take A = {ay, ay, a,} € *P arbitrarily. If a € @Ay, then a < a;
for some i < 3. By this and by the fact that neither P; nor Pj can be embedded
into P we obtain a < a; for i =0,1,2. This and bP = 3 give P = wAdy;; +
+ (P — wAyy,). But then wAyy, = 0 with regard to § = 4 = P — wAy;, and the
ordinal indecomposability of P. Hence A is exactly the set of all minimal elements
in P and *P = {4} is true obviously.

Let us put P' = P — A.

If PP =0 then P= A4 = Pj.

Suppose P’ # 0 and admit that there are two different elements in 4 which are
not lower bounds of P'. Let for example a, £ b, and a, £ b, for some by, b, € P'.
It follows by ao £ b, that {a, a;, b;} € *P — {4} — a contradiction. For this
reason a, < b; and we can prove a; < b, by the same argument. But then ¢ =
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= {(¢o, b1), (£1, a0), (20> bo)> (21, @;)} is an embedding of P, into P which is im-
possible.

Let a, be one of the lower bounds of P'. If we put P” = P — {a,} then bP" = 2
in virtue of ay € A and *P = {A}. Since (ii) is true for P and P” < P, the following
two assertions hold. P” satisfies the ACC and P,, P;, P5, P;, P, cannot be embedded
into P”. Further, P” is ordinally indecomposable: If there are nonempty posets Q, R
with P” = Q + R then a;€ Q for i = 1,2 according to 1.2 so that a, is a lower
bound of R. Then P = (Q U {a,}) + R, contrary to the ordinal indecomposability
of P. By means of (b’) we obtain that there exists a description 7 = (o)) <u+1 and
an isomorphism ¢ : P” — P,n. Since taq, ta, are two different minimal elements
in P,m, p and o, are successor ordinals. Then = is a finite description and it is clear
that ¢« U {(ao, 9)} is an isomorphism of P onto Pjm.

(iit) = (i): If P = Q for some Qe I's then P satisfies the ACC and is ordinally
indecomposable by 2.4. It is sufficient to prove Dy = Ry U [ Q] U wa[Q]-

(@”) If Q =1 then the statement is true obviously.

(b”) Let there exist a description = such that Q = P,n and denote © = (,),<,+ 1,
V=,

As De Ny U 5[ Q] U wy[Q] by 2.7[6] and wy[Q] = Ny, it remains to prove
that A(y, §) = wo{/,, 25} € Ny U [ Q] U wy[Q] for all y < p, & < v such that
a, £ 0 £ a,,4 according to 2.6.

Suppose 6 = a,. If y = 0 then 6 = 0 and A,(y,d) = Q € Ny. In the case y > 0,
6 =0 it holds that A,(y,8) = &yf,—1 €&o[Q]. If 6 > 0 then 0 <& < ;4 and,
regarding a; = 0, we obtain y > 0. Now § — 1 < o, implies £, < 2;_; by 2.2 so
that A,(y, 8) € wg 45—y X £,_y £ 25, then A(y, 6) = wgt5-1 € wa[Q];if £, <
< 15-, then ¢,_; is a least element in Q — A.(y,8). Hence A.(y,d) = &f,_, €
€ g 0]

If 6 = a, + 1 then o4 > 0so thaty > 0and we obtain 2; < 7, _y, 21 £7,_,.
This gives A 7, 0) = wg?,_1 € wg[Q].

In the case 6 > o, + 1 itholdsthat 6 — 1 > o, and thus 7;_; = /, 1- Then 25_, is
a least element in Q — A,(y, 6) so that A4,(y, b) Egts—1-

(¢”) Assume Q = P,7 for a finite description 7 = (a,),<,+; and put v = o,

B.(y,6) € Mg U [ Q] U wy[Q] for all y < p, & < v such that @, <6 <, :
In the case y < u — 1 or 6 <v — 1 put R = P,m. It holds that A,(y,5)€ O, —
— {0}, B.(3,0) = A (r,6) U {s} and also waAd.(y,8) = By, ). Indeed, s ijs
a lower bound of R — {/, 1, 2,4} and A (3 8) " (R = {{u-1,2,-1}) 0 by
supposition. As, simultaneously, A4,(y, 6) € g U &[R] v wg[R] accordmg to (b")
we obtain By(y, d)e Mg U g[Q] U wy[Q] by 22[6]. As Bju—1,v—1)=
= Ego € §[ @], it remains to prove A e RN,y L E[Q] U wp[Q] for A = {a, -1}
{9, 4,-1}, {9 £4=1, 4,—,} according to 2.7 [6] and 2.6.
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By p = 1 it follows that v = 1 and Q = {5, 70, 20}. Then {5, 2}, {4, 2o} € £[ Q]
and {g, o, 20} € My. If u > 1 then put Q' = Q — {4,¢,_,, 2,_;} and consider the
cases o,y =v—1,0a,_; <v-—1

In the first case #,_, is a lower bound of Q' and ¢,_; | Z,_,. This implies
(0,01} = 0glu_rew5[0Q], {0, 2,-1} = 8l,—1€8[Q] and {40, ¢, 1,2, ,} =

= Wy, € W[ Q] whenever v > 1, {4,¢,_,2,_1} = &of,_, € Eo[ Q] whenever
v =1

In the second case a,_; £ v — 2 <v =0, and z,_, is a lower bound of Q' with
regard to ¢,_y < £,_,. These facts imply £,_, || 2,_,. Then {4,¢,_,} = 51, ; €
€&[Q], {4,201} = 0gt,—2€wg[Q] and {s,4,_y,2,-1} = 057, , € wy[0].

2.9. Theorem. The following assertions (i), (ii), (iii) are equivalent.

(i) Pe As.
(ii) Pe M and P,, Py, Py, Py, P, cannot be embedded into P.
(iii) PeOry.

Proof. For an arbitrary P there exist a chain I and a set {P;; i eI} of ordinally
indecomposable posets such that P = )’ P; by 1.3. Consider the statements

iel

(a) Pie Mg forall iel.

(b) P;e M and P,, P, P3, P}, P, cannot be embedded into P; for all i e 1.

(c) For each iel there is Q;e I's with P; = Q..

It follows by 2.8 that (a), (b), (c) are equivalent. Further, (a) <> (i) according to 1.5 (i),
(ii), (b)<>(ii) by 1.5(i) and the ordinal indecomposability of P,, P}, P;, P}, P,,
(c) => (i) trivially and (iii) = (c) with regard to 2.4, 1.3.

P:

2

Figure 3

As P = P4(0,0,2) + 1 + P3, it holds that P e Ol for the poset P from Fig. 3.
Then P € #; and one can easily check that Gs(P) = 2* x 3 using 3.18 [6].
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3. CHARACTERIZATIONS OF THE CLASS .#.

3.1. Definition. We put
Ie={1} U{P4;0 < pu < wo} U {P3}.

3.2. Lemma. The following assertions (i), (ii), (iii) are equivalent.

(i) P is ordinally indecomposable and P e M.

(ii) P is ordinally indecomposable, Pe ./ and the posets P,, P, P,(0,0,2),
P, P}, P2, P, from Fig. 1,2 cannot be embedded into P.

(iii) Thereis Q€ I'c such that P = Q.

Proof. (i) <> (ili): Assume that P € 4 and P is ordinally indecomposable. Then
obviously P e .4 and there is Q € I's such that P =~ Q according to 2.8.

(a) Let Q = P,m where n = (,),<,+1 is such that @, > 1. Then 4 > 1 and 4 =
= A,(1,1) ¢ Ny U &o[Q]. Indeed, A ¢ N, with regard to the fact that 4 has only
one upper bound /, ¢ A and A ¢ [ Q] because of Q — 4 = {0, 20}, 20 €8l
£ € &gro. But then Q ¢ . and also P ¢ ./ — a contradiction.

(b) Let Q = Pym, where 7 = (,),<,+; is a finite description and let v = o,
Clearly, P,7 is a final segment in Q. If v > 1 then p > 1 and B,(1, 1) ¢ R, U £,[Q]
with regard to (a) and 2.1 (i), (i) [6]. In the case v =1, p > 1 put 4 = {4,¢,_,}.
As?, ¢ A, /,_, is the least upper bound of 4 and ¢,_, | 4,, we have A€ Dy —
— (Mg L 2[0]).

The conclusions of (a) and (b) imply Q € I'c.

Conversely, if P = Q for some Q € I'c then Q € I'y and P is ordinally inde-
composable, P e .# according to 2.4. Whenever Q = 1 or Q = P} then Pe 2.
trivially. Suppose Q = P} for an arbitrary u, 0 < p £ w,. It follows by 2.6 and by
2.7 [6] that it is sufficient to prove A.(y, 0)e Ry U [ Q] for all y < p + 1 where
7 = (@,),<,+1 is such a description that a, = 1. But, obviously, 4,(0, 0)=Q0eN,
and A,(7,0) = 5o/, , forallp, 0 <y < p + 1.

(ii) <> (iii): Suppose that P is ordinally indecomposable, Pe.# and P,, P},
P,(0,0,2), P, P}, P2, P, cannot be embedded into P. Then there are Q € I'y and
an isomorphism % : Q —» P by 2.8. If Q = P,n, Q = P5= for a description or finite
description 7 = (a,),<,4+; such that «, > 1, respectively, then we define ¢:
2 Py(0, 0, 2) > Q by ix = x for x = £, £, 19, 2. If Q = P47 for a finite description
= (“y)y<,l+1 such that @, = 1, u > 1 then let ¢: P; - Q be a map assigning x
to x =4, 29,5 and £,_, to /. In the first (second) case ¢ is an embedding of
P5(0,0,2) (of P2) into Q; but then x: is an embedding of P,(0, 0, 2) (of P3) into P
which is a contradiction.

Conversely, if P =~ Q for some Q € I'c then Q € I'y and P is ordinally indecom-
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posable, Pe ./, P,, P,, P5, P}, P, cannot be embedded into P by 2.8. In the case
Qe {1, P}} it is obvious that there is no embedding of P,(0, 0, 2) and P; into Q.
As bP} = 3 and bP% = 2, P% cannot be embedded into P% for each pu, 0 < p < @y.
Finally, suppose that there is an embedding ¢ of P,(0, 0, 2) into P} for some p, 0 <
<pu=Lwy AsPt =L, UR,and L, = {/,;y < u} is a chain, R, = {7}, at least
three elements of the set ¢[ P,(0, 0, 2)] are members of L,, i.e. they form a chain. But
this contradicts the fact that there is no three-element chain in PZ(O, 0, 2).

3.3. Theorem. The following assertions (i), (ii), (iii) are equivalent.
(i) Pe de.

(i) Pe# and P,, Py, Py(0,0,2), Py, Py, P3, P, cannot be embedded into P.
(iii) PeOr.

Proof. This statement can be proved by the same method as 2.9 using 1.5 (iii)
instead of 1.5 (ii) and 3.2 instead of 2.8.

P:

Figure 4

As P =~ P2 + P} + 1 + P}, it holds that P e Ol for the poset P from Fig. 4.
Then P € 2. and one can easily check that Gs(P) =~ 2° by means of 4.3 [6].

4. ON THE CLASSES .#; AND £,

4.1. Lemma. Syppose that P is ordinally indecomposable and satisfies the ACC.
Then O g‘ﬁu{(])} if and only if P =~ 1 or P = P}.

Proof. If © g N U {0} then O = N U £[P] by 2.7 [6]. This and 3.2 give P = Q
for some Qe lc.

Assume Q € {Pl;; 1 < p £ wo} v {P}} and denote A = Q — {/,}. As A ¢{0, Q},
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we have 4 e Ny U {0} iff A = Nwy[X] for some X = Q. If this is the case then there
is x € X with /, ¢ wyx. That means A = wyx and x is a greatest element in A. But A
has no greatest element for the following reasons. If Q = P5 for 1 < u £ w, then
1, 1 are two different maximal elements in 4. In the case Q = P} we have 4 =
= {4, 20} and 4 || 2. Hence 4 ¢ N, L {0} so that O, = Ny U {B}. Thusitis P = 1
or P = P). The converse implication is true obviously.

4.2. Theorem. P € ./ if and only if there exist a chain I and a set {Q;;iel} <
< {1, P}} with the following properties. P = Y Q, and

iel
Q; = 1= thereis jel satisfying j<i, Q;=1 forall iel.

Proof. This statement can be proved by the same method as 2.9 using 1.5 (iv)
instead of 1.5 (ii) and 4.1 instead of 2.8.

4.3. Corollary. If P € M 1 then for each a € P there is at most one element b e P
with the property a | b.

Figure 5

In Fig. 5 there are three diagrams of posets from .

4.4. Theorem. Every poset can be embedded into a poset from the class Pr.

Proof. In the case P = ( the statement is true trivially. Otherwise we denote
by P the set P x w, ordered in the following way. For arbitrary (a, i), (b, j) € P it
holds that (a, i) < (b, j) if either (1) i = j and aewb or (2) i + 1 = j and aeéb
or (3)i+1<j.

Weput A =P—Aand A, = {(a,i + 1); (a,i)e A} for each 4 < P.

(a) The relation < is an ordering on P: £ is reflexive obviously. Antisymmetry:

Suppose (a, i) < (b, )), (b,j) < (a, i) for some (a, i), (b,j)eP. Then i <j, j< i
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and thus i = j. This and the supposition imply a € wb, b € wa which gives a = b.
Hence (a, i) = (b, j). Transitivity: Let (a, i), (b, j), (c, k) be arbitrary elements from
P satisfying (a, i) < (b, j), (b, j) < (c, k). Consider the cases

() i=j, aewb, j =k, bewc,

(B)i+1=j,aecéh, j=k bewc and

(y) i=j,acwb, j+ 1=k, beic
Then (o) =i = k,aewe, B)=i+ 1 =k, aeéc, (y)=i+ 1 =k, aeécand each
of the remaining six possibilities implies i + 1 < k so that (a, i) < (¢, k) in all cases.

(b) Op = Np: Let us take 4 € Op — {P} arbitrarily. It is sufficient to prove that
A = No[(4).], which is equivalent to (a, i) € A < (a, i) < (b, j) for all (b, j) € (4).

The direct implication: Assume (a, i) € A. If (b, j) € (4), then (b,j — 1)e 4 and
we have (b,j — 1) £ (a, i) according to A e Op. By this we immediately obtain
i =]

In the case i = j we have (b,i — 1) £ (a, ). Then b¢&a and we get a € wb,
which means (a, i) £ (b, i) = (b, j).

If i + 1 = j then (b, i) £ (a, i). This consecutively implies b ¢ wa, b £ a, a € &b.
The last assertion says (a, i) < (b, i + 1) = (b, ).

It is obvious that i + 1 < j = (a, i) £ (b, ).
The converse implication: If (a,i)¢ A then (a,i)e A, (a,i + 1)e(A4), and,
clearly, (a, i) £ (a,i + 1).

(c) The statement of the theorem is a consequence of (a), (b) and of the fact that
¢: P — P, defined by w = = (a, 0) for all a € P, is an embedding of P into P.

i P
(0,6) (0,7) (1,,3) (t,3)
(0,4) (0,5) (8, 2) (,,2)
(0,2) (0,3) (r,,1) (t,, 1)
(0, 0) (0, 1) (t,, 009 - (1y,0)

Figure 6
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