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PRIME SELECTORS IN LATTICE-ORDERED GROUPS 

JORGE MARTINEZ, Gainesville 

(Received May 22, 1979) 

I. Introduction. If G is an /-group P{G) will denote the set of all its proper prime 
subgroups. (Recall that a convex /-subgroup N is prime if a л Ь = 1 implies that 
a eN or b G N. Fot several different characterizations of prime-ness the reader 
should look through Conrad [1].) A convex /-subgroup M of G is called a value of G 
if there is an element g e G such that M is maximal relative to not containing g. We 
also say that M i s a value of g. It is well known that every value is a prime, and that 
every prime is the intersection of a chain of values; see Conrad [1]. M[G) will denote 
the set of values of G. 

Before proceeding we point out that our groups shall be written multiplicatively, 
unless we expressly signal the contrary. 

Let's review two basic facts about /-groups: 

1. If Ф : G -> H is an /-epimorphism, then the map N ~» Мф~^' is a one-to-one 
correspondence between P{H) and the proper primes of G that contain Ker (ф): 

2. Next, suppose that С is a convex /-subgroup of G. The map N -> N n С is 
a one-to-one correspondence between the primes of G that do not contain С and 
P(c). 

(See Conrad [ l ] or Martinez [13] for details.) 

Both of the above correspondences can be restricted to the appropriate sets of 
values, yielding 'value' analogues of (1) and (2). In addition, when N e P(G) and 
doesn't contain the subgroup C, then iV n С is a minimal prime of С if and only if N 
is a minimal prime of G. 

Let us also review the definition of a torsion class as given in [13] or [14]. A class 
of /-groups J^ is a torsion class if it is closed under taking (a) /-homomorphic images 
and (b) joins of convex /-subgroups of an /-group, which happen to belong to ^ . 

Notice that we do not require (c): ^ is closed under taking convex /-subgroups. 
If ^ is a torsion class satisfying (c) we'll say its hereditary. Hereditary torsion classes 
were studied extensively by this author in [10], [11] and [14], and jointly with 
Charles Holland in [5]. [13] should be seen as a survey article with several new 
results, including the main theorem, of [14] and most of the results in this paper. 
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As per Lemma 1 in [14] we have a choice of studying torsion classes as classes 
or through their radicals. For an /-group G, ^{G) stands for the ^-radical of G: 
the join of all the convex /-subgroups of G belonging to ^, By definition ^ ( G ) 
is in ^ and a characteristic subgroup of G. In Lemma 1 of [14] torsion radicals are 
characterized as functions taking on values in the lattice of convex /-subgroups such 
that 

(i) c^(C) S ^{G) for each convex /-subgroup С of G. 
(ii) If Ф : G -^ Я is an /-epimorphism, then £r{G) ф й ^{Н). 
(iii) HHG)) = HG)-

П. Prime selectors. A prime selector is a function which assigns to each /-group G 
a subset H{G) of P{G) subject to the following conditions: 

(1) If Ф : G -> Я is an /-epimorphism, N ^ Ker (ф) and N e H{G), then Мф e H{H). 
(2) If С is a convex /-subgroup of G and iV is a prime subgroup such that N ^ C, 

then N nCe H{C) implies that N e H{G). 
If H is a prime selector we define TOR(H) to be {G | H{G) = P(G)}. We then have: 

Proposition 1. TOR(H) is a torsion class. 

Proof. Condition (1) evidently implies that TQR(H) is closed under taking 
/-homomorphic images. Suppose then that A = V^i (/ ^ l) in the lattice of convex /-
subgroups of G, and that each Ai e TOR(H). If N e P{A) there is an i el such that 
N ^ Ai, and so N nAiE P[Ai) = Н(Л •). Hence N e H(A) by condition (2), A e 
e TOR(H). This proves TOR(H) is a torsion class. 

If ^ is a torsion class and H is a prime selector so that 3^ = TOR(H), we say that H 
presents ^, or is a presentation oï £Г. Our next result shows that every torsion class 
has a presentation, and indeed a least one. To understand that, let us decide on how 
to compare prime selectors: H^ g H2 if ^i{G) ^ H2(G), for each /-group G. 

Proposition 2. Suppose ^ is a torsion class. For each l-group G let h[^) (G) = 
= {NeP{G) I N ^ ^ ( G ) } . Then h ( ^ ) is a prime selector and TOR(h(5')) = ^ . 
Moreover, b(5^) is the smallest prime selector presenting ^ . 

Proof. Let us suppose for the moment that b(c^) has been shown to be a prime 
selector. Observe then that G 6 TOR(h(^)) if and only if b ( ^ ) (G) = P{G). Thus, 
G G TOR(h(^)) if and only if every proper prime fails to contain .^(G). This happens 
precisely when G = ^ ( G ) . Conclusion TOR(h(^)) - ^ . 

Now to prove that h{ßr^ is a prime selector: suppose ф : G -> Я is an /-epimorphism 
and N G P{G) with N ^ Ker (ф) and N ^ ^{G). If iV</> ^ еГ(Я) then 

N = (Мф) ф-^ ^ ^ ( Я ) ф-' ^ ^ ( G ) , 

since . ^ is a torsion class. This is a contradiction and therefore Ыф ^ «^(Я). This 
shows that iV G h{^) (Я). 
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Next, suppose С is a convex /-subgroup of G and N is a prime of G that does not 
contain С Evidently then .Г{С) ^ N nC implies that ^ ( G ) $ N, Thus, h(J') 
is a prime selector. 

If H is any presentation of .T and iV is a prime subgroup which fails to contain 
^ (G) , then N n .r(G) e Pi^{G)) = H(3r(G)). Since H is a prime selector N e H{G), 
and we conclude that b ( ^ ) g H . h(.5^) is then indeed the smallest presentation of 5^. 

If a prime selector H satisfies the stronger condition: (2'): for each convex /-sub­
group С of G and each N e P{G), 

N nCe H{C) if and only if N -^ С and Ne H{G), 

we say that H is a hereditary selector. The following result is easy to verify. 

Proposition 3. / / H is a hereditary prime selector, then TOR(H) is a hereditary 
torsion class. Conversely, every hereditary torsion class ^ has a hereditary pre­
sentation, namely b ( ^ ) . 

In proving that b(c^) is the smallest prime selector presenting ^ we proved that 
^ ( G ) ^[\{Ne P{G) I Л̂  Ф H{G)}, where TOR(H) = ^ . If equality holds we speak 
of H being an exact presentation. It is evident that h(^) is an exact presentation 
for ,T. Moreover, if H is hereditary and ^ = TOR(H), then H is exact. The proof 
can be found in [13]. 

Let us now consider some examples: 
(a) Suppose MQ is the prime selector of minimal primes. Then TOR(A4o) is the 

hereditary class s/^ of hyper-archimedean /-groups. However MQ Ф h(^^): it is 
known that in the free abelian /-group F on two generators — see Conrad [2] — 
each prime is either minimal or maximal, and thus MQ(^F) Ф 0. Yet s^^(F) = 1, 
which says that h{sé^) {F) = 0. 

Incidentaly, notice that for any torsion class ^ , h(^) is an ideal of primes; 
meaning that if AT G h{^) (G) and M й N, (Me P{G)), then M e Ь{ЗГ) (G). This 
property does not characterize the minimality of a presenting selector; just look at /HQ. 

(b) Suppose F is the selector that picks all non-values and every special value. 
Then TOR(F) = ^u, the class of finite valued /-groups. Once again, there are 
examples to show F Ф h[^v). 

(c) Consider TOR(AI) = ^ . G e ^ if and only if every prime is a value. This is 
equivalent to saying that /V1(G) satisfies the DCC. This class is complete. ^ has been 
studied by Conrad [3]. 

The mapping ^ -> h{ßr^ embeds the proper class of torsion classes into the 'lattice' 
of prime selectors in view of the identity TOR(fi(.^)) = ^ . If ^ = Aj-̂ j ^i is a join 
of torsion classes and N e P{G), then N ^ ^ ( G ) if and only if iV contains each ^i{G). 
Conclusion: b ( ^ ) = A^ ĵ b (^ , ) . The embedding also assigns a hereditary selector 
to a hereditary class. It preserves the meet of ^i and ^2 if ^^^ ^^^У if 

( ^ i n ^ , ) ( G ) = ^ i ( G ) n ^ 2 ( C ? ) , 
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for each /-group G. This is valid if .^^ and ^2 ^^^ hereditary. In general though, it is 
unknown whether h preserves finite meets. Furthermore, the previous argument 
breaks down for infinite meets, even in the hereditary case, thus foiling the proof 
of Theorem 1.5 in [12]. 

The map TOR, on the other hand, preserves arbitrary meets; the proof is easy. 
This fact does not seem to help in resolving the issue of what radical an intersection 
of torsion classes has. It would be useful to know whether TOR preserves joins. 
If so then every torsion class has a largest presentation. 

Some intriguing questions: 
1. Is MQ the largest presentation of j^^il 
2. Is F the largest presentation of J^^^? 

III. Selectors and completeness. In this section we turn to the question: can the 
completeness of a torsion class be reflected by a suitable choice of presentation? 
Recall from [13] that a torsion class ^ is complete if for each /-group G and each 
/-ideal A of G belonging to ^ so that GJA e ^ , it follows that G e ^ . It is easy to 
show that a complete torsion class is closed under finite subdirect products. (See 
[13].) 

Now we strengthen the first defining condition for prime selectors. If H is a prime 
selector and in addition the following holds: 

(Г) for each N e P{G) and each /-epimorphism ф : G -> Я for which N ^ Ker (ф), 
N e H{G) if and only if Мф e Н{Н), 

we say that H is a strong prime selector. If . ^ = TOR(H) we'll say that ^ is strongly 
presented. If ^ is such a class it is easy to show that ^ is complete. On the other 
hand, j / ^ * , the completion of the class of hyper-archimedean /-groups, is complete 
but cannot be strongly presented. We shall indicate the proof at the end of this section. 

By way of example, notice that УИ is a strong selector, and hence that ^ is strongly 
presented. Neither MQ nor F are strong selectors. 

So far we've only exhibited hereditary selectors. But consider the selector H that 
picks a prime if it's not a value, or when it is, selects it if it is not both maximal and 
normal. H is strong; ^ = TOR(H) is the class of /-groups having no convex /-
subgroups which are both maximal and normal. Neither ^ nor H are hereditary. 

We need to recall some notions from [10]. The 'lattice' structure of the class of 
hereditary torsion classes is Brouwerian. In particular, for each hereditary torsion 
class ^ there is a largest hereditary torsion class ^' such that «^ n ,^ ' = 0. ^ ' is 
called the polar of ^ . »^ is a polar class if . ^ = ^'\ We have the following theorems 
from [10]; all apply to hereditary torsion classes only. 

(Note: if A and В are convex /-subgroups of G and A S В with A normal in B, 
we call BJA a subquotient of G. BJA is a non-trivial subquotient if Л ф В.) 

Theorem (2.3, [10]) .Г ' = {G | ^{В\А) = 1 for each subquotient of G.} 
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Theorem (2.5, [10]) ^" consists of all l-groups G for which each non-trivial 
subquotient BJA possesses a non-trivial subquotient DjC(Ä ^ С ^ D ^ В) in ^ . 
Thus, ^ is a polar class if and only if G e ^ whenever each non-trivial sub-
quotient of G has a non-trivial subquotient in ^ . 

Theorem (2.4, [lO]) ^ * й ^ " . (<^* is the completion of ^) 

We also mention one result from Holland-Martinez [5] whose proof involves 
wreath products: 

Theorem 4. / / 2Г is a polar class and ^"^ — ^ {4l hereditary) then ^ — ^ . 

It is evident from this that ^ * < ^" for every non-complete hereditary torsion 
class. Any hereditary class which distinguishes itself among all the hereditary classes 
according to the condition of Theorem 4 will be called inaccessible. In view of Theo­
rem 4 and the fact that polar classes are strongly presented — which we shall prove 
in the sequel — we conjecture that every strongly presented hereditary torsion class 
is inaccessible. Equivalently, we are betting that ^ * is never strongly presented if ^ 
is non-complete. 

To show that polar classes are strongly presented, we actually produce a bit more: 
suppose H is an arbitrary prime selector and define № as follows: N e №(G) if there 
is a non-trivial subquotient BJA of G such that N ^ A, N "^ В and N n BJA e 
e Н(Б/У4). 

We then have: 

Proposition 5. № is a strong selector, H ^ H^ and № is the smallest strong 
selector containing H. If H is hereditary so is H\ 

The p r o o f of this proposition involves routine verifications; it appears in [13], 
and we leave it to the interested reader to look it up. 

Theorem 6. / / ^ is any torsion class then TOR(/i(.^)^) is the smallest strongly 
presented torsion class that contains ^, 

Proof. TÖR(h(.^)^) is a strongly presented class by Proposition 5. Next, suppose 
that % = TOR(H) and H is a strong selector. Suppose also that ^^41. Since 
TOR preserves meets, Ь{ЗГ) ^ H; (И r\ h{^) is a presentation for ^ . ) Hence 
h{^y S H, by Proposition 5, and so TOR(fi(^)^) S ^ . 

Theorem 7. / / ^ is a hereditary torsion class, then TOR(h(.^)^) ^ ^ \ In 
particular, if £Г = ^'\ then ^ is strongly presented. 

Proof. We use Theorem 2.5 of [10]. Suppose G G TOR(b(^)') and DJC к a non-
trivial subquotient of G. Select a prime N of G such that N ^ С but N ^ D. Then 
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we have a subquotient BJÄ for which A S N, В ^ N and BJA e ^ . It is easy to verify 
that {B r\C)y {Асл D) is normal in В n D, and that Q = [{B n D)/(B n C) v 
у {A n D ) ] is an /-homomorphic image of Б n DJA n D. The latter is in £^ since ^ 
is hereditary. But Q is also an /-homomorphic image of Б n DJB n С which is /-
isomorphic to a convex /-subgroup of DJC. Hence DJC has a subquotient in ^ . 

Q is non-trivial: В ^ N and D ^ N imply that В n D ^ N. On the other hand, 
v4 n Z) ^ iV and Б n С ^ N, so that {A n D)v {B nC) ^ N. By Theorem 2.5 in 
[10] Ge^'\ 

With regard to Theorem 6 we make the following definition: if 5" is a torsion 
class, we call . ^ ' = TOR(h(.^)^) the strong completion of 5". 

The class ^ = TOR(/H) is strongly presented, but is not a polar class: ^ " contains 
all the normal-valued /-groups. On the other hand, we know that J^, the class of 
normal-valued /-groups is inaccessible (and strongly presented), but not whether 
it is a polar class. Also unknown are whether ^ ^ Ж and whether ^ is inaccessible. 
(Note: to prove that Ж is inaccessible one uses the approach of Holland-Martinez 
in [5], via wreath products. This construction produces descending chains of values, 
and is therefore inapplicable to ^ . ) 

IV. Automorphically defined torsion classes. Suppose H is a strong prime selector, 
and let Ж(Н) stand for the class of all /-groups G in which each M e H[G) is a normal 
subgroup. Straightaway we have the following proposition: 

Proposition 8. / / H is a strong, hereditary selector then »^(H) is a hereditary 
torsion class. 

Proof. Suppose G e Ж(Н) with К an /-ideal of G. A prime in H^GJK) is of the 
form NJK with N E H ( G ) since H is a strong selector. Thus, N is normal in G, which 
means that NJK is normal in GJK. We conclude that GJK e Ж(Н). 

Suppose С is a convex /-subgroup of G e Ж(Н). If M e H{C) then M = С n MQ, 
where Mo e H(^G). MQ is normal in G, whence M is normal in C. Thus: .Ж(Н) is 
closed under taking convex /-subgroups. 

Finally, suppose G is the join of convex /-subgroups G^ (Я e A), and that each G;̂  
belongs to Ж(Н). If M e H(G) then since M "^ G^, for some jie A, M n G^e H(G^) 
since H is hereditary. For each such /z, G^ normalizes M because G^ e ^ ( H ) . If on 
the other hand M ^ Ĝ^ it is trivial that G^ normalizes M. Thus, M is an /-ideal, and 
we've proved that G e JV(H). 

For example, if H = /И, then Ж(Н) is the class of /-groups in which each value, 
and hence each convex /-subgroup is normal. These are the so-called c-archimedean 
/-groups. They were introduced in [8]. They are characterized by the condition: 
1 S a e G, g e G imply that a^ = g'^cig S ^" for some natural number n. (Note: 
the choice of n depends on ^ e G.) 

If H selects values which are not normal in their covers, then an oblique, vacuous 
argument gives that -4^(H) = Ж, the class of normal valued /-groups. 
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There are other classes which we would like to consider in this manner. However, 
as in the case of the representable /-groups, one must depart from looking at the 
primes specified by a selector. One has to look at selections of /-automorphisms 
instead. 

A[G) stands for the group of /-automorphisms of an /-group G. /(G) will be used 
for the subgroup of inner automorphisms. For each /-group G let 6(0) be a subgroup 
of Ä{G) chosen to conform to the following conditions: 

(Al) If Ф : G -^ H is an /-epimorphism and a e 0(G) fixing Ker (ф) (ie. 
[Ker (Ф)] a = Ker (ф)), then a" e 9(H), where a^ denotes the canonical /-auto­
morphism of H induced by a, defined by (хф) a^ = (xa) ф. 

(A2) lï К is an /-ideal of G, o- e A{G) and fixes X, and the restriction cr̂  of a to К 
is in e{K\ while a^ e e{GlK), it follows that a e Ö(G). 

(A3) Suppose {Gi | i e /} is a family of convex /-subgroups of G, and G = Vtej ^i-
If a e A{G) and fixes each G ,̂ while the restriction о"̂  to Ĝ  belongs to Ö(Gj), then 
(J E e{G). 

We call 0(G) an exact subgroup of Ä(G), and will indeed refer to the function 0 
as an exact subgroup of A, since there can be no ambiguity in doing so. If in addi­
tion в satisfies: 

(A4) For each G and each convex /-subgroup С of G, and each /-automorphism a 
fixing C, then cr e 0(G) implies that the restriction (TQ to С is in 9(C), we say that 9 
is a hereditary subgroup of A. 

For example, suppose H is a strong prime selector. Let ^^(G) ~ {a e A(G) | Na = 
= N, for all N e H(G)]. We then have the following result; the proof is straight­
forward but tedious. We shall therefore omit it and refer the reader to [13]. 

Proposition 9. / / H is a strong, hereditary selector then 9^^ is an exact, hereditary 
subgroup of A. 

For any exact subgroup Ö of Л we define *A^(9) to be the class of all /-groups G 
for which /(G) S 9(G), For a strong selector H it is evident that jr(H) = ^(Ö„) . 
In general, JV(9) comes very close to being a torsion class, and may very well be one; 
we have no counter-examples. We do have the following: 

Proposition 10. For each exact subgroup 9 of A, ^ ( ö ) is closed under taking: 

(a) Uhomomorphic images', 
(b) convex l-subgroups, if 9 is hereditary; 
(c) unions of chains of convex l-subgroups; 
(d) cardinal sums. 

(Note: G is the cardinal sum of its convex /-subgroups G,- (/ e / ) if the Ĝ  generate G 
and Gi nGj = 1 for all i + /.) 
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Proof. Checking (a) and (b) is routine, and we shall omit them. Let us exhibit (c) 
and (d) to see just how close Ж{в) comes to being a torsion class. (In [11], Proposi­
tion 1.5, it is shown that if a class ^ consists of finite-valued /-groups, then these 
four conditions are enough to make ^ a torsion class.) 

(c) Suppose / is a chain and {C^ | i e /} is a chain of convex /-subgroups of G 
so that Ci S Cj for i < j . Suppose G = !JC,-, and suppose each CieA\e). If 
g e G then g e Ci^ for a suitable z'o ̂  ^- Conjugation of Cj by g belongs to 0{Cj) 
provided j ^ I'o. But G = Uj^/o С г and so by (A3), conjugation by g belongs to 
0(G); that is: G e Ж{0), 

(d) Suppose G is the cardinal sum of the convex /-subgroups G^ (Я e Л). If ^̂  e G 
and G| = G;, then G\^ = G^, where g^ is the Я-th component oï g. (Note: a cardinal 
sum of these G^ is in particular a direct sum. Thus each xeG can be written uniquely 
as a finite sum x = Yj^x with x^ ^ ^я-) 

Conjugation by g^ is in ö(G;) for each Я e Л, and so by (A3) once more, conjugation 
by g is in Ö(G). 

Two special examples should be mentioned at this point: 

A. Let n{G) consist of all the polar-preserving /-automorphisms of G; that is, 
a e n{G) if and only if a л Ь = 1 implies that a A ba = 1. Polar-preserving /-
automorphisms fix every minimal prime of G. We leave it to the reader to verify 
that Я is an exact, hereditary subgroup of A. Ж(Я) = [G\ a A b = 1 implies that 
a A b^ = 1 for each g e G}. This is the class of representable /-groups. (See Conrad 
[1] or Martinez [13] for a list of alternate characterizations of this class ^ . In parti­
cular, G G ^ if it can be written as a subdirect product of totally-ordered groups.) 

B. Let A{G) = {ae Ä{G) \Na = N for each value iV of G and Nxa = Nx for 
all X EN, the cover of iVJ. Again, A is exact and hereditary. J^{A) — iT, the class 
of weakly-abelian /-groups. (See Martinez [6]; G is weakly-abelian if 1 ^ a e G 
ша g EG imply that a^ ^ Ö^. It is proved in [6] that ./^(A) = iT; ie. that GEiT 
if and only if each value M of G is normal in G and MJM is central in GJM.) 

Thus, if ^ is a torsion class and ^ = Ж{в) for a suitable exact subgroup в of A, 
we say that ^ is automorphically defined (or definable). The next proposition iden­
tifies a curious subclass of an automorphically defined class; using it we can easily 
dismiss many classes as not being so definable. 

Proposition 11. Suppose ^ = ^(0) and y(^) = {G | 0(G) = A{G)}. Then 

(a) y{^) й ^ 

and 

(b) / / G Ey{^^) then each extension of G by an l-group in ^ once again belongs 
to ^ . The converse is true if 9 is hereditary. 

Proof, (a) is clear. 
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(b) Suppose G G y{^) and an /-ideal of H, so that HJG is in ^.lïheH then Ĝ  = 
= G. As 0(G) = ^(G), the restriction of conjugation by h belongs to ö(G). h induces 
a conjugation on HjG (by Gh) which belongs to e{HlG). By (A2) conjugation by h 
belongs to 0(Я), and so Я e Ж(0). 

Conversely, suppose that 0 is hereditary, and each extension of G by an /-group 
in ^ belongs to ^ . A[Z) = 1 (Z = the additive integers) and so Ze ЗГ. For each 
G G A{G) we construct a lexicographic extension X of G by Z so that conjugation 
by the integer 1 is equivalent to the action by cr; that is, g G = ^ \ for all ^ G G. By 
assumption К e ЗГ, which together with the hereditariness of Q implies that a G 0{G). 
This proves that A{G) = 0(G), and thus that G G 7 (^ ) . 

Now a few observations: assume ^ = Ж{в) and that Ö is hereditary. 

1. Z, or for that matter, any /-group G for which A(G) = 1, belongs to y{^)-
2. Every abelian /-group belongs to ^ . 
3. The intersection of a family of exact (hereditary) subgroups is exact (hereditary). 
4. сЛ (̂ПябЛ од) = Плел ^^(оя)- (Плел ^я ^̂  to thc interpreted in the only reasonable 
way: [Ç],,^ ej) (G) = Пяел ^яС^), for each /-group G.) 
5. Thus, there is a unique minimal automorphically definable class. In the sequel 

we describe this class and prove it is an equational class. (By a theorem of Holland 
[4] it is also a torsion class.) 

Theorem 12. For each l~group G let 9Q[G) consist of all l-automorphisms a in 
/4(G) for which there is an ascending sequence 1 = AQ ^ A^ ^ ... ^ ^^ = G 
(ß an ordinal number) of convex 1-subgroups, so that A^a = A^ for all a < ß, 
Лу = Ua<y^a f^^ each limit ordinal y, and a induces the identity on the right 
cosets of A^^-^jA^; (je. A,xa = A^x, if x e A^ + i.) 

Then 9Q is an exact, hereditary subgroup of A. Let ^^^t = Ж(оо); then G G ^^^i 
if and only if to each g e G there exists an ascending sequence of convex /-subgroups 
1 = AQ ^ Ai ^ ... S Л^ ^ ... S Aß = G such that Al = A^ for all a < ß. Ay = 
= Ua<y ^a if У is a limit ordinal, and A^x^ = A^x, if x G 4̂̂  + 1. 

5^3ut is an equational class containing all /-nilpotent /-groups. 
(Note: an /-group G is l-nilpotent [of rank m) if there is a sequence 1 = Go ^ 

^ Gĵ  ^ . . . ^ G^ = G of /-ideals such that each Gi + ^jGi is central in GJG^. This 
notion is stronger than conventional nilpotency; see Martinez [9].) 

P roo f of Theorem 12. It is to our advantage to introduce, for this proof, the fol­
lowing terminology: if ae OQ{G) and 1 = Ло ^ ^ i ^ ... ^ ^̂ 5 = G is a sequence 
of convex /-subgroups as specified in the definition of ÖQ, we shall refer to it as 
a (T-central ascending sequence. 

Suppose Ф : G -^ H is an /-epimorphism and К = Ker (ф). Suppose a e öo(G) 
and fixes K. Select a cr-central ascending sequence 1 = AQ ^ A^ ^ ... -^ Aß = G, 
and set B^ = А^ф, for each ordinal a < ß. Then B^a^ = А^фа^ = А^аф = В^. 
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Furthermore, induces a canonical /-homomorphism ф^ from Aa+il\ ^^^^ ^a + il^a-
It is easy to verify that because с induces the identity on A^+il^^a ^ induces the iden­
tity on ßa + i/ßot- It should be clear then that 1 = J5o g ^ i ^ ••• ^ /̂? = ^ is a (re­
centrai ascending sequence. Conclusion: a^ e Oo{H). 

That takes care of (Al). (A4) is proved analogously. (A2) is demonstrated by 
piecing together two ascending sequences which are central with respect to a restric­
tion (to an /-ideal), and a quotient, respectively. 

Suppose now that {G,-1 i e / } is a family of convex /-subgroups of G and that 
G = \/Gi. Pick a e A[G) and suppose that a fixes each Gj-, while the restriction cr̂  
to Gi belongs to OoiGi). Select a cTj-central ascending sequence in Ĝ  (for each i el), 
denoted: AQJ ^ A^ g ... ^ "^pdl— ^t- Since the ßi are bounded we may without 
loss of generality assume that all the ßi are equal (to ß). For each a < ß Ы A^ = 
= Vie/ "^och clearly A^G — A^ for each a < ß. Also, Ay = Ua<y ^a for limit ordinals y. 
The inclusions of A^j ^ A^ induce canonical /- homomorphisms т̂  , from Л^^^ ,/y4̂  ,• 
into A^ + iJA^. The images generate A^^iJA^. Since each <т̂  induces the identity on 
each У4̂  + 1 ^\А^ J-, G does the same on A^ + ^JA^. This proves that a e öo(G) and settles 
(A3). 

Conclusion: OQ is an exact hereditary subgroup of A. 
It is clear that G e J^(0o) if and only if each g e G determines a sequence 1 = AQ S 

^ v4i ^ ... ^ Л^ = G of convex /-subgroups of G such that A^ = A^ for each 
OL < ß,Ay = Ua<y ^a f^r limit ordinals 7, and A^x^ = A^x for dàXa < ß and x e Л + i-
We let ^3ut = ^\Qo)-

Now to establish the minimality of ^^^^t among the automorphically defined classes, 
(whether torsion or no). To do this we shall first establish that each a e OQ{G) fixes 
every value of G. It implies that if G e ^^^t' then each convex /-subgroup of G is 
normal. Accepting this, suppose ^ = УГ(О), where в is an exact subgroup of A. 
If G G ê aut? select for a g'ven g e G a. ^-central ascending sequence (that is, relative 
to conjugation by g), 1 = AQ ^ A^^ ^ ... -й Aß = G. On each factor A^ + ^JA^ 
conjugation by g induces the identity, which certainly belongs to O^A^ + iJA^). Now 
apply (A2) and (A3) repeatedly to conclude that the conjugation by g is in ö(G). 
Clearly Ge^. 

So let's prove that each a e 9o{G) fixes every value N of G. Select a cr-central 
ascending sequence 1 = Co ^ C^ ^ ... ^ Q = G. Find the least ordinal ^0 for 
which ĈQ ^ N. It is clear that ^0 is not a limit ordinal. Further, if xeN n C^^ 
then xa e C^^-iX S N, so that xa e N n C^^. All of this holds for a' ^ and therefore 
N(T n Co = N n Co. This proves Na = N. 

It is evident that ^^^t contains ail the /-nilpotent /-groups. 

To prove that ^^^^ is equational it is enough, by Birkhoft^'s Theorem on equationai 
classes, to prove that ^aut is closed under taking /-subgroups and direct products. 
We shall only carry out the proof for /-subgroups. For direct products the argument 
is quite similar to that of (A3) above. 

215 



So suppose H is an /-subgroup of Ge^T^^^. If /i е Я , let 1 = Ло ^ ^ i ^ ... ^ 
^ Л^ = G be an /i-central ascending sequence. Set B^ = A^ n H; each B^ is a convex 
/-subgroup of Я, B^ = B^ for all a < )S and Б^ = Ua<y ^<x if 7 is a limit ordinal. 
Finally, if XGB^^^ then Л ~ ^ e A^ n H = B^. Conclusion: l = BQ ^ B^ S ... 
... ^ Bß = H h /г-central, and H e ^aut- Thus, .^a^t is equational, and the theorem 
is at long last proved. 

(The equational aspect of e^g t̂ was observed by A.M.W. Glass during a seminar.) 

In the sequel we suppose ^ = Ж(о) is an automorphically defined torsion class; 
suppose ^/ is an arbitrary torsion class. Set r{G) = {a G A{G) \ a'^^^^ e 0{Gl^(G))}. 
It should be evident that r(G) is a subgroup of A(G). We will show that it is an 
exact subgroup. 

Suppose a e r[G) and ф : G -> Я is an /-epimorphism fixing the kernel. From 
properties of torsion radicals: ^ ( G ) g ^ ( Я ) ф ~ ^ and so G|%(H)ф~''^ is an /-
homomorphic image of Gl^(G). a'^^^^ e Ö ( G / ^ ( G ) ) , and therefore induces an /-
automorphism т of Gl^(^H) ф~^, since a'^^^'^ fixes the kernel of the canonical map 
G/^(G)-> G / ^ ( Я ) ф " ^ Since в is exact, т e 0{GI%{H) ф~^). Furthermore, 
GJ^iE) (/)~Ms naturally /-isomorphic to Hl^{H), in a way that т induces an /-auto­
morphism T' in в(Н1'Ш{Н)). This suffices to show that the /-automorphism ex* induced 
by a on Я belongs to Г(Я), as it, in turn, induces x'. This proves (Al). 

We leave (A2) to the reader. As for (A3), suppose that {G,-1 / e /} is a family of 
convex /-subgroups of G and G = Vie/ G .̂ Suppose a G A{G) and fixes each Ĝ -; 
in addition, we assume that each restriction сг/ belongs to r{G^. Once again, we have 
by properties of radicals: ^(G,) ^ ^(G) n G,-, and therefore Gij%[G) n G^ is an 
/-homomorphic image of Gij^^Gi). Both convex /-subgroups in question are fixed 
by a, and a therefore induces an /-automorphism of Gil^(G) n Gj as well as Gil%{G^. 
Denote these by Q' and <J' respectively. Since a' e Q{Gil^{G^) and в is exact, Q^ E 
e e{Gil^{G) n Gi)). Also G,./'^(G) n Ĝ  ĉ  Ĝ  v ^(G)/^(G), and ^̂ ' induces an 
an /-automorphism т' of Ĝ  v ^ ( G ) / ^ ( G ) belonging to Ö(Ĝ  v ^ ( G ) / ^ ( G ) ) . These т̂  
are all restrictions of a'^^^^ on Gl^{G). Since G/^(G) = Vre/ <̂ i v ^{G)\%{G), it 
follows that (7̂ <̂ > 6 ö(G/^(G)), and hence a e r{G). 

Thus, r{G) is an exact subgroup of A(G) containing Ö(G). уГ(0) = {G | for each 
^ e G conjugation by g ^(G) belongs to ö(G/^(G))} = {G | G/^(G) e ^ ~ } . 

Recall from [13] that if ^^ and ^2 ^^^ ^^'^У two classes of /-groups then ^^ . ^2 
is the class of all /-groups G having an /-ideal Ae^^ so that GJA e ^2-

We've therefore established the following: 

Proposition 13. Suppose ^ = -4^(0) /5 an automorphically defined torsion class 
and % is an arbitrary torsion class. Let r{G) = {a e A{G)\ a'^^^^ e 0{GJ%{G))}. 
Then Г is an exact subgroup of A. ^A^{Г) = % . ^.IfO and % are hereditary so is Г. 

Corollary. / / ^ and % are torsion classes and ^ is automorphically defined 
then so is 41 . ^ . 
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With regard to the binary operation • between torsion classes, it was observed 
in [10] that one distributive law, Ш . {Viei ^i) = Vie/ ^ • ̂ ь always works for 
hereditary classes. Hereditariness hardly plays a role; it's true for all torsion classes. 
Ditto for the dual law, relative to meets. Distributivity from the right does not work 
in general, even for hereditary classes. It does, for meets, if the class to be distributed 
is closed under taking /-subgroups. For hereditary classes it's enough to assume 
closure of the class ^ under finite subdirect products to distribute 2Г over fnite 
meets. The proof is easy and will be left as an exercise. 

Now, complete torsion classes distributive over finite meets (from the right) because 
they are closed under taking finite subdirect products. In [13], Proposition 4.4.2, 
we show that if ^ is automorphically defined by a hereditary subgroup then ^ is 
closed under finite subdirect products. Thus, we have yet another class of torsion 
classes which can be distributed from the right over finite meets. 
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