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Local semi-dynamical systems introduced by HAJEK [5] have been systematically
studied within the framework of the theory of dynamical systems. The investigation
of local semidynamical systems on an abstract set led Héjek to the introduction of
an essentially more general concept for which he used the name “process’ and whose
properties were described in [6] and [7]. Further results concerning processes on
a set without topological structure are found in [10], [11], [12]. The present paper
deals with processes on a locally compact Hausdorff topological space. The notion
of a continuous local right pseudoprocess is introduced, whose special case is e.g.
Roxin’s general control system [14]. An apparatus for the study of properties of
solutions and orbits of continuous local right pseudoprocesses is developed and
theorems on existence of solutions and their continuous dependence on a parameter
are established.

1. FINITE TOPOLOGY AND CONTINUITY OF MULTIFUNCTIONS

1.1. Notation and terminology. Let X be an arbitrary set. By A(X) or P(X) we shall
denote the set of all subsets or of all nonempty subsets of the set X, respectively.
Let the set X be endowed with a topology Z and let O(X), C(X), K(X) denote the
set of all nonempty open, closed, compact subsets of the space X, respectively. Let
us define the maps

(1.1.1) u:AX) - A(P(X)) :u(G) = {He P(X)| H = G},
(1.1.2) I :AX) > A(P(X)): (G) = {HeP(X)|Hn G % 0}
and let us denote
BUX) = {u(G)|GeT}, BL(X)={lG)|GeT},
BL(X) = BUX) 0 BL(X).

1.2. Definition. Let X be a topological space and let %(X), £(X), #(X) be topo-
logies in the set P(X). The topology %(X), #(X), #(X) is called the upper semi-
finite topology, the lower semi-finite topology, the finite topology in the set P(X),
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respectively, iff %(X), £(X), #(X)isthe coarsest topology in P(X) such that Z%(X) <
c UX), BL(X) = L(X), BF(X) = S(X), respectively.

1.3. Remarks. 1.3.1. In what follows, the topological space P(X) with the topology
UA(X) or £(X) or #(X) will be denoted by UX or LX or SX, respectively. In our
investigations of properties of continuous local right pseudoprocesses we shall be
concerned mainly with closed and compact subsets of the space X. Thus we shall work
often in the subspaces C(X) and K(X) of the space P(X). The topology on C(X)
or K(X), induced by any one of the topologies %(X), #(X), &(X) will be denoted
by the same symbol again, and for the topological spaces (C(X), (X)), (C(X), £(X)),
(C(X), #(X)) and (K(X), %(X)), (K(X), £(X)), (K(X), #(X)) we shall use the sym-
bols UCX, LCX, SCX and UKX, LKX, SKX, respectively.

1.3.2. The topologies from Definition 1.2 were first introduced by Michael in his
paper [9]. An exhaustive application of these topologies to the study of continuity
of multifunctions was given among others by Ponomariev in [13).

1.3.3. Itis easy to see that for each set E € P(X) the identities
(1.3.1) u(E) = P(X) — (X — E), l(E)=PX)— u(X — E)

hold. Hence for each closed subset E of the space X the set u(E) or I(E) is closed in
the space LX or UX, respectively. Thus the topologies %(X) and #(X) may be fully
characterized by closed subsets of the space X as follows. The topology %(X) or
Z(X) is the coarsest topology in the set P(X) such that for each closed subset H €
€ C(X) the set I(H) or u(H) is closed in the space UX or LX, respectively. Thus, if
a set E = X is open and closed in X, then both the sets u(E) and I(E) are open and
closed in SX.

1.4. Theorem. Let X be a topological space, let I be an arbitrary index set and
let the set
M= {MeKX)|iel}
be a compact subset of the space UCX. Then the set
M = M,
iel
is a compact subset of the space X.
Proof. Let 0 be an arbitrary open covering of the set M in the space X. For each
M; e M let 0; be a finite open covering of M;, chosen from @. Let us denote
0,=06G.
Gel;
The system {u(0,)|iel} is an open covering of the compact set ./ in the space
UCX, so that there exists a finite open covering, say {u(0,), u(0,), ..., u(0,)}, of the
set . Since M; = O; € u(0,), the system {0, O,, ..., 0,} is a finite open covering
of the set M, chosen from the given covering @. Hence, the set M is compact.
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1.5. Theorem. Let X be a topological space, let I be an arbitrary index set and
let the set
M= {M;eCX)|iel}

be a connected subset of the space SCX. Let at least one of the sets M;, i €I, be con-
nected in the space X. Then the set
M=UM,
iel

is a connected subset of the space X.

Proof. Let N be a proper subset of the set M, open and closed in M. We have
to prove that N = Q.

According to 1.3.1 the sets u(N) and u(M — N) are open and closed in SCM, so
that the sets

(1.5.1) N =ulN)yaM, ¥ =uM-N)nd

are open and closed in /. Since ./ is connected, at least one of the sets (1.5..1) has
to be empty. According to the assumption the set ./ contains af least one connected
subset M, so that either M; = Nor M; « M — N. Hence either &/ & @ or A" * 0.
Let us suppose that A&~ # Q. Then, taking into account the assumption of connected-
ness of ., we obtain the identity .# = A", and hence M = N, contradicting the
assumption that N is a proper subset of M. Thus &/’ = 0 and it must be A + 0,
so that #” = M, i.e. (M — N) n M = M. Hence, with regard to the assumption
N < M, one obtains N = 0,

1.6. Convergence in a topological space. Let X be a topological space. By a (gener-
alized) sequence of points or of subsets of the space X we mean a map defined on
some directed set with values in the set X or in the set P(X), respectively. Sequences
of points x; or of subsets H; of the space X with indices i form a directed set I (with
a partial ordering <) will be denoted by (x;, i €I) or (H, i € I), respectively. If there
is no danger of confusion of the index sets I, we shall use the simpler notation (x;)
and (H,). Let us recall the terminology concerning the convergence of sequences.

Let I, J be directed sets and let (x;, i €I) (i;, j € J) be sequences of points of the
sets X and I, respectively, such that j, j' € J, j < j"implies i; < i;.. Then the sequence
(xi;,j € J) is called a subsequence of the sequence (x;, i €I). A sequence (x;, i €)
is said to converge to a point x € X (which is written as x; - x for i el) iff for
each neighbourhood U of x there exists an index i € I such that x; € U holds for all
jel, i <j. The point x is then called the limit of the sequence (x;). This fact is
written as x = lim x;, or simply x = lim x;. A point x € X is called a cluster point

iel .
of a sequence (x;) iff there exists a subsequence of the sequence (x;) converging to
the point x. Analogous terminology and notation will be used for sequences of
subsets of X.

Let (H;, i €I) be a sequence of subsets of the space X. Let us recall the definitions
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of the upper limit (denoted by lim sup H;) and the lower limit (denoted by hm mf H))
of the sequence (H,). el
A point x € X is said to belong to lim sup H; iff for each neighbourhood V of x

iel
and for each index i € I there exists j eI such that i < jand Vn H; % 0.

A point x € X is said to belong to lim inf H; iff for each neighbourhood ¥V of x
iel
there exists an index i € I such that V' n H; # @ holds for each j eI satisfying i < j.
Clearly a point x € X belongs to lim sup H; or lim inf H; iff there exists a sequence
iel iel
(x;, i €I) of points of the space X such that x; € H; for i eI and x is a cluster point
or limit of the sequence (x;), respectively.

In what follows, we shall often be concerned with convergence in a uniform space.
This is due to the fact that each compact topological space X is uniformizable. The
unique uniformity % on X, inducing on X the given topology, consists of all relations
in X containing the identical relation 1y on X. A base of this uniformity may be
constructed using finite open coverings of the space X. That is why this uniformity is
often called the uniformity of finite open coverings (see e.g. [2], chap. 11, § 4).

Let (x‘-, i el) be a sequence of points of a uniform space X with a uniformity %.
The sequence (x;, i 1) is called a Cauchy sequence iff for each vicinity Ve % there
exists an index i e[ such that (x;. x,) € ¥ holds for each couple of indices j, keI,
i <j, i < k. A uniform space X is said to be complete iff each Cauchy sequence of
points of the space X has a limit in X. Recall that each compact uniform space with
the uniformity of finite open coverings is complete.

Remember that each sequence of subsets of a topological space X may be in-
terpreted as a sequence of points of anyone of the topological spaces UX or LX or SX.
In such a way we obtain other three types of convergence of sequences of subsets
which will be dealt with in what follows.

1.7. Definition. Let X be a topological space. Let a sequence (H;, iel) with
H;e C(X) for i el and a set H e C(X) be given. The sequence (H, i ) is said to
U-converge or L-converge or S-converge to the set H in the space X (which will be
denoted by H; »V H foriel or H; »" H for i e I or H; »° H for i € I, respectively),
iff the sequence (H,, i € I) of points of the set C(X) converges to the point H € C(X)
in the topological space UCX or LCX or SCX, respectively. The set H is then called
the U-limit or the L-limit or the S-limit of the sequence (H,, i €I) in the space X,
which is written as HeU — lim H;forielor HeL— lim H;forielor He S —
— lim H; for i € I, respectively.

1.8. Lemma. Let a sequence (H,, i €I) with H; € C(X) for i €I and a set H € C(X)
be given. Then the following assertions hold.

1.8.1. He U — lim H; for i€l iff for each neighbourhood U of H in X there
exists an i €I such that H; = U holds for each jel, i < j.
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1.8.2. He L — lim H, for i€l iff for each open set Ue O(X) with HN U =* 0
there exists an i €I such that H; n'U # 0 holds for each jel, i < j.

1.83. He S — lim H; for iel iff for each open sets U, Ve O(X) satisfying
H c U, Hn V% 0 there exists an i€l such that H; = U, H; 0 V % 0 holds for
eachjel, i <j.

1.84. HeS — lim H; for iel iff HeU — lim H; for iel and He L — lim H;
for iel.

1.9. Remark. It is well known that in a Hausdorff topological space each sequence
has at most one limit. For sequences of subsets this assertion does not hold. The
assertion 1.8.1 implies immediately that He U — lim H; for iel, H = F € C(X)
implies FeU — lim H; for iel. Analogously, 1.8.2 implies that He L — lim H;
foriel, FeC(X),F < Himplies Fe L — lim H,foriel.

1.10. Theorem. Let a sequence (H;, i €I) with H, e C(X) for i el be given. Then
H =liminfH;e L — lim H;foriel,and if H e L — lim H; foriel then H < H.

el

Proof. First, let us prove that He L — lim H; for iel. Recall that xe H
iff there exists a sequence of points x; € H; for i € I converging to the point x. Take
an arbitrary open set U € O(X) with U n H # 0 and an arbitrary point xe U n H.
Then there must exist a sequence of points x; € H; converging to the point x, i.e.
there exists an i€l such that x; € U n H; holds for each jel with i < j. Hence,
according to 1.8.2, the assertion H € L — lim H, for i € I follows.

Now let us prove that H' € L — lim H; for i € I implies H' = H. Take an arbitrary
point x € H' and assume that there exists no sequence of points x; € H; converging
to the point x. Then for some open neighbourhood U of x and for each k €I there
exists i, € I with k < i; such that U n H; = 0. On the other hand, H e L — lim H;
foriel and Un H' % 0 imply U n H; + 0 for all sufficiently large i € I which is
a contradiction. Thus H' < H.

1.11. Lemma. Let X be a locally compact Hausdorff space and let a sequence
(H;, iel) with H;e C(X) for iel be given. If H eU — lim H; for iel, then
limsup H; = H'.

iel

Proof. Take an arbitrary point x € H = lim sup H;. Recall that the point x is

iel
a cluster point of a certain sequence (x;) with x; € H;. Assume that x ¢ H'. Since the
space X is regular, there exist open sets V, We O(X) such that xe V, H < W and
VA W = 0. On the other hand, since x is a cluster point of the sequence (x;), there
must exist arbitrarily large indices j € I such that x; e ¥V n H;. The assumption H' €
eU — lim H; for iel implies H; = W for sufficiently large indices j. Hence x; e
eVn H; « Vn W= 0, which is a contradiction. Thus x € H’, which yields H cH'.
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1.13. Corollary. Let a sequence (H;, i € I) of nonempty closed subsets of a locally
compact Hausdorff space be given. Then for each two sets H, F e C(X) satisfying
HeL —1limH; for iel, FeU — lim H; for i el it holds
(1.13.1) H climinfH; = limsup H; c F.

iel iel

1.14. Corollary. Let X be a locally compact Hausdorff space, let (H;, i€l) be
a sequence with H; e C(X) and let H, H', F, F' € C(X). Then the following assertions
hold.

IfHeL—-1limH,;foriel, H— H' % 0, then H ¢ U — lim H; for i e I.

If FeU —limH,; foriel, F — F % 0, then F' ¢ L— lim H; for iel.

1.15. Corollary. In a locally compact Hausdorff space each sequence (H;, iel)
of nonempty closed subsets has at most one limit. If there exists He S — lim H;
foriel, then

H =limsup H; =liminf H;.
iel iel

1.16. Multifunctions. The main objects of our investigation are certain kinds of
multifunctions, called continuous local right pseudoprocesses. That is why we shall
recall now several notions and assertions concerning multifunctions.

Let X, Y be topological spaces. A multifunction f : X — Yis any relation f between
X and Y. Let D, denote the domain of the multifunction f, i.e. D, = {x e X | f(x) *
+ 0}. A value f(x) of a multifunction f:X — Y at a point x € D, is a nonempty
subset of the space Y. A multifunction f : X — Y is said to be point closed or point
compact or point connected, iff for each point x € D, the set f(x) is closed or compact
or connected in the space Y, respectively. In what follows we assume all multifunctions
to be point closed and to satisfy D, = X.

For a given multifunction f : X — Y and given sets 4 = X, B = Y we denote

f(4) = {ye Y| y e f(x) for some x € A} =xLE)Af(x)
f7(B)={xeX|f(x) nB+0}, f(B)={xeX|f(x)<B}.

The set f(4) is called the image of the set A, the sets f ~(B) and f_(B) are called the
upper and the lower inverse images of B, respectively. It is easy to see that for each
multifunction f: X — Y and for each 4 = X, B < Y the identities

(1.16.1) X-fB)=f(Y-B), X-f(B)y=f-(Y-B)

hold.
According to our assumption, each multifunction is point closed. Thus each
multifunction f : X — Y can be assigned a map

fYiX->CY):f(x) =f(x) foreach xeX.

The map fV is said to be generated by the multifunction f.
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1.17. Definition. Let topological spaces X, Y, a multifunction f:X — Y and
a point a € X be given. The multifunction f is said to be upper semi-continuous
or lower semi-continuous or continuous at the point a iff the map f" generated by
the multifunction f is continuous at the point a with respect to the upper semi-finite
or lower semi-finite of finite topology on the space C(X), respectively.

The multifunction f is said to be upper semi-continuous or lower semi-continuous
or continuous iff it is upper semi-continuous or lower semi-continuous or continuous
at each point a € X.

1.18. Remark. In the preceding definition the continuity problem for multifunctions
f:X — Y was reduced to the continuity problem for maps f¥ : X — C(Y) with
a convenient topology on the set C(Y). Recall that a map g : P — Q is continuous
at a point a € P (with respect to given topologies on the sets P and Q) iff for each
element U of a subbase of a neighbourhood system of the point g(a) there exists
a neighbourhood V of the point a such that g(V') = U.In the following lemma this
characterization of continuity of maps will be applied to the maps /¥ : X— UCY,
fY:X - LCY and f" : X — SCY in order to obtain a very useful description of
notions introduced in Definition 1.17 in terms of topologies on the sets X and Y.

1.19. Lemma. Let topological spaces X, Y, a multiplication f:X — Y and
a point a € X be given. The following assertions hold.

1.19.1. The multifunction f is upper semi-continuous at the point a iff for each
open set U e O(Y) with f(a) = U there exists a neighbourhood V of the point a
such that f(x) = U for each point x € V.

1.19.2. The multifunction f is lower semi-continuous at the point a iff for each
open set U € O(Y) with f(a) 0 U # 0 there exists a neighbourhood V of the point a
such that f(x) 0 U # 0 for each point x € V.

1.19.3. The multifunction f is continuous at the point a iff for each two open
sets U, We O(Y) with f(a) = U, f(a) n W= 0 there exists a neighbourhood V
of the point a such that f(x) = U and f(x) 0 W % 0 for each point x€ V.

1.19.4. The multifunction f is continuous at the point a iff it is both upper and
lower semi-continuous at the point a.

1.20. Theorem. A multifunction f: X — Y is upper semi-continuous iff for each
open set G € O(Y) the lower inverse image f_(G) is an open set in X.

Proof. Let G € O(Y). Then the set u(G) is open in UCX and the identity f_(G) =
={xeX|f(x) = G} = {xeX |f'(x)eu(G)} = (f* ) (u(G)) holds. Hence the
assertion follows immediately.

1.21. Theorem. A multifunction f:X — Y is upper semi-continuous iff for
each closed set H € C(Y) the upper inverse image f ~(H) is a closed set in X.

Proof. See Theorem 1.20 and the identities (1.16.1).
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1.22. Theorem. A multifunction f:X — Y is upper semi-continuous at a point
aeX iff f(a)e U — lim f(x;) for i € I holds for each sequence (x;, i€l) in X con-
verging to the point a.

Proof. Let us suppose that x; — a implies f(x;) »Y f(a) and that the multifunc-
tion f is not upper semi-continuous at the point a. Then there exists a neighbour-
hood U of the set f(a) such that f(V) ¢ U for each neighbourhood V of the point a.
Now we can construct such a sequence (xV) in X that x, € V for each neighbour-
hood V of a, x, — a and f(xy) ¢ U. Thus x,, - a does not imply f(x,) =Y f(a),
which contradicts the assumption.

To prove the converse implication, assume that the multifunction f is upper semi-
continuous at the point a and that there is given a sequence (x;, i € I) in X converging
to the point a. Let U be an arbitrary neighbourhood of the set f(a). Then there exists
a neighbourhood V of the point a such that f(V) < U. For the neighbourhood V
there exists an index i e I such that for each jel with i <j it is x;e ¥, and thus
f(x;) = U. Hence f(x;) »Y f(a), which was to be proved.

1.23. Theorem. A multifunction f : X — Y is lower semi-continuous iff for each
open set G € O(Y) the upper inverse image f ~(G) is an open set in X.

Proof. For each G e O(Y) the set [(G) is open in LCY, so that the assertion
follows from the continuity of the map f¥ : X — LCY and the identity

fG) ={xeX|[f(x)nG+0} ={xeX|f"(x)elg)} = ()" ((G))-

1.24. Theorem. A multifunction f : X — Y is lower semi-continuous iff for each
closed set H e C(Y) the lower inverse image f_(H) is a closed set in X.

Proof. See Theorem 1.23 and the identities (1.16.1).

1.25. Theorem. A multifunction f:X — Y is lower semi-continuous at a point
aeX iff f(a) e L — lim f(x;) for i eI holds for each sequence (x;, iel) in X con-
verging to the point a.

Proof. Suppose that x; — a implies f(x;) =" f(a) and that f is not lower semi-
continuous at the point a. Then there exists an open set U € O(Y) such that f(a) N
N U =% 0 and in each neighbourhood V of the point a there exists a point x, such that
f(xy) n'U = 0. Clearly, the sequence (xV) may be chosen so as to converge to the
point a. Thus x, — a does not imply f(x,) =" f(a), which contradicts the as-
sumption.

Suppose now that the multifunction f is lower semi-continuous at the point a,
let (x;, i €I) be a sequence in x converging to the point a, and let U be an arbitrary
open set in Y such that f(a) n U # 0 holds for each point x € V. To the neighbour-
hood V there exists an index i € I such that x; € V holds for each jel, i <j. Thus
f(x;) " U * 0. Hence, according to 1.8.2, f(x;) =" f(a), which was to be proved.
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1.26. Theorem. Let a multifunction f:X — Y be upper semi-continuous and
point compact. If the space X is compact and the space Y is Ty, then the space f(X)
is also compact.

Proof. The map f¥ : X » UCY generated by the multifunction f is continuous,
so that the set

JX) =) | xex} = {/(x) [ xe X}

is compact in the space UCX. Thus the assumptions of Theorem 1.4 are fulfilled,
hence the set f(x) = U{f(x) | x € X} is compact.

1.27. Theorem. Let a multifunction f : X — Y be continuous. Let the space X
be connected and let there exist a point x.€ X such that the set f(x) is connected.
Then the space f(X) is also connected.

Proof. The map f¥ :X — SCY is continuous, so that fY(X) is a connected
subset of the space SCX. Now apply Theorem 1.5.

1.28. Theorem. Let a multifunction f:X — Y be upper semi-continuous and
point connected. Let the space X be connected. Then the space f(X) is also connected.

Proof. Suppose that f(X) = Y and that the space Y is not connected. Then there
exist two non empty disjoint open sets A, B such that Y = 4 U B. According to
Theorem 1.20 the sets f_(A) and f_(B) are open. Since f(x) = A U B and f(X)
is connected, it is either f(X) = A or f(X) = B. Hence X = f_(A) u f_(B), f_(4) n
Nf-(B) =10 and f_(4) + 0 + f_(B), which contradicts the assumption of con-
nectedness of the space X.

2. CONTINUOUS LOCAL RIGHT PSEUDOPROCESSES

2.1. Notation. In what follows, P denotes a locally compact Hausdorff space,
R the 1-dimensional Euclidean space of all reals. Let

D ={(v,u,x)eR x Rx P|u<v}.

The main object of our investigation will be a multifunction p defined on a subset D,
of the set D such that for each point (v, u, x) € D, the set p(v, u, x) is a non-empty
subset of the space P. In the study of properties of the multifunction p a very important
role will be played by the set

G,={(t,u,x)eD,| U {1} x {v} x p(v,u,x) = D,} .
velu,t]

The set R x R x P is supposed to be endowed with the topology of the cartesian
product and the sets D, D, and G, are topologized with the topologies induced
by the topology of the space R x R x P. Thus all the topologies involved are locally
compact and Hausdorff.

453



2.2. Definition. A multifunction p: R X R x P — Pis called a local right pseudo-
process (shortly written as an Ir-pseudoprocess) in the space P iff it satisfies the follow-
ing three axioms:

(E) The local existence axiom: Each point (u, x) e R x P reals e(u, x) (0, + 0]
and g(u, x) € (0, e(u, x)] are assigned such that

(v,u,x)eD, iff u=<v<u+ eu,x)
and

(v,u,x)eG, iff u=<v<u+g(ux).
(I) The initial value axiom: p(u, u, x) = {x} for each point (u, x) e R x P.

(O) The domain openness axiom: The sets D, and G, are open in the space D.

2.3. Remarks. 2.3.1. To each Ir-pseudoprocess p in P there corresponds an abstract
right pseudoprocess p in P over R in the sense of Definition 2.1 in [11]. These two
pseudoprocesses are evidently related in the following way:

yep(v,u,x) iff (y,v)p(x,u).

2.3.2. The initial value axiom implies immediately p(Dp) = P. Thus the set P
is fully determined by the multifunction p itself.

2.3.3. The local existence axiom may be formulated in the following manner:
There exist functions

(2.3.1) e,g:R x P (0, +00]

defined on the whole space R x P such that

(2.3.2) D,= U [u,u+eux) x {(ux)},
(23.3) G, = U Twu+ gl ) x L)}
Clearly o

e(u,x) =sup{t —ueR|(t,u,x)eD,},
g(u,x) =sup{t —ueR|(t,u,x)eG,},
where the supremum is taken over the extended real line R U {~— 0, +oo}.
2.34. If .
(2.3.4) D,=1D,

then also G, = D so that g(u, x) = ¢(u, x) = + oo for all (u, x) e R x P. In this case
all axioms of an Ir-pseudoprocess are fulfilled trivially. An Ir-pseudoprocess satis-
fying (2.3.4) is said to be global (shortly written as gr-pseudoprocess).

2.4. Example. Let us consider a one-parametric Cauchy problem
(2.4.1) y=(+a%)?, yu)=x, a>0.
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For each a > 0, u, x € R the Cauchy problem (2.4.1) has exactly one maximal
solution

(2.4.2) o(t;u,x,a) = —a’t + atg [at — au + arctg (f + au)] ,
a

defined for all ¢ € R satisfying

T 1 X T 1 X
U — ———arctg|—-—+au )<t <wu-+ — — —arctg{— + au .
2a a a 2a a a

Denote by

(2.4.3) e(u, x, a) = I _ —]—arctg <E + au)
2a  a a

the escape time of the solution (2.4.2).

Take any compact subset I of the interval (0, + c0) and define a Ir-pseudoprocess p
as follows:

(2.4.4) p(t,u,x) = {o(t; u,x, a) | ael}
foreach (f,u,x)eRx R xR, u=t.
It may be easily verified that the local existence axiom is fulfilled for
(2.4.5) ' e(u, x) = max {e(u. x, a)|ael},
9(u, x) = min {e(u,x, a) |ael}.

2.5. Lemma. Given a Ir-pseudoprocess p, then the set D, or G, is open in the
space D iff the function e or g from (2.3.1), respectively, is lower semi-continuous.

2.6. Remark. Recall that the functions e and g are lower semi-continuous iff
(2.6.1) e(u, x) < liminf (v, y;), g(u, x) < liminfg(v;, y;)

holds for each poiat (u,x)eR x P and for each (generalized) sequence (v;, y;}
in R x P converging to the point (u, x). From (2.6.1) one easily obtains that for
any compact sets I = R, K < P the reals

(2.6.2) e(I,K) = inf {e(u, x) | (u, x) eI x K}
and

(2.6.3) 9(I,K) = inf {g(u, x) | (u, x) el x K}
are positive. Thus ‘
(2.6.4) [u,u + e(I,K)) x {u} x K< D,,

[u,u + g(I,K)) x {u} x K =G,

holds for each compact set I x K = R x P and for each u el.
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In what follows, the symbol p(t, v, p(v, u, x) denotes the union of all sets p(t, v, z)
with z € p(v, u, x) such that (¢, v, z) € D,. Thus the statement “p(t, v, p(v, u, x)) is
defined” asserts that (v, u, x) € D, and (1, v, z) € D, for a certain point z € p(v, u, x).
In the special cases t = v orv = u this reduces to the assertion (t, u, x) € D,. Similarly,
the statement ‘“‘the given inclusion holds whenever the left hand side is defined”
means that if the left hand side of the inclusion is defined, then the right hand side is
defined as well and the inclusion holds.

2.7. Definition. An Ir-pseudoprocess p is said to be compositive or transitive iff
the following axiom (C) or (T) respectively, is fulfilled.
(C) The compositivity axiom: The inclusion
(2.7.1) p(t, u, x) = p(t, v, p(v, u, x))
holds whenever v € [u, t] and the left hand side is defined.
(T) The transitivity axiom: The inclusion ‘
(2.7.2) p(t, v, p(v, u, x)) < p(t, u, x)

holds whenever the left hand side is defined.
An [r-pseudoprocess p is called a local right process (shortly written as an Ir-
process) iff it satisfies the following axiom.

(C) The semi-group axiom: The identity
(2.7.3) p(t, u, x) = p(t, v, p(v, u, x))

holds whenever one of its sides is defined.

2.8. Remarks. 2.8.1. Recall that the semi-group axiom is satisfied iff both the
axioms (C) and (T) are satisfied simultaneously. In other words a Ir-pseudoprocess
is an Ir-process iff it is both compositive and transitive.

2.8.2. In the case of a gr-pseudoprocess the assumptions of the axioms (C), (T)
and (G) reduce to the requirement that (2.7.1), (2.7.2) and (2.7.3), respectively, takes
place for all x e P and all u, v, t € Rsatisfyingu < v < t.

2.8.3. If an Ir-pseudoprocess p satisfies the axiom (C) or (T) or (G) and (1, u, x) €
€ G,, then (2.7.1) or (2.7.2) or (2.7.3), respectively, holds with

ptv, plo,u,x)) = U pto,2).

zep(v,u,x)

2.9. Example. Let us investigate an Ir-pseudoprocess p defined in Example 2.4
with I = {4, 1}. According to (2.4.4)

(2.9.1) p(t, u, x) = {o(t; u, x, 1), o(t; u, x, 1)},
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where

4x + u
o(t;u,x,3) = -4t + %tg(%t — lu + arctg - 5 ),

o(t;u,x, 1) = — 1 +tg(t — u + arctg (x + u)).
According to (2.4.5)
e(u, x) = max {e(u, x. }), e(u, x, 1)},

g(u, x) = min {e(u, x, ), e(u, x, 1)}
with

4 1 x + a’u
e(u, x, a) = — — —arctg .
2a  a a

Since the function ¢(.; u, x, a) is a solution of the Cauchy problem (2.4.1), the
identity

(2.9.2) o(t, u, x, a) = ¢(t, v, ¢(v, u, x, a), a)
holds for all u £ v <t < u + e(u, x, a). Using (2.9.2), one may easily verify that
(2.9.3) p(t, u, x) = p(t, v, p(v, u, x))

whenever (, u, x) € D, and v e [u, t].

2.10. Lemma. Let p be an Ir-pseudoprocess. Then the following assertions hold.
2.10.1. Let p be compositive. If (v, u, x) € D,, then
(2.10.1) u + e(u,x) < v+ ev, y)
holds for a certain point y € p(v, u, x).
2.10.2. Let p be transitive. If (v, u, x) € D, then
(2.10.2) u+ e(u,x) 2 v+ e, y)
holds for each point y € p(v, u, x).
2.10.3. Let p be an Ir-process. If (v, u, x) € D, then
(2.10.3) u + e(u,x) = v+ ev, y)

holds for a certain point y € p(v, u, x).

2.11. Lemma. Let an Ir-pseudoprocess p be transitive and let (u,x)eR x P
be such that e(u, x) < +co. Then

(2.11.1) lim sup p(t;, u,x) = 0

ti~u+e(u,x)

holds for each (generalized) sequence of reals t; e [u, u + e(u, x)) converging to
u + e(u, x).
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Proof. Suppose that (2.11.1) does not hold. Then to each z elim sup p(t;, u, x)
there exists a subsequence (z;,) of a sequence of points z; € p(t;, u, x) converging
to the point z. According to (2.10.2),

t, + ety z;) S u + eu, x)
holds for each i. This together with the local existence axiom and (2.6.1) implies
u+ e(u,x) <u+ e(u,x) + e(u + e(u, x), z) <

< liminf (tj, + elt;, 2;)) <
(87,02 )~ (u+e(u,x),2)

< lim inf (u + e(u,x)) = u + e(u, x),
(!j‘.z“)*(u-i-e(u,x),z)

which is a contradiction.

2.13. Corollary. Let p be a transitive lr-pseudoprocess.
(i) If (u,x) e R x P with e(u, x) < + o, then

liminf p(t;, u,x) =0

ti—ut+e(u,x)
holds for each (generalized) sequence (t;) in [u,u + e(u, x)) converging to u +
+ e(u, x).

(ii) If the space P is compact, then e(u,x) = + oo holds for all (u,x)eR x P.
Thus, each transitive Ir-pseudoprocess in a compact space is global.

(iii) If (u,x) e R x P with e(u, x) < + oo, then to each compact subset B < P
there exists v e [u, e(u, x)) such that p(t, u,x) & B for all te(v,u + e(u, x)).

2.14. Definition. An Ir-pseudoprocess p is said to be continuous iff it satisfies
the following two axioms.

(S) The semi-continuity axiom: The multifunction p is upper semi-continuous.

(K) The point closedness axiom: The multifunction p is point closed.

2.15. Remarks. 2.15.1. For a continuous /r-pseudoprocess we shall use the shorter
notation a clr-pseudoprocess; analogously a clr-process, a cgr-pseudoprocess and
a cgr-process will stand for a continuous /r-process, a continuous gr-pseudoprocess
and a continuous gr-process, respectively.

2.15.2. Let us define a map
(2.15.1) k:R x P (0, +c0] : k(u,x) =
= sup {teR| p(u + v, u, x) is compact for all ve[0, (]} .
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We shall prove that k(u, x) > 0 for each point (u,x)eR x P. Let (u, x) be an
arbitrary point of R x P. The multifunction p is upper semi-continuous, hence to
each compact neighbourhood U of the set {x} = p(u, u, x) there exists a neigh-
bourhood V of the point (u,u, x) in D, such that p(v', u’, x') = U holds for each
point (v, u’, x’) € V. Since the multifunction p is point closed and the set U is com-
pact, p(v', u’, x') is compact for each point (v', u’, x') € V. Hence k(u, x) > 0 follows.

As the space P is locally compact and Hausdorff, the same reasoning yields the
following assertion. If the set p(t, u, x)is compact, then there exists a neighbourhood V
of the point (¢, u, x) in the space D, such that p(¢, u’, x’) is compact for each point
(¢, u’, x") e V. Hence the set
(2.15.2) K,= U [u,u+ k(u,x)) x {u} x {x}

(u,x)eRXP

is open in D,, which implies that the map (2.15.1) is lower semi-continuous. Thus
for any compact sets I = Rand K < P, the real

(2.15.3) k(I, K) = inf {k(u, x) | (u, x) eI x K}
is positive and
(2.15.4) [u,u + k(I,K)) x {u} x K =K,

holds for each u e1I.

2.15.3. For each point (u,x)eR x P and each real ve [u, e(u, x)), the set
p([u, v], u, x) will be called an orbit of the Ir-pseudoprocess p through the point
(u, x). The set p([u, e(u, x)), u, x) will be called a maximal orbit of the Ir-pseudo-
process p through the point (u, x).

2.15.4. Since the space P is locally compact and Hausdorff by our assumptions,
2.15.2 and Theorem 1.26 imply that each orbit p([u,v], u,x) with ve[u,u +
+ k(u, x)) is compact.

2.15.5. Suppose that at least one of the following two conditions a), b) is satisfied.

a) The set p(v, u, x) is connected for each real v € [u, e(u, x)).

b) The multifunction p(+, u, x) : [u, e(u, x)) > P is lower semi-continuous.

Then each orbit p([u, v], u, x) of the clr-pseudoprocess p is connected.

Indeed, the set [u, v] x {u} x {x} is a connected subset of D, the set p(u, u, x) =
= {x} is connected, so that Theorem 1.28 or Theorem 1.27 may be applied in the
case a) or b), respectively.

2.15.6. Let ve[u,u + k(u, x)) and let one of the conditions a), b) in 2.15.5 be
satisfied on the interval [u, v]. Then the orbit p([u, v], u, x) is a continuum.

2.16. Lemma. Let a clr-pseudoprocess p be given and let (v, u, x)er with
ve[u, k(u, x)). Then

(2.16.1) 0 + lim sup p(t;, u, x) = p(v, u, x)

ti—v

holds for each sequence of reals t; € [u, v] converging to the real v.
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Proof. Each sequence of points z; € p(t;, u, x) is contained in the compact set
p([u, v], u, x), so that it has a cluster point. This point belongs to lim sup p(t;, u, x),
hence this set is non-empty. The inclusion in (2.16.1) follows from the semi-con-
tinuity axiom, Theorem 1.22 and Lemma 1.11.

2.17. Lemma. Let p be a clr-pseudoprocess. Let sequences of points (t;, u;, x;) € D,
and y; e p(t;, u;, x;) converge to points (t,u, x) € D, and y € P, respectively. Then
yep(t, u, x).

Proof. The semi-continuity axiom, Theorem 1.22 and Lemma 1.11 imply
z elim sup p(t;, u;, x;) < p(t, u, x) e U — lim p(t;, u;, x;) .

2.18. Lemma. Let a clr-pseudoprocess p and compact setsI = R, K < P be given.
Then to each neighbourhood U of the set K there exists a real d > 0 such that
(2.18.1) p([u,u + d],u,x) c U
holds for each point (u,x)el x K.

Proof. Let U be neighbourhood .of the set K. Then to each point (u, x)el x K

there exist an open neighbourhood V(u, x) of the point (4, x) and a real d(u, x)
such that

(2.18.2) p([v,v + d(u,x)],v,y) = U
holds for each point (v, y) € V(u, x). The system of sets
(2.18.3) . {V(u, x) | (u,x) el x K}

forms an open covering of the cémpact set I x K. Take any finite open subcovering
{V(u;, x;) | i = 1,2, ..., n} of the covering (2.18.3) and show that (2.18.1) is satisfied
with

(2.18.4) d = min {d(u,, x,), d(u,, x;), ..., d(u,, x,), e(I, K)} ,

where e(1, K) is the real assigned to I, K according to (2.6.2).
To each point (u, x) eI x K there exists an index i, 1 < i < n such that (u, x) e
€ V(u;, x;). Hence, using (2.18.2) one obtains

p([u, u + d], u, x) = p([u, u + d(u;, x;)], u,x) < U.

2.19. Lemma. Let p be a clr-pseudoprocess in P, K a compact subset of the space P
and % the uniformity of finite open coverings of K. Then to each U € % and to each
compact subset I < R there exists a real d > 0 such that

(2.19.1) p([u, u + d], u, x) = U(x)
holds for each (u,x)el x K, where U(x) = {yeP|(y,x)eU}.
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Proof. Take an arbitrary U € % and a compact set I = R. Let Ve % be an open
symmetric vicinity such that ¥? = U. To each point (u, x) el x K there exist an
open neighbourhood W(u, x) of the point (u, x) and a positive real d(u, x) such that

(2.19.2) p([v. v + d(u, x)], v, y) = V(x)
holds for each point (v, y) € W(u, x). The system of sets
(2.19.3) {(W(u, x)| (u, x) el x K}

is an open covering of the compact set I x K. Let {W(u;, x;)|i =1,2,...,n} be
any finite subcovering of (2.19.3). Let a real d be chosen in the same way as in
(2.18.4) and let (u,x)el x K be arbitrary. Then (u, x) e W(u,, x;) for some i,
1 < i £ n. Hence, applying (2.19.2) one obtains

(2.19.4) p([u,u + d], u,x) < p([u, u + d(u;, x;)], u, x) = V(x)).

Since p(u, u,x) = {x} = V(x;) and V is symmetric, x;e V(x). Hence V(x;) <
< V*(x) = U(x), which together with (2.19.4) gives (2.19.1).

2.20. Theorem. Let a clr-process p and a point (u,x)e R x P be given. Denote
w = min {k(u, x), g(u, x)}. Then the multifunction
(2.20.1) p(, u, x): [u,w) > P
is lower semi-continuous.

Proof. According to Theorem 1.23 we have to prove that for each open set G = P
the set

T={te[uw)|p(t,u,x)n G + 0}

is open in [u, w). Let t, be an arbitrary point of the set T.

First we shall suppose that u < t,. Take an arbitrary point z € p(t,, u, x) 0 G and
an arbitrary real u’ € (ty, w). Since the set p([u, u'], u, x) is compact, the set
p([u,u'], u,x) — G = A is compact as well. Thus there exists an open neighbour-
hood U of the set A4 such that

(2.20.2) z¢U.

According to Lemma 2.18, to the neighbourhood U of the set A there exists a real
d > 0 such that

(2.20.3) p([v,v+d],v,y) = U forall velu,u'], yed.

The real d may be supposed to satisfy d < 7, — u. Let us show that (1, — d, t,) = T.
Take an arbitrary te(ty — d, to). Since z € p(to, u, x) < p(to. t, p(t, u, x)), there
exists a point z’ € p(t, u, x) such that z € p(to, t, z'). Let us prove that

(2.20.4) Zep(t,u,x)nG.
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Suppose that z’ ¢ G. Then z’ € 4, so that z € p(ty, t, z') = U according to (2.20.3),
which contradicts (2.20.2). Thus (2.20.4) holds. Hence t€ T and since ¢t was an
arbitrary point of the interval (¢, — d, t,), the whole interval (z, — d, t,) has to be
contained in the set T. Thus the first part of the proof is complete.

Now suppose that u < t, and that the real d > 0 was chosen so as to satisfy
d<w-—1t, and p([to,to + d], to,z2) = G. Then p(t,u,x) n G = p(t, t,,
p(to, u, x)) N G 2 p(t, to,2) "G = p(t, 1o, z) = O holds for all te[t,, t, + dJ.
Hence [t,, to + d) = T, which completes the proof.

2.21. Theorem. Let p be a clr-process. Then for each point (u, x) e R x P and for
each real ve [u, w) with w = min {k(u, x), g(u, x)} the set p([u, v], u, x) is a con-
tinuum.

Proof. Apply Theorem 2.20 and Remark 2.15.6.

2.22. Lemma. Let p be a clr-pseudoprocess. Then to each point (u,x)eR x P
there exist a real k > 0 and a compact neighbourhood K of the point x such that
(t,w,z)e G, holds for each point (w,z)e[u — k,u + k] x K and each te
el[w,w+ k].

Proof. Let (u, x) be an arbitrary point of R x P and let U be an arbitrary compact
neighbourhood of the point x. Then there exist a compact neighbourhood V of the
point x and compact neighbourhoods I, J of the point u in R such that p(t, v, y) = U
holds for each (t,v, y)e(J x I x V)n D, = H. The set H is compact in D,
the sets p(t, v, ) being closed subsets of the compact set U are compact for each
(¢, v, y) € H and the multifunction p is upper semi-continuous, so that the set

K= U p(toy)
(t,v,y)eH

is compact by Theorem 1.26. Since (u, u, y) € H for each point y € Vimplies V' < K,
the set K is a compact neighbourhood of the point x. Let g(I, K) be the real from
(2.6.3) assigned to the neighbourhood K of the point x and the neighbourhood I
of the real u. Then (1, w, z) € G, holds for all wel, ze K and te[w, w + g(1, K)).
One may easily verify that the assertion of the lemma is satisfied with the set K
and the real k = g(I, K)/3.

2.23. Lemma. Let p be a clr-pseudoprocess. Then to each point (u,x)eR x P
there exist a real k > 0 and a compact neighbourhood K of the point x such that
(t,w,z)e K, holds for each point (w,z)e[u — k,u + k] x K and each te
e[w,u + k.

Proof. The reasoning is the same as in the proof of Lemma 2.22 with g(u, x)
and G, replaced by k(u, x) and K, respectively.
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3. SOLUTIONS OF CONTINUOUS LOCAL RIGHT PSEUDOPROCESSES

3.1. Remark. In the paper [11] the concept of a solution of a right pseudoprocess
was introduced.This concept will be recalled and its properties will be investigated
in the case of continuous local right pseudoprocesses in a locally compact Hausdorff
space P.

3.2. Definition. Let p be an Ir-pseudoprocess in P and let s : R - P be a map.
The map s is called a solution of the Ir-pseudoprocess p iff it has the following two
properties:

(i) The domain D; of the map s is a non-empty interval in R.
(ii) If u,ve Dy, u < v, then

(3.2.1) s(v) € p(v, u, s(u)) .

3.3. Remarks. In what follows the set of all solutions of a given Ir-pseudoprocess
will be denoted by S.

3.3.1. If se Sand J < Dyis an interval, then s|; € S.

3.3.2. Let I be any index set and let s; € S for i € I be such that (\s; is a map and
D, is a non-empty interval. Then (\s; € S.

3.3.3. Let an Ir-pseudoprocess p be transitive, let s;, s, € S be such that Dg, N
N Dy, + 0 and s; U s, is a map. Then s; U s, €S.

3.3.4. Let an Ir-pseudoprocess p be transitive, let I be any index set and let s; € S
for i €I be such that s; U s, € S whenever j, ke and D;, U D, is an interval. Then
Us; e S.

3.4. Definition. Let an Ir-pseudoprocess p, a point (u, x) € R x P and a solution s
of p be given.

The solution s is called a right (left) solution through the point (u, x) iff s(u) = x
and min D, = u (max D, = u).

The solution s is called a maximal right (maximal left) solution through the point
(u, x) if it is a right (left) solution through the point (u, x) and s = s’ holds for each
right (left) solution s’ through the point (u, x) satisfying s = s'.

3.5. Remark. The set of all right (left) or maximal right (maximal left) solutions
through the point (u, x) will be denoted by S*(u, x) (S~ (u, x)) or C*(u, x) (C™(u, x)),
respectively.

3.6. Theorem. Let p be a transitive clr-pseudoprocess in P and let se S™(u, x)
or seS*(u,x) be a continuous solution such that D = (a,u] or Dy = [u,b),
respectively, with —o0 < a < u < b < +o0. Then exactly one of the following
two possibilities occurs.
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(i) For each (generalized) sequence of reals t,€(a, u] or t; € [u, b) converging
to the real a or b, respectively, the sequence (s(t;)) has no cluster point. Then the
solution s is maximal.

(ii) There exists a limit
lims(t) or lims(7).
t—a4 t—b-
Then the solution s may be extended to the solution s' defined on the interval [a, u]
or [u, b], respectively. Thus the solution s is not maximal.

Proof. Take any continuous s € S™(u, x) and suppose that there exists a sequence
of reals t; € (a, u] converging to the real a such that the sequence (s(t;)) converges
to a point y € P. Define the map s’

/ s(t) for te(a,u],

.6. P:

(3.6.1) "ila,u] > P:s(t) = ) for t=a
and show that s’ € S™(u, x).

Clearly, Dy, = [a, u] and s'(v) € p(v, w, s (w)) holds for all v, we(a,u], w <
It remains to prove that
(3.6.2) s'(v) € p(v, a, s'(a))

holds for all v e [a, u]. Since (3.6.2) with v = a is fulfilled trivially, @ < v may be
assumed. Thus (3.6.1) implies

s'(v) = s(v) € p(v, t;, s(1;)) = p(v, t;, s'(1;))
for all t; € (a, v). Hence (3.6.2) holds for all ve[a, a + e(a, y)) N [a, u] in virtue
of Lemma 2.17. Therefore it is sufficient to prove that u < a + e(a, y).
Suppose that there exists w € [a, u] such that w = a + e(a, y). Then
s'(w) =lims'(v)e limsup p(v,a,y) =0
VoW~ v—=>(ate(a,y))-
by Lemma 2.11, which is a contradiction.
The proof for right solutions is similar.

3.7. Theorem. Let a clr-pseudoprocess p be given. Then each solution s € S*(u, x)
with D; < [u, k(u, X)) is continuous.

Proof. Let w be an arbitrary point of D,. Let us prove that s is continuous at the
point w. Take v € D, such that w € [u, v] < [u, k(u, x)) and denote by s’ the restric-
tion of the solution s to the interval [u, v]. Let % denote the uniformity of finite
open coverings of the compact set K = p([u, v], u, s(u)). We shall prove that the
solution

s [u, v] > (K, %)

is uniformly continuous.
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Recall that s(t) € p(t, u, s(u)) = K holds for each te[u,v]. Take an arbitrary
symmetric U € %. According to Lemma 2.19, to the vicinity U and to the compact
interval [u, v] there exists a real d > 0 such that p(t, t', s(t')) = U(s(t')) holds for
allt, ' efu,v],0< 1 — 1 < d.

Now,

s()ep(t, 1, s(t)) = U(s(r')) forall 0<t—1 <d in [u,v]
implies
(s(r),s(t'))eU forall 0<t—1+t <d in [u,v],

which was to be proved.

3.8. Lemma. Let a clr-pseudoprocess p be given. Then to each continuous solu-
tion s with Dy compact there exist a real k > 0 and a compact set K = P such that
p(t, u, s(u)) = K holds for each u € Dy and each t € [u,u + k| n D,.

Proof. According to Lemmas 2.22 and 2.23, to each point (u, s(u)) with u € D,
there exist a positive real k(u) and a compact neighbourhood K(u) of the point s(u)
such that (1, w,z)e K, n G, holds for all (w,z)e[u — k(u), u + k(u)] x K(u)
and all re[w,u + k(u)]. Let O(u) denote the interior of the set [u — k(u),
u + k(u)] x K(u). Clearly, the system {O(u)|u e D,} is an open covering of the
compact set H = {(u, s(u)) | ue D;}. Now take any open subcovering {O(u,),
O(u,), ..., O(u,)} and set

k = min {k(u,), k(u,), ..., k(u,)} ,
K = U{p([w, u; + k(u;)], w, 2) | (w, z) €
€ [u; — k(uy), u; + k(u;)] x K(u), i =1,2,...,n}.

3.9. Theorem. Let a clr-pseudoprocess p and a solution s of p be given. Then s
is continuous iff to each ve Dy, v =% inf Dy there exists a real we D such that
w < v < k(w,s(w)).

Proof. Let s be continuous and ve D, v % inf D;. Let I <« Dy be any compact
neighbourhood of v and let s” denote the restriction of the solution s to the interval I.
According to Lemma 3.8 there exist a real k > 0 and a compact set K < P such that
p(t, u, s(u)) = K holds for each point uel and each te[u,u + k] nI. Now,
taking any k' e (0, 1k) such that [v — k', v + k'] = I it is easy to show that the
assertion of the theorem is satisfied with w = v — k.

Suppose now that the assertion of the theorem is satisfied and show that the solu-
tion s is continuous at each point v € D,. If v = inf D € D;, then s is continuous at
the point v by Theorem 3.7. If v > inf D,, then there exists a real w € D such that
w < v < k(w, s(w)). Now Theorem 3.7 may be applied to the restriction of the solu-
tion s to the interval [w, k(w, s(w))).
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3.10. Theorem. Let a clr-process p, a point (v, u, x) € K, and a point y € p(v, u, x)
be given. Then there exists a continuous solution s € S*(u, x) such that s(u) = x,
s(v) = y.

Proof. Without loss of generality we may assume that v — u = 1. Denote
k| ok k
B,={ti|ti=u+—, k=0,1,2,..2"
2"
for each positive integer n € N. Recall that
2
t=u +Er:'—1= ty_,€B,_, forall n>1 and k=2m,

and that the set
B

n
1

B =

I8

is dense in the interval [u, v]. We shall define the points s(#;) for all k,ne N, n > 0,
as follows:
For each n e N, n > 0, we define the set

= {s(tt) | the B,}
by induction.
Forn = 1 weset G, = {s(u), s(u + %), s(v)} with s(u) = x, s(v) = yand s(u + })e
€ p(u + %, u, s(u)) such that s(v) € p(v, u + 4, s(u + 1)). This is possible since
s(v) = y e p(v,u, x) = p(v, u, s(u)) = p(v,u + %, p(u + 4, u, s(u))) .
Suppose now that for a given n € N the set G, is defined in such a way that s(u) = x,
s(v) = y and
s(t%) € p(ts, th, s(ty)) forall 1, 1,€B,, r<k,
and define the set G,,,. For k = 2m set
s(ths1) = s(t7) € G,
and for k = 2m + 1 take

S(t:+1) € P(t:+1, n+1’ s(tn+l))

such that

S( +1) € p(tﬁii, ferts S(t::d-l))

holds. This is possible since
s(’ﬁi}) = s(tm+1) Ep( m+l, na s(tm)) = p(t:ii’ ﬁ+i: s(tn+l)) =

= p(tn+15 tn-{-la p(tn+1’ n+1’ s(tn+ 1)))
Let us show that
s(tns1) € P(t’:l+1y tne1> S(th+1))
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holds forall £, , fs. 1 € B, 1, r < k. It will be seen in what follows that it is possible
to assume that none of the integers r, k is even. Denote r = 2q + 1, k = 2m + 1.
Then, using the induction hypothesis on G,, we obtain

(,,+1)€P(t,,+1, n+13 S(tn+l)) = p n+l’ m S(tm))
< Ptnsss s p(0 627, 5(87 1)) = i, 130, 5(011) ©
< p(t:+1’ n+l’ P(t;ilu :|+ls S(t +1))) - p n+1’ n+19 (n+l))

Thus we have constructed a map s : B — P such that
s(u)=x, s(v) =y, s(t)ep(t,t',s(t)) forall ,t'eB, t'<t.
In the same way as in the proof of Theorem 3.7 it may be proved that the map
s:B < R- p([u,v], u, x)

is uniformly continuous. Since the map s maps the dense subset B of the compact
metric space [u, v] into a complete uniform Hausdorff space p([u, v], u, x), (see 1.6),
it may be uniquely extended to the uniformly continuous map of the whole interval
[u, v]. Let the symbol s denote also this extended map and let us show that the map s
is the solution the existence of which is asserted in the theorem.

Clearly s(u) = x, s(v) = y. Take any t, t" € [u, v], ' < t. Let (1,), (t,) be sequences
of reals in B such that t, > t, for all n, 1, > t, 1, — t' for n > + 0o0. The continuity
of s implies s(t,) — s(1), s(t;) = s(t') for n - +co0. As s(1,) € p(t,, 1, s(t,)) for all n,
Lemmas 2.16 and 2.17 may be applied. Hence

s(t) = lim s(t,) €lim sup p(t,, t, s(t,)) < p(1, 1, s(t')) .
n—+o n=+o
Thus se S*(u, x).

3.11. Remark. The proof of Theorem 3.10 is similar to those of Bupak [4] and
BRONSHTEIN [3] Analogous theorems for generalized dynamical systems in metric
spaces are proved in [1] and [14].

Recall that in terms of the paper [11] the preceding theorem asserts that each point
compact clr-process is solution complete (see Definition 2.11 in [11]).

3.12. Corollary. Let a clr-process p be given. Then S*(u, x) + @ for each point
(u,x)eR x P.

3.13. Lemma. Let a clr-pseudoprocess p, a real u € R and a compact set H = P
be given. Let T be a real such that 0 < T < inf {k(u, y) | y € H} and let M denote
the set of all solutions se€ S such that Dy = [u, T] and s(u) € H. Then the set M
is equicontinuous.

Proof. Let % denote the uniformity of finite open coverings of the compact set
K = p([u, T], u, H). We have to prove that to each vicinity U € % and to each real
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ve [u, T] there exists a real d > 0 such that

(3.13.1)
(s(r),s(v))eU forall te[v—d, v+d|nfu T] andall seM.

Since the set of all open symmetric vicinities forms a base for the uniformity %, it is
sufficient to prove (3.13.1) only for U symmetric and open.

Let any symmetric open U € % and any v € [u, T] be given.

First, suppose that v #+ T. According to Lemma 2.19, to the compact sets K < P,
I = [u, T] and the vicinity U there exists a real d’ € (0, T — v) such that p([v, v + d'],
v, 5(v)) = U(s(v)) holds for each se M. Thus s(t) € p(t, v, s(v)) = U(s(v)) holds for
allu v <t<v+d £ T.Hence

(3.13.2) (s(t), s(v))eU forall te[v,v+d] andall seM.

Now suppose that v + u. In a similar way as above, a real d” € (0, v — u) may be
found such that p([t, v], t, s(t)) = U(s(t)) holds for all t e [v — d”, v] and all s e M.
Thus s(v) € p(v, t, s(t)) = U(s(1)) holds for all te [v — d”,v] and all se M. Hence

(3.13.3) (s(v), s(t))eU forall te[v—d’,v] andall seM.
Now (3.13.2) and (3.13.3) imply (3.13.1) with d = min {d’, d"}.

3.14. Theorem. Let a clr-pseudoprocess, a sequence of points z,€ P converging
to a point z € P and a real u € R be given. Let H denote the set of all members of
the sequence (z;) and its limit point z. Let T be a real such that 0 < T<
<inf{k(u, y)| ye H}. Then to each sequence of solutions s,eS*(u,z,) with
D, = [u, T] there exists a continuous solution s e S*(u, z) with D, = [u, T] and
a subsequence (s,,) of the sequence (s,) converging to the solution s uniformly
on the interval [u, T].

Proof. Let K denote the compact subset p([u, T], u, H) of the space P. Let
C([u, T], K) denote the space of all continuous maps of the interval [0, T] into the
space K and let the space C)[u, T], K) be endowed with the topology of uniform
convergence. Let M denote the set of all members of the sequence (s,). According
to Theorem 3.7 all solutions s, are continuous, so that M is a subset of the space
C([u, T], K). The set M is equicontinuous by Lemma 3.13 and the closure of the set
{s5,(v) | s,€ M} being a closed subset of the compact set K is compact for each
ve[u, T]. Thus Ascoli Theorem (see [8], chap. 7, Th. 17) may be applied. Hence
the closure of the set M in the space C([u, T], K) is compact, so that there exists
a subsequence (s,,) of the sequence (s,), converging to an element s € C([u, T], K).
Let us show that the map s is the solution we are looking for.

Clearly s(u) = z and D, = [u, T]. Take arbitrary t, 1 € D, t' < t. Then Slt) €
€ p(t, t', 5,(t)) holds for all m. Hence, using Lemma 2.17 one obtains s(t) €
ep(t.t',s(t')) forall ' < tin D,, which completes the proof.
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