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ON THE DIAGONALS OF INTEGRAL MATRICES 

E. MARQUES DE SA, Coimbra 

(Received December 22, 1977, in revised form May 30, 1979) 

Throughout this note we deal mainly with matrices over a principal ideal domain, 
R. For the general concepts and results on matrices over R, we refer to [6]. The 
elements of JR will be denoted by greek letters, and the symbols "a < : j5" and 
"7 = : ^" will be used to mean that a divides ß and y is associated ô, respectively. 
Therefore, a =: ß iff oc <: ß <: oc. We let M be a multiplicatively closed subset of R, 
which constitutes a complete system of representatives of the classes of associated 
elements of R. The invariant factors of a matrix and the gcd (greatest commun 
divisor) of elements of R, will be taken from M. 

Let Л be an n X m matrix of rank r. Let a^,..., â  be the invariant factors of A, 
ordered so that â  < : . . . < : â . It is well known that A is equivalent to the n x m 
matrix 

rdiag(ai , . . . , a,), Ol 
L Û, Oj 

where the O's, if they exist, are zero blocks of the appropriate sizes. For convenience, 
we shall eventually extend the sequence â  < : ... < : â , with a finite or an infinite 
tail of zeros, so that new sequences as â  < : ... < : a„ or â  < : a2 < : аз < : ... are 
obtained, with â  = Ofor i > r. The additional zeros are also considered as in­
variant factors. 

As the first invariant factor, a ,̂ is the gcd of the elements of A, the following easy 
proposition characterizes the diagonals of the matrices equivalent to A. 

Proposition. Let A be an n-square matrix over i?, n ^ 2. Let (5̂ , ..., (5„ be elements 
of R, that are multiple of a .̂ Then, A is equivalent to a matrix with diagonal 

Proof. Let â  < : a2 < : . . . be the invariant factors of A. If n = 2, it is easily 
seen that 

Г 1̂ «i l 
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is equivalent to A. Therefore, the proposition is proved for n = 2. To prove the pro­
position for a general n ^ 3, we proceed by induction, assuming that it holds for 
n — 1. Firstly, we apply the case n = 2to prove that A is equivalent to 

^ = [^/-'«3,«!]"^^"^^'^'-''"^' 
Then, we take (n — l)-square unimodular matrices, P and Q, such that the diagonal 
of Pd iag (a i , oc^,..., a„) Q is {Ô2,..., ^„). The matrix (1 + P) C ( l + Ô) is equi­
valent to A and has the prescribed diagonal. D 

Next, we characterize the diagonals of triangular matrices, equivalent to a given 
square matrix A. 

Theorem. Let A be an n-square matrix over R, with invariant factors â  < : . . . 
. . . < : a„. Let ô^, ..., ^„ be n elements of R. Then, there exists a triangular matrix, 
equivalent to A, with diagonal (ö^, ..., ô„), if and only if the following relations 
hold: 

(1) cc, ...ccf, <:gcd{ôi^...ôi^: I й it < . . . < ik й n} , k= 1 , . . . , n - 1 , 

(2) ai ...a„ = : ^ i ...<5„. 

To prove our theorem we need the following basic result, that has been proved 
in [7] and [8], and that can be viewed as a consequence of a theorem in [1]. 

(3) Let A and В be matrices over R, of dimensions {n + p) x (m + ^) and n x m, 
respectively (p, q ^ 0). Let a^ < : «2 < : . . . and /?i < : ^̂ 2 < : . . . be their 
respective sequences of invariant factors. Then, A is equivalent to a matrix 
having В as a submatrix, if and only if the following relations hold: 

(4) cci <:ßi <:cc,^p^^, i = 1 , 2 , . . . 

Remark . R. С THOMPSON [8] has already observed the striking analogy between 
the relations (4), and the interlacing inequaUties for eigenvalues of hermitian matrices 
and for singular values of arbitrary complex matrices. 

Also remarkable is the resemblance between our Theorem and a result by H. WEYL 
[9] and A. HORN [4], that can be stated as follows: Let A be an n-square complex 
matrix, with singular values oĉ  ^ a2 ^ .. . ^ a„ ^ 0. Let ô^,,.., ö„ be complex 
numbers. Then, there exists a triangular matrix, unitarily equivalent to A, with 
diagonal (S^,..., ô„), if and only if the following relations hold: 

ci,.,.af,^ sup {\ôi^ . . . (5iJ : 1 ^ Ï1 < . . . < /fc g n} , fc = 1, . . . , n ~ 1 , 

a i . . . a „ = |(5i ...(5„| . 
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Though not so impressive, the analogy between our relations (1) —(2) and the so 
called Hardy-Littlewood-Polya inequalities 

«1 ^ •.. й ci„, 

+ a^S min{di^ -}-... + d^,^ : 1 ^ i, < ... < i,, й n] 

к = l , . . . , n - 1 , 

(5) 

(6) a, + 

(7) a^ + ... + a„ = di + ... -h d„, 

is worth noting as well. These inequalities characterize the diagonals, (d^, ..., d„), 
of the hermitian matrices with prescribed eigenvalues a^ ^ ... ^ <з„ [3]. The claimed 
analogy is easily seen in the case when Л is nonsingular. For, given a prime ne R, 
let us define the integers ai and di as being the multiplicités of тс in the prime factoriza­
tion of (Xi and ôi, respectively. Then, (5) —(7) follow from â  < : . . . < : a„, (1) and (2). 

As a matter of fact, we shall need in the sequel the following lemma, involving 
both the interlacing inequahties for eigenvalues of hermitian matrices and the 
Hardy-Littlewood-Polya inequalities. 

Lemma. Let n ^ 2, a^, ..., a„ and d^, ..., d^ be integers such that (5), (6) and (7) 
are satisfied. Then the following system of inequalities: 

(8) Xi + ... + Xfc g min [di^ + ... -\- di^ : 1 S ii < •'- < ik й n - 1} , 

к = l , . . . , n - 2 , 

(9) Xi + ... + x„_i = di + ... + (i„-i , 

(10) a, ex, ^ « 2 ^ ^ 2 ^ . . . ^ ^ n - i йа„, 

has an integral solution, x,, . . . , x„_ ^ . 

Proof. From (5) —(7), and from [3], it follows that there exists an n x n hermitian 
matrix Я, having a i , . . . , a„ as eigenvalues and (J^, ..., J„) as main diagonal. Applying 
the Cauchy interlacing inequahties [5], and applying again [3], we deduce that 
the eigenvalues, x^, ..., x„_i, of the hermitian matrix obtained from H by deleting 
the last row and column, constitute a solution of (8) —(10). 

It remains to prove that one of the solutions of (8) —(10), is integral. For, let us 
rewrite the system (8) —(10) in the form: 

(11) 

r — O O -

— 00 

— 00 

' - ^ « - 1 - ^ 

= 

1 0 0 . 
1 1 0 . 
1 1 1 . 

. On 

. 0 

. 0 

1 1 1 1-

-Xi -

X2 

^ 3 

X„-i 

< 

-^1 -

^2 

^3 

' - ^ n - 1 - ' 

' 

- « 1 -

^ 2 

« 3 

La„_iJ 

< 

-Xi -

X2 

^ 3 

X„-i 

< 

-^21 

« 3 

^ 4 

uj 
where e^ = min (с/,-, + .. . + J,-̂  : 1 g ii < .. . < I't ^ п - 1}, к = 1 , . . . , n - 1. 
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Using the same notation as in [2. p. 224], (11) is a system of the type: 

b ^ ÄX S b\ с S X S c', 

where b, b\ с and c' are vectors, whose entries are integers (±oo allowed), and Ä 
is the triangular matrix of O's and I's, appearing in (11). Then, [2, Theorem 2] 
asserts that every vertex of the polyhedron 

6(b, b\ c, c') = {x:b S Лх ub\ с g x g с'} 

has all integral coordinates, if and only if Ä has the unimodular property (i.e., every 
minor determinant of Л equals 0, +1 or — 1). It is easy to prove that our triangular 
matrix Л has the unimodular property (apply, for instance. Theorem 5 of [2], with 
V2 = 0). The proof of the Lemma is now complete. П 

P roo fo f the Theorem. It is a well known fact that the invariant factors of Ä 
can be given by: 

«I ... a;̂  = gcd (minors of A, of order k] , /c = 1, ..., n . 

If the (Xf^'s are the invariant factors of a triangular matrix T, with diagonal ((З̂ , ..., ô„), 
then conditions (1) —(2) must hold. In fact, ôi^ ... (5,-̂  is the determinant of a /c x /c 
principal submatrix of Г, for 1 g /c g n, 1 g I'l < ... < /̂  ^ n. Thus, the "only if" 
part of the Theorem is proved. 

The converse will be easier to prove, if we show first that the ordering of the ^'s 
is irrelevant. For, let Г be a lower triangular matrix, with diagonal ((5̂ , ..., ô„), and 
let s be an integer, 1 ^ s < n. Consider the following block decomposition of T: 

r = 
^ ^ 
\F 
[G 

0 0 1 
T2 0 

я T,\ 
with T. 

where the diagonal blocks are square. As 

T2 
, _ r < 5 s + . 0" ] 

is equivalent to T2, there exist 2 x 2 unimodular matrices, U and F, such that UT2V =^ 
= T2. Therefore, Tis equivalent to the triangular matrix 

r = 
the diagonal of which is (ô^, •.., ^s-i, ^s+i, ^s, ̂ s+2? •••5 ̂ n)- ^s any permutation, a, 
is the product of transpositions, then Tequivalent to a triangular matrix with diagonal 

Тг 
UF 
G 

0 
T2 

0 1 
0 

HV Гз] 
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Thus, we shall assume, from now on, that the (5's are ordered in such a way that 
ô„ = Oiff (5i(52...(5„ = 0. 

The sufficiency of conditions (1) —(2) will be proved by induction on n. The case 
n = 1 is trivial. Now, assume that the Theorem is true for (« — 1) x (n — 1) 
matrices (« -- 1 ^ 1), and let â  < : . . . < : a„ and 3^,..., (5„ satisfy (l) —(2). Our 
problem would be solved if we could find n — 1 elements of R — Xu ••-, Xn-i ~ such 
that 

(12) X i . - . X . < : g c d { ^ , , . . . ^ , , : l ^ 4 < . . . < i , ^ n - l } ^ /c = l , . . . , « - 2 , 

(13) Xi "-Xn-i = : ^ i "'àn-i , 

(14) ai < : x i < :«£ <-.X2 < : . • <:X«-i < : « « • 

To see that these conditions are what we need, suppose, for a moment, that we 
have found Xu • • -̂  Xn-i satisfying (12) —(14). Then, by (14) and the result (3) we may 
extend the matrix 

D = 

i. 0 

0 Xn-

, to a matrix A' = 

0 !0 

0 b - , 10 

.<^1 • • • C n - 1 j Sn . 

in such a way that A' has invariant factors a^, ..., a„. By induction, D is equivalent 
to a (lower) triangular matrix, with diagonal (^i, ...,(5„_i). Therefore, A' is equi­
valent to a triangular matrix T, with diagonal ((5 ,̂ ..., <5„_i, (̂ „). Moreover, we can 
choose (̂ „ = (5„. For, if Xn~i + 0, then (2), (13) and Xu --vX/,-! + 0 imply that 
^„ = co^„, where ш is a unit of R. The factor со is removed, if we multiply the last 
column of Tby i\co. If Xn-i = 0, then a„ = (5„ = 0. Let ^ denote the gcd {(^„_i, 4} -
The matrix [<^„>i, (̂ „] is, then, equivalent to [^, 0]. Therefore, the last row of A' can 
be changed to [^j, ..., < „̂_2, (̂ , 0], without changing the invariant factors. 

Thus, it remains to prove that, under conditions (1) —(2), there exist Xi, •••, Z«-i 
subject to (12)--(14). We split the proof into two cases. 

Case 1. When (5„ = 0. Then, condition (2) imphes that a„ = 0. The relation 
â  . . . a„_i < : (5i . . . ^„.^ follows from (1). Therefore, there exists qe R, such that 

a„_j^ = (5i . . . ^ „ - 1 . Define Xi Xn- by: Xi = ^u Xn-l = ^n- and 
Xn-\ = Q^n~\' It is clear that these x's satisfy (12) —(14). 

Case 2. When b^ Ф 0, i.e., ^^ ... ^„ ф 0. Then every â  is nonzero, / = 1, ..., n. 
Let ^ be the set of the irreducible factors of the product â  . . . a„ ^^ .. . ^„. Given 
7Г G ^ , denote by а^п) and din) the exponents of % in the irreducible factorization 
of â  and <5,-, respectively, f = 1, ..., n. By the Lemma, there exist integers ^1(71), ... 
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. . . , x„-i{n), such that 

(15) Х1(я) + . . . + Xk{n) й min {di^n) + . . . + а^^{п) : 1 S ii < -•• < ik й n - 1} , 

к = 1, ,..,n — 2, 

(16) X,{n) + . . . + X„_i(7r) = d,{n) + . . . + 4 - I ( 7 T ) , 

(17) ai(7r) g Xi(7r) ^ «^(TC) ^ . . . â ^ n - i ( ^ ) ^ Ы ^ ) . 

If we denote the powers n'''^''\ n'^'^''^ and n''^^''\ respectively by а (̂7г), ôj(n) and 

X/TI), for 1 ^ / ^ T̂, 1 ^ ; < n, then (15) —(17) can be written as 

(18) Xi{n)... Xk{n) < : gcd {ô,^{n)... ^ JTT) : 1 ^ i, < . . . < / , ^ П - 1} , 

/с = 1, . . . , n — 2 , 

(19) Zi(^).- . Z„-i(7r) = (5i(7i)... (5„_1(я) , 

(20) ai(^) < : Zi(7r) < : cc2{n) < : . . . < : Zn- i(7r) < : аДтг) . 

If we define Xi by Zi = П Zi(̂ )> i = 1, . - . ,« — 1, it is a simple exercise to prove 

that (12)-(14) follow from (18)-(20). 

Acknowledgement. We are indebted to Professores DAVID CARLSON, GRACIANO 
DE OLIVEIRA and MARIA EMILIA MIRANDA, for useful remarks about this note. 
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